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Abstract— In this paper, adaptive neural control is inves-
tigated for a class of unknown nonlinear systems in pure-
feedback form with the generalized Prandtl-Ishlinskii hysteresis
input. The non-affine problem both in the pure-feedback form
and in the generalized Prandtl-Ishlinskii hysteresis input func-
tion is solved by adopting the Mean Value Theorem. By utilizing
Lyapunov synthesis, the closed-loop control system is proved to
be semi-globally uniformly ultimately bounded (SGUUB), and
the tracking error converges to a small neighborhood of zero.
Simulation results are provided to illustrate the performance
of the proposed approach.

I. INTRODUCTION

Control of nonlinear systems with unknown hysteresis

nonlinearities has been an active topic, since hysteresis

nonlinearities are common in many industrial processes. It is

challenging to control a system with hysteresis nonlinearities,

because they severely limit system performance such as

giving rise to undesirable inaccuracy or oscillations and even

may lead to instability [1]. In addition, due to the nonsmooth

characteristics of hysteresis nonlinearities, traditional con-

trol methods are insufficient in dealing with the effects of

unknown hysteresis. Therefore, advanced control techniques

are much needed to mitigate the effects of hysteresis.

One of the most common approaches is to construct an

inverse operator to cancel the effects of the hysteresis as in

[1] and [2]. However, it is a challenging task to construct

the inverse operator for the hysteresis, due to its complexity

and uncertainty. To circumvent these difficulties, alternative

control approaches that do not need an inverse model have

also been developed in [3]- [6]. In [3] and [4], robust adaptive

control and adaptive backstepping control were, respectively,

investigated for a class of nonlinear system with unknown

backlash-like hysteresis. In [5] and [6], adaptive variable

structure control and adaptive backstepping methods, respec-

tively, were proposed for a class of continuous-time nonlinear

dynamic systems preceded by a hysteresis nonlinearity with

the conventional Prandtl-Ishlinskii model representation.

In this paper, we consider a class of unknown nonlinear

systems in pure-feedback form which are preceded by a gen-

eralized Prandtl-Ishlinskii hysteresis input. Compared with
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the backlash-like hysteresis and the conventional Prandtl-

Ishlinskii hysteresis model discussed in the above works

[3]- [6], the generalized Prandtl-Ishlinskii hysteresis model

proposed in [7], can capture the hysteresis phenomenon

more accurately and accommodate more general classes of

hysteresis shapes, by adjusting not only the density function,

but also the input function. However, the difficulty in dealing

with the generalized Prandtl-Ishlinskii hysteresis model lies

in that the input function in the generalized Prandtl-Ishlinskii

hysteresis model is unknown and non-affine. Motivated by

[8], in this paper, we will adopt the Mean Value Theorem

to transform the unknown non-affine input function to a

partially affine form, which can be handled by extending

some available techniques for affine nonlinear system control

in the literature.

For pure-feedback systems, the cascade and non-affine

properties make it quite difficult to find the explicit virtual

controls and the actual control to stabilize the pure-feedback

systems. In [9] and [10], much simpler pure-feedback sys-

tems where the last one or two equations were assumed

to be affine, were discussed. In [11], an “ISS-modular”

approach combined with small gain theorem was presented

for adaptive neural control of the completely non-affine pure-

feedback system. In this paper, we also consider a class of

unknown nonlinear systems in pure-feedback form. The non-

affine problem in the control variable and virtual ones is dealt

with by adopting the Mean Value Theorem, motivated by the

works [8], without the strong assumptions that the last one

or two equations are affine as in [9] and [10]. The unknown

virtual control directions are dealt with by using Nussbaum

functions. To the best of our own knowledge, it is the first

time, in the literature, to investigate the tracking control

problem of unknown nonlinear systems in pure-feedback

form with the generalized Prandtl-Ishlinskii hysteresis input.

