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Abstract

Sparsity learning aims to decrease the computational and

memory costs of large deep neural networks (DNNs) via

pruning neural connections while simultaneously retaining

high accuracy. A large body of work has developed sparsity

learning approaches, with recent large-scale experiments

showing that two main methods, magnitude pruning and

Variational Dropout (VD), achieve similar state-of-the-art

results for classification tasks. We propose Adaptive Neural

Connections (ANC), a method for explicitly parameterizing

fine-grained neuron-to-neuron connections via adjacency

matrices at each layer that are learned through backpropa-

gation. Explicitly parameterizing neuron-to-neuron connec-

tions confers two primary advantages: 1. Sparsity can be

explicitly optimized for via norm-based regularization on the

adjacency matrices; and 2. When combined with VD (which

we term, ANC-VD), the adjacencies can be interpreted as

learned weight importance parameters, which we hypoth-

esize leads to improved convergence for VD. Experiments

with ResNet18 show that architectures augmented with ANC

outperform their vanilla counterparts.

1. Introduction

Deep neural networks (DNNs) have achieved great suc-

cess in recent years, continuously breaking benchmarks in

a breadth of applications and research areas. With the aim

of improving state-of-the-art (SOTA) results, architectures

have become increasingly large and complex, intensive with

respect to both memory and computation. Thus, it is of great
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interest to decrease the number of parameters a neural net-

work uses while retaining similar quality of inference. There

are a number of categories of approaches for decreasing the

parameters of a neural network, such as the well-known stu-

dent teacher methods . In this paper, we address the subset of

methods where connections between neurons are set to zero

or pruned in some way, termed sparsity learning . By sparsi-

fying models, memory and computational intensiveness of

neural networks can be drastically reduced.

A large number of methods in recent years have been

proposed to sparsify models. Recently, a large scale study

with tight methodology (Gale et al. (2019)) has shown that

most of these methods fail to outperform simple magnitude

pruning, a sparsity method where all weights below a certain

magnitude threshold are set to 0, with retraining occurring

afterwards. In the case of classification tasks, Variational

Dropout (VD), a method in which parameterizations of Gaus-

sian priors on all individual weights are learned via training

allowing for pruning of weights based on the learned distri-

butional parameters, outperforms magnitude pruning and all

other tested methods in terms of test accuracy at nearly all

sparsity levels and especially at the highest sparsity levels. A

slightly modified version of magnitude pruning taking into

the account the depth of the layers was shown to marginally

outperform or approximately equal the test accuracy of VD

at most sparsity levels, with VD achieving higher test ac-

curacy at the sparsest levels (greater than 95% parameters

pruned).

In this paper, we improve upon VD by explicitly parame-

terizing the adjacencies of neuron-to-neuron connections. At

each layer, the weight matrix, or weight kernel, is multiplied

by a binary mask of the same shape. A soft mask, with

values between 0 and 1, is passed through a differentiable
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rounding function that approximates a hard round function.

In this sense, neuron to neuron connections can be learned

adaptively through backpropagation via this method. We

term this layer-wise method, Adaptive Neural Connections

(ANC). Through explicit representation of neuron-to-neuron

connections, ANC allows us to explicitly induce sparsity

through norm based regulation on the adjacency parameters.

Additionally, we give a Bayesian interpretation for why this

is relevant and beneficial to VD, when combined together,

termed Adaptive Neural Connection Augmented Variational

Dropout (ANC-VD).

Experimentally, ADC-VD outperforms VD in terms of

test accuracy at nearly all sparsity levels. ADC-VD is able

to achieve higher sparsity with less test accuracy degrada-

tion, decreased computational wall time, decreased memory

cost, and decreased number computational operations at in-

ference, compared to all other methods. These outcomes

are achieved in significantly less training iterations than VD.

Our experiments and comparisons make use of a ResNet18

architecture, as well as a VGG18 architecture, with training

and testing done primarily on CIFAR-10. We leave prelimi-

nary experiments showing similar results on CINIC-10 and

ImageNet-32 as well.