II. PROBLEM FORMULATION AND PRELIMINARIES

Throughout this paper, (̃·) = (̂·) − (·), ‖ · ‖ denotes the

2-norm, λmin(·) and λmax(·) denote the smallest and largest

eigenvalues of a square matrix (·), respectively.

A. Problem Formulation

Consider the following class of unknown nonlinear system

in pure-feedback form whose input is preceded by the

uncertain generalized Prandtl-Ishlinskii hysteresis:

ẋj = fj(x̄j , xj+1), 1 ≤ j ≤ n − 1

ẋn = fn(x̄n, u) + d(t)

y = x1 (1)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA03.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 86



where x̄j = [x1, ..., xj ]
T ∈ Rj is the vector of states of the

first j differential equations, and x̄n = [x1, ..., xn]T ∈ Rn;

fj(·) and fn(·) are unknown smooth functions; d(t) is a

bounded disturbance; y ∈ R is the output of the system;

and u ∈ R is the input of the system and the output

of the hysteresis nonlinearity, which is represented by the

generalized Prandtl-Ishlinskii model in [7] as follows

u(t) = h(v)(t) −

∫ D

0

p(r)Fr[v](t)dr (2)

Fr[v](0) = hr(v(0), 0)

Fr[v](t) = hr(v(t), Fr[v](ti)), for ti < t ≤ ti+1,

0 ≤ i ≤ N − 1

hr(v, w) = max(v − r,min(v + r, w))

where v is the input to the hysteresis model; 0 = t0 <
t1 < ... < tN = tE is a partition of [0, tE ] such that the

function v is monotone on each of the subintervals (ti, ti+1];
p(r) is a given density function, satisfying p(r) ≥ 0 with
∫ ∞

0
rp(r)dr < ∞; D is a constant so that density function

p(r) vanishes for large values of D; Fr[v](t) is known as

the play operator; and h(v) is the hysteresis input function

that satisfies the following assumptions [7]:

Assumption 1: The function h : R → R is odd,

non-decreasing, locally Lipschitz continuous, and satisfies

limv→∞ h(v) → ∞ and
dh(v)

dv
> 0 for almost every v ∈ R.

Assumption 2: The growth of the hysteresis function h(v)
is smooth, and there exist positive constants h0 and h1 such

that 0 < h0 ≤ dh(v)
dv

≤ h1.

The objective is to design adaptive neural control v(t) for

system (1) (2) such that all signals in the closed-loop system

are bounded, while the tracking error converges to a small

neighborhood of zero.

To facilitate the control design later in Section III, the

following assumptions are needed.

Assumption 3: The desired trajectory yd, and their time

derivatives up to the nth order y
(n)
d , are continuous and

bounded.

Based on Assumption 3, we define the trajectory vector

x̄d(j+1) = [yd ẏd ... y
(j)
d ]T , j = 1, ..., n−1, which is a vector

from yd to its j-th time derivative, y
(j)
d , which will be used

in the subsequent control design.

Assumption 4: There exists an unknown constant d∗ such

that |d(t)| ≤ d∗.

Assumption 5: There exist a known constant pmax, such

that p(r) ≤ pmax for all r ∈ [0,D].
According to the Mean Value Theorem [12], we can express

fj(·, ·) in (1) as follows:

fj(x̄j , xj+1) = fj(x̄j , x
0
j+1) +

∂fj(x̄j , xj+1)

∂xj+1

∣

∣

∣

xj+1=x
θj
j+1

×(xj+1 − x0
j+1), 1 ≤ j ≤ n (3)

where xn+1 = u, and x
θj

j+1 = θjxj+1 + (1 − θj)x
0
j+1

with 0 < θj < 1. By choosing x0
j+1 = 0, and define

gj(x̄j , x
θj

j+1) = [∂fj(x̄j , xj+1)/∂xj+1]
∣

∣

∣

xj+1=x
θj
j+1

, (3) can

be written as

fj(x̄j , xj+1) = fj(x̄j , 0) + gj(x̄j , x
θj

j+1)xj+1 (4)

Substituting (4) into (1), we have

ẋj = fj(x̄j , 0) + gj(x̄j , x
θj

j+1)xj+1, 1 ≤ j ≤ n − 1

ẋn = fn(x̄n, 0) + gn(x̄n, uθn)u + d(t)

y = x1 (5)

In addition, according to the Mean Value Theorem [12],

there also exists a constant θ0 (0 < θ0 < 1) such that

the unknown input function h(v) in (2) satisfies h(v) =

h(v∗)+ ∂h(·)
∂v

∣

∣

∣

v=vθ0

(v− v∗), where vθ0 = θ0v +(1− θ0)v
∗.

According to Assumptions 1 and 2, and the Implicit function

Theorem [13], we can find v∗ such that h(v∗) = 0. Defining

g0(v
θ0) = ∂h(·)

∂v

∣

∣

∣

v=vθ0

, we have h(v) = g0(v
θ0)(v − v∗).

Therefore, we can rewrite (2) as

u(t) = g0(v
θ0)v − g0(v

θ0)v∗ −

∫ D

0

p(r)Fr[v](t)dr(6)

Substituting (6) into (5) leads to our unified system:

ẋj = fj(x̄j , 0) + gj(x̄j , x
θj

j+1)xj+1, 1 ≤ j ≤ n − 1

ẋn = fn(x̄n, 0) + gn(x̄n, uθn)[g0(v
θ0)v − g0(v

θ0)v∗

−

∫ D

0

p(r)Fr[v](t)dr] + d(t)

y = x1 (7)

Assumption 6: There exist constants g
j

and ḡj such that

0 < g
j
≤ |gj(·)| ≤ ḡj < ∞, for j = 1, ..., n.

The following lemma is useful for establishing the stability

properties of the closed-loop system.

Lemma 1: [14] Let V (·), ζ(·) be smooth functions de-

fined on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N(·) be

an even smooth Nussbaum-type function. If the following

inequality holds:

V (t) ≤ c0 + e−c1t

∫ t

0

[g(·)N(ζ) + 1]ζ̇ec1τdτ

where c0 represents some suitable constant, c1 is a positive

constant, and g(·) is a time-varying parameter which takes

values in the unknown closed intervals I = [l−, l+], with

0 /∈ I , then V (t), ζ(t),
∫ t

0
g(·)N(ζ)ζ̇dτ must be bounded on

[0, tf ).

III. CONTROL DESIGN AND STABILITY ANALYSIS

In this section, we will investigate adaptive neural control

for the system (7) using the backstepping method [15] com-

bined with neural networks approximation. The backstepping

design procedure contains n steps and involves the following

change of coordinates: z1 = x1 − yd, zi = xi − αi−1,

i = 2, ..., n, where αi are virtual controls which shall be

developed for the corresponding i-subsystem based on some

appropriate Lyapunov functions Vi. The control law v(t) is

designed in the last step to stabilize the entire closed-loop

system, and deal with the hysteresis term.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA03.3

87



Step 1: Since z1 = x1 − yd and z2 = x2 − α1, the

derivative of z1 is

ż1 = g1(x̄1, x
θ1

2 )(z2 + α1) + Q1(Z1) (8)

where Q1(Z1) = f1(x̄1, 0)− ẏd with Z1 = [x̄1, ẏd] ∈ ΩZ1
⊂

R2. To compensate for the unknown function Q1(Z1), we

can use radial basis function neural network (RBFNN),

ŴT
1 S(Z1), with Ŵ1 ∈ Rl×1, S(Z1) ∈ Rl×1, and the NN

node number l > 1, to approximate the function Q1(Z1) on

the compact set ΩZ1
as follows

Q1(Z1) = ŴT
1 S(Z1) − W̃T

1 S(Z1) + ε1(Z1) (9)

where the approximation error ε1(Z1) satisfies |ε1(Z1)| ≤
ε∗1 with a positive constant ε∗1. Substituting (9) into (8), we

obtain

ż1 = g1(x̄1, x
θ1

2 )(z2 + α1) + ŴT
1 S(Z1) − W̃T

1 S(Z1)

+ε1(Z1) (10)