Contributions: We introduce an easily implementable,

general method for sparsity learning that can be applied to

virtually any sparsity learning method or network architec-

ture. We give an interpretation as to why this method is

particularly suited to Variational Dropout (VD), which is

state-of-the-art or nearly state-of-the-art for sparse image

classification. For computational expediency and to ease the

complexity of comparisons, we take the top two methods

from (Gale et al., 2019) (VD and magnitude pruning) and

focus on improving upon them. Experimental results show

our method moderately improves upon VD and marginally

improves upon magnitude pruning. Overall, ANC shows

promise as a practical method that can be broadly applied in

future sparsification research.

2. Background and Related Work

Many techniques have been developed for sparsity learn-

ing. (Wen et al., 2016) makes use of specific norm-based

regularization expressions to adapt filter-wise and depth-wise

capacity for sparsity, and (Liu et al., 2017) use a similar cat-

egory of methods to induce channel-wise sparsity. (Zhu and

Gupta, 2017) is where magnitude pruning is introduced via

simple norm-based thresholds and scheduling of the prun-

ing. (Kingma et al., 2015) introduced variational dropout, a

Gaussian-prior formulation of dropout, and (Zhu and Gupta,

2017) applied variational dropout to the sparsity learning

setting. (Liu et al., 2018) argue that sparsification is a form

of neural architecture search, though (Gale et al., 2019)

conducted experiments that contradict that claim, to some

extent. Other related sparsity approaches include Louizos

et al. (2017) which uses an L0-norm based regularization for

sparsity on the weights and Liu et al. (2018), which uses a

variational technique to compress weights.

As for similarities to ANC, any method that performs

some sort of masking will fall into the same operational

category, since ANC can be formulated as equivalent to a

specific soft mask formulation. For example, since it does

channel-wise masking, (Liu et al., 2017) is a specific case

of ANC. (Bejnordi et al., 2019) is also a special case of

ANC with different non-linearities and priors on gating func-

tions. However, current methods do not attempt to explicitly

represent all neuron-to-neuron connections adaptively, nor

are there masking techniques that are depth-wise modulated

(shown in section 3).

3. Adaptive Neural Connections

As quick illustration, we give ANC as defined for a simple

multi-layer perceptron, denoted as f . Let mapping f from

R
d1 −→ R

d3 be defined as

f(x) , σ(W2σ(W1x)) (1)

where x ∈ R
d1 , W1 ∈ R

d2×d1 , and W2 ∈ R
d3×d2 .

Denote the set of weights as W , {W1,W2}. Define a

corresponding set of masks as A = {A1, A2}, where A1 ∈
{0, 1}d2×d1 and A2 ∈ {0, 1}d3×d2 . In other words, A1 and

A2 are the same shape as their corresponding weights, and

explicitly represent the neuron-to-neuron connections of the

network. Applying A to f , we define as

f(x;W,A) , σ((W2 ⊙A2)σ((W1 ⊙A2)x)) (2)

where ⊙ denotes element-wise multiplication. The definition

for MLPs can be generalized to any architecture with weight

tensors.

However, A cannot learned through backpropagation due

to its non-differentiability (you would need to incorporate

a hard rounding function, which is not differentiable). One

way around this is to approximate the hard rounding function

through a sigmoidal function:

soft round(x;β) =
1

1 + exp(−(β(x− 0.5)))
(3)

This function is element-wise, and β is a “tightening” param-

eter that controls how closely soft round approximates the

hard rounding function. Here, we assume x ∈ [0, 1], and in

fact we initialize our pre-soft-rounded A parameters in exper-

iments with skewed, clipped Gaussians with support [0, 1].
In experiments, β can be restricted to be non-decreasing so

as to coerce the network towards A parameters that can be

safely converted into binary values and combined with their

corresponding W parameters at inference time so as to not

superfluously introduce a higher parameter count.
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3.1. Bayesian Interpretation

We now discuss ANC from a Bayesian point of view, and

discuss how this relates to VD.

3.1.1 Automatic Relevance Determination and ANC

Automatic relevance determination (ARD) and the closely-

related sparse Bayesian learning (SBL) framework are effec-

tive tools for pruning large numbers of irrelevant features

leading to a sparse explanatory subset (Wipf and Nagarajan,

2008).