Choose the following virtual control and adaptation laws:

α1 = N(ζ1)[k1z1 + ŴT
1 S(Z1)] (11)

ζ̇1 = k1z
2
1 + z1Ŵ

T
1 S(Z1) (12)

˙̂
W1 = Γ1[z1S(Z1) − σ1Ŵ1] (13)

where Γ1 = ΓT
1 ∈ Rl×l > 0, k1 > 0 and σ1 > 0.

Consider the following Lyapunov function candidate

V1 =
1

2
z2
1 +

1

2
W̃T

1 Γ−1
1 W̃1 (14)

The time derivative of (14) along with (10)-(13) is

V̇1 ≤ −k1z
2
1 + [g1(x̄1, x

θ1

2 )N1(ζ1) + 1]ζ̇1

+g1(x̄1, x
θ1

2 )z1z2 − σ1W̃
T
1 Ŵ1 + |z1|ε

∗
1 (15)

Using the Young’s inequality, the following inequalities hold:

−σ1W̃
T
1 Ŵ1 ≤ −

σ1‖W̃1‖
2

2
+

σ1‖W
∗
1 ‖

2

2
(16)

|z1|ε
∗
1 ≤

z2
1

4c11
+ c11ε

∗2
1 (17)

g1(x̄1, x
θ1

2 )z1z2 ≤
z2
1

4c12
+ c12g

2
1(x̄1, x

θ1

2 )z2
2 (18)

Substituting (16)-(18) into (15) results in

V̇1 ≤ −γ1V1 + [g1(x̄1, x
θ1

2 )N1(ζ1) + 1]ζ̇1 + ρ1

+c12g
2
1(x̄1, x

θ1

2 )z2
2 (19)

where γ1 and ρ1 are positive constants, which are defined as

γ1 = min{2(k1 −
1

4c11
−

1

4c12
),

σ1

λmax(Γ
−1
1 )

}

ρ1 =
σ1‖W

∗
1 ‖

2

2
+ c11ε

∗2
1

Multiplying both sides of (19) by eγ1t and integrating it over

[0, t], we have

V1 ≤
ρ1

γ1
+ V1(0) + e−γ1t

∫ t

0

[g1(x̄1, x
θ1

2 )N1(ζ1) + 1]ζ̇1

eγ1τdτ + e−γ1t

∫ t

0

c12g
2
1(x̄1, x

θ1

2 )z2
2eγ1τdτ (20)

Noting Assumption 6, the last term of (20) satisfies

e−γ1t

∫ t

0

c12g
2
1(x̄1, x

θ1

2 )z2
2eγ1τdτ ≤

c12

γ1
ḡ2
1 sup

τ∈[0,t]

[z2
2(τ)]

where ḡ1 is the upper bound for |g1(·)| as defined in

Assumption 6. Therefore, if z2 can be kept bounded over

a finite time interval [0, tf ), we can obtain the boundedness

of the term e−γ1t
∫ t

0
c12g

2
1(x̄1, x

θ1

2 )z2
2eγ1τdτ . Furthermore,

(20) can be written as

V1 ≤ c1 + e−γ1t

∫ t

0

[g1(x̄1, x
θ1

2 )N1(ζ1) + 1]ζ̇1e
γ1τdτ (21)

where c1 = ρ1

γ1
+ V1(0) + c12

γ1
ḡ2
1 supτ∈[0,tf ][z

2
2(τ)]. Ac-

cording to Lemma 1, we can conclude that V1, ζ1, Ŵ1,
∫ t

0
[g1(x̄1, x

θ1

2 )N1(ζ1) + 1]ζ̇1e
γ1τdτ are all bounded on

[0, tf ). According to Proposition 2 [16], tf = ∞ and we

know that z1 and Ŵ1 are SGUUB. The boundedness of z2

will be dealt with in the following steps.

Step j (2 ≤ j < n): The derivative of zj = xj − αj−1 is

żj = fj(x̄j , 0) + gj(x̄j , x
θj

j+1)xj+1 − α̇j−1 (22)

Since αj−1 is a function of x̄j−1, x̄dj , ζj−1, Ŵ1, ..., Ŵj−1,

its derivative, α̇j−1, can be expressed as

α̇j−1 =

j−1
∑

k=1

∂αj−1

∂xk

fk(x̄k, xk+1) + φj−1 (23)

where

φj−1 =
∂αj−1

∂ζj−1
ζ̇j−1 +

∂αj−1

∂x̄dj

˙̄xdj +

j−1
∑

k=1

∂αj−1

∂Ŵk

˙̂
Wk (24)

which is computable. As such, α̇j−1 can be seen as a function

of x̄j ,
∑j−1

k=1
∂αj−1

∂xk
, φj−1. Further, we can rewrite (22) as

żj ≤ gj(x̄j , x
θj

j+1)(zj+1 + αj) + (ŴT
j − W̃T

j )S(Zj)

+ε∗j (25)

where ŴT
j S(Zj) is used to approximate the unknown func-

tion Qj(Zj) = fj(x̄j , 0) − α̇j−1 on the compact set ΩZj

with Zj = [x̄j ,
∑j−1

k=1
∂αj−1

∂xk
, φj−1] ∈ ΩZj

⊂ R2j , and

the approximation error εj(Zj) satisfies |εj(Zj)| ≤ ε∗j with

positive constants ε∗j .

Similar to the discussion in Step 1, we consider the

following Lyapunov function candidates, virtual controls and

adaptation laws:

Vj =
1

2
z2
j +

1

2
W̃T

j Γ−1
j W̃j (26)

αj = N(ζj)[kjzj + ŴT
j S(Zj)] (27)

ζ̇j = kjz
2
j + zjŴ

T
j S(Zj) (28)

˙̂
Wj = Γj [zjS(Zj) − σjŴj ] (29)

where Γj = ΓT
j > 0, kj and σj are positive constants.

Following the procedures outlined in Step 1, we have

Vj ≤ cj + e−γjt

∫ t

0

[gj(x̄j , x
θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ (30)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA03.3

88



where cj =
ρj

γj
+ Vj(0) +

cj2

γj
ḡ2

j supτ∈[0,tf ][z
2
j+1(τ)], γj =

min{2(kj −
1

4cj1
− 1

4cj2
),

σj

λmax(Γ−1

j
)
}, and ρj =

σj‖W∗

j ‖2

2 +

cj1ε
∗2
j . Then, applying Lemma 1, the boundedness of Vj ,

ζj , Ŵj ,
∫ t

0
[gj(x̄j , x

θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ can be readily

obtained. The boundedness of zj+1 will be dealt with in the

Step (j + 1).

Step n: In this final step, we will design the control input

v(t). Since zn = xn − αn−1, its derivative is given by

żn = gn(x̄n, uθn)[g0(v
θ0)v − g0(v

θ0)v∗

−

∫ D

0

p(r)Fr[v](t)dr] + ŴT
n S(Zn) − W̃T

n S(Zn)

+εn(Zn) + d(t) (31)

where ŴT
n S(Zn) is used to approximate the unknown func-

tion Qn(Zn) = fn(x, 0)− α̇n−1 on the compact set ΩZn
⊂

Rn with Zn = [x̄n, ∂αn−1

∂x1
, ..., ∂αn−1

∂xn−1
, φn−1] ∈ ΩZn

⊂ R2n,

and the approximation error εn(Zn) satisfies |εn(Zn)| ≤ ε∗n
with a positive constant ε∗n.