Like mentioned in Wipf and Nagarajan (2008), if we

present a model,

y = γx+ η (4)

where γ ∈ R
nXm is a dictionary of features, x ∈ Rm is

a vector of unknown weights, y is an observation vector,

and η is uncorrelated noise distributed as N(η; 0, λI) and

if the number of features is too large, the problem becomes

ill-poised, complex and may overfit.

ARD addresses this problem by regularizing the solution

space using a parameterized, data-dependent prior distribu-

tion that effectively prunes away redundant or superfluous

features (Neal, 2012). As from Wipf and Nagarajan (2008),

the basic (ARD) prior that SBL incorporates can be defined

as p(x; y) = N (x; 0, diag[λ]) where λ ∈ R
m
+ is a vector of

m non-negative hyperparameters governing the prior vari-

ance of each unknown coefficient.

These hyperparameters are estimated from the data by

minimizing

L(λ) , − log

∫
p(y|x)p(x;λ)dx

= − log(p(y;λ)) ≡ log |
∑
y

|+ yT
−1∑
y

y (5)

where, a flat hyperprior on λ is assumed. This minimization

is also referred to as evidence maximization (MacKay, 1992).

If any λ∗,i = 0, as often happens while the model is learning,

then xARD,i = 0 (the posterior mean), effectively pruning

the respective feature from the model, resulting in a relatively

sparse weight vector.

With respect to the above-mentioned Automatic Rele-

vance Determination (ARD) work, which we can interpret

as a Bayesian framework of placing Gaussian priors on the

Neural Networks’ weights and then structured hyper-priors

on the Gaussian prior, we can draw a parallel to our exper-

iment of combining the neuron connection matrix A with

Variational Dropout (Kingma et al., 2015). Instead of tying

the weights together in the layer as a form of combined reg-

ularization, the neuron connection matrix A computes the

importance of the connected layers’ weights/parameters.

Kharitonov et al. (2018) actually shows ARD applied

to Bayesian DNNs with Gaussian approximate posterior

distributions leads to a variational bound which is similar to

that of variational dropout, and in the case of a fixed dropout

rate, objectives are exactly the same. In our case, we believe

the adjacency matrix models the hyperprior defined above.

3.2. DropConnect and ANC

Dropconnect (Wipf and Nagarajan, 2008) was introduced

in 2013 as a generalization of the previously available

Dropout. Dropconnect sets a randomly selected subset of

weights within the network to zero instead of Dropout’s

method of doing the same with a random sunset of units in

the previous layer.

For a DropConnect layer, the output is given as:

r = a((M ∗W )v) (6)

where ∗ denotes element wise product, W represents the

weights, v is the input vector, a is the non-linear activation

function, M is a binary matrix encoding the connection infor-

mation and Mij ∼ Bernoulli(p). Each element of the mask

M is drawn independently for each example during train-

ing, essentially instantiating a different connectivity for each

example seen. In our case, we can see the adjacency layer

as a soft Dropconnect Mask assignment. Instead of hard

random assignment {0, 1}, we assign softer values (which

are randomly initialised) to individual weights.

4. Experiments

Here, we compare the sparsity learning methods Vari-

ational Dropout and magnitude pruning to their ANC-

augmented counter-parts. Experiments are primarily con-

ducted on ResNet18 and VGG18-like architectures, and the

CIFAR-10 dataset, though less extensive results are shown

for MNIST, CINIC-10, and ImageNet32 as well. Generally,

we compare test accuracy at each sparsity level for each

method.

Applied to MNIST, sparsity learning methods can eas-

ily achieve greater than 99% sparsity. Coming from the

ANC perspective, we can visualize the exact connections

learned simply through observing the neuron connection

representation values A. As a simple illustration of this spar-

sity learned over training time, Figure 1 shows the learned

adjacency matrices of a VGG network. Here, we can see

large sparsity in the convolutional layer shown, and grid-like

patterns suggesting local feature-dependencies were learned.

Next, we compare the performance of ANC-VD and VD

via a VGG variant on CIFAR-10. The sparsity learned for an

α parameter1 threshold value of 3.0 is shown over training

1
α corresponds to how stringently connections are pruned, though its

exact value does not seem to have much effect in classification settings, as

found in Gale et al. (2019)
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Figure 1. 3D visualization of the learned adjacency kernel for a VGG architecture. The upper figure shows the initialized adjacency kernel

and the lower figure shows a learned kernel with grid-like patterns suggesting local feature-dependencies were learned (most of the kernel

is inactive with few active (light blue) neurons).
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Figure 2. Total sparsity for each method over training time for

CIFAR-10 for α value of 0.3

Figure 3. Test loss for each method over training time for CIFAR-

10.

Figure 4. Sparsity for each layer type for each method over training

time for CIFAR-10 for α value of 0.3

time for each method, shown in figure 2. Each network

was trained until training loss converged. ANC-VD learns

higher sparsity for equivalent hyperparameter settings. Yet,

as shown in figure 3, its test loss does not suffer.

Table 1. CINIC-10 and ImageNet Results

Method Dataset Test Loss Sparsity (α = 3.0)

VD CINIC-10 0.9159 49.08%

ANC-VD CINIC-10 0.9000 92.43%

VD ImageNet-32 6.2818 89.43%

ANC-VD ImageNet-32 4.7892 93.63%

Additionally, we observe that the linear layers are pruned

faster for ANC-VD, while keeping convolutional sparsity

consistent with VD levels, as shown in figure 4. This sug-

gests the importance of convolutional parameters is learned

end-to-end by ANC more robustly than what occurs for

vanilla VD.

Next, we test ResNet variants on complex classification

datasets, ImageNet-322 and CINIC-103 These results are

shown in Table 1. The architectures were of low capacity

for the difficulty of the task and did not converge to great

test accuracy, thus we show test loss only below. Given the

models had difficulty converging and fitting to the training

set, we present these CINIC-10 and ImageNet-32 as prelimi-

nary results only, yet show positive empirical support for the

ANC method nonetheless.

Lastly, we present extensive experiments on ResNet-18

pre-trained on CIFAR-10 with follow-on magnitude prun-

ing or VD. We compare the vanilla methods to the ANC-

augmented methods for sparsity levels of 80%, 85%, 90%,

95%, and 97.5%. For VD and ANC-VD, we do fine-tuning

of 100 epochs of post-training, with a sigma initialization of

-30. For magnitude pruning, we do fine-tuning of 60 epochs

of post-training, with uniform pruning distribution across

layers. When comparing between ANC and vanilla methods,

architecture capacity and optimization procedures are kept

identical for as close a comparison as possible. Across all ex-

periments, Adam optimizer was used with very low learning

rates, since fine-tuning is being done.

Figure 5 shows a comparison of the ANC-VD and VD

methods. The difference in test accuracy across all sparsity

levels is both significant and consistent, showcasing the fact

that ANC is well suited as a method applied to VD in the

pretrained-fine-tuning setting as well.

Similarly, we show the same figure set-up for magnitude

pruning and ANC-augmented magnitude pruning shown, in

figure 6. In the case for magnitude pruning, there appears

to be minor but consistent increase in its performance when

augmented with ANC.

Overall, the experiments in this section showcase the

applicability of ANC across a broad range of scenarios, and

2A harder variant of ImageNet in which the images are downsampled

Chrabaszcz et al. (2017).
3A dataset that combines aspects of ImageNet and CIFAR-10 Darlow

et al. (2018). It is shown empirically to be of similar difficulty to ImageNet.
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Figure 5. Sparsity versus test accuracy of ResNet18 trained on

CIFAR-10. ANC-VD (orange) shows consistent, moderate gains

compared to VD (blue) across all sparsity levels.

Figure 6. Sparsity versus test accuracy of ResNet18 trained on

CIFAR-10. ANC-magnitude-pruning (orange) shows consistent,

minor gains compared to vanilla magnitude pruning (blue).

show that ANC is helpful both when training from scratch for

sparsity and when starting with a pre-trained model. ANC

appears most helpful when applied to variational dropout.

5. Discussion

In conclusion, we introduce ANC, a method that is

broadly applicable in the sparsity learning setting. ANC

learns neuron-to-neuron connections adaptively which can

confer positive benefits, which we primarily showcase with

Variational Dropout, providing modest improvement gains.

ANC is a general, easy to implement method that can be ap-

plied to virtually any architecture or sparsity method, show-

ing potential as being widely used in the sparsity learning

sub-field, both as a stand-alone method, and in conjunction

with other methods.
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