Choose the following Lyapunov function candidate

Vn =
1

2
z2
n +

1

2
W̃T

n Γ−1
n W̃n +

1

2γd

d̃2

+
ḡn

2γp

∫ D

0

p̃2(t, r)dr (32)

where d̃ = d̂−d∗, p̃(t, r) = p̂(t, r)− pmax, d̂ and p̂(t, r) are

the estimates of the disturbance bound d∗ and the density

function of p(r) respectively, Γn = ΓT
n > 0, and γd, γp are

positive constants.

The derivative of Vn defined in (32) along (31) is

V̇n = zngn(x̄n, uθn)[g0(v
θ0)v −

∫ D

0

p(r)Fr[v](t)dr] −

zngn(x̄n, uθn)g0(v
θ0)v∗ + znŴT

n S(Zn) −

znW̃T
n S(Zn) + znεn(Zn) + znd(t) + W̃T

n Γ−1
n Ẇn

+
1

γd

d̃
˙̃
d +

ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (33)

From Assumptions 2 and 6, we know that

|gn(x, uθn)g0v
∗| ≤ C, where C is a positive constant.

Due to |εn(Zn)| ≤ ε∗n and Assumption 4, (33) becomes

V̇n ≤ zngn(x̄n, uθn)[g0(v
θ0)v −

∫ D

0

p(r)Fr[v](t)dr]

+znŴT
n S(Zn) − znW̃T

n S(Zn) + |zn|(C + ε∗n)

+|zn|d
∗ + W̃T

n Γ−1
n Ẇn +

1

γd

d̃
˙̃
d

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (34)

The following control and adaptation laws are proposed:

v = N(ζn)
[

knzn + ŴT
n S(Zn) + d̂ tanh(

zn

ω
)
]

+vh (35)

vh = −sign(zn)

∫ D

0

p̂(t, r)

h0
|Fr[v](t)|dr (36)

ζ̇n = knz2
n + znŴT

n S(Zn) + znd̂ tanh(
zn

ω
) (37)

˙̂
Wn = Γn[znS(Zn) − σnŴn] (38)

˙̂
d = γd[zn tanh(

zn

ω
) − σdd̂] (39)

∂

∂t
p̂(t, r)

=

{

−γpσpp̂(t, r), p̂(t, r) ≥ pmax

γp[|zn||Fr[v](t)| − σpp̂(t, r)], 0 ≤ p̂(t, r) < pmax

(40)

where σp and ω are positive constants.

Substituting (35)-(39) into (34), and using Young’s In-

equality and the property of the hyperbolic tangent function

0 ≤ |zn| − zn tanh( zn

ω
) ≤ 0.2785ω, we obtain that

V̇n ≤ −(kn −
1

4cn1
)z2

n + [gn(x, uθn)g0(v
θ0)Nn(ζn)

+1]ζ̇n −
σn‖W̃n‖

2

2
−

σdd̃
2

2
+

σn‖W
∗
j ‖

2

2

+
σdd

∗2

2
+ 0.2785ωd∗ + cn1(ε

∗
n + C)2 + ∆ (41)

where cn1 is a positive constant and

∆ = gn(x, uθn)
[

− g0(v
θ0)|zn|

∫ D

0

p̂(t, r)

h0
|Fr[v](t)|dr

−zn

∫ D

0

p(r)Fr[v](t)dr
]

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −gn(x, uθn)|zn|

∫ D

0

p̃(t, r)|Fr[v](t)|dr

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (42)

According to (40), the adaptation law for the estimate of

density function p̂(t, r) comprises two cases, due to the

different regions which p̂(t, r) belong to. Therefore, we also

need to consider two cases for the analysis of (42):

Case(a): When r ∈ Dmax = {r : p̂(t, r) ≥ pmax} ⊂
[0,D], according to (40), we have

p̃(t, r) ≥ 0,
∂

∂t
p̂(t, r) = −γpσpp̂(t, r) (43)

Substituting (43) into (42), we have

∆ ≤ −σpḡn

∫

r∈Dmax

p̃(t, r)p̂(t, r)dr (44)

Case (b): When r ∈ Dc
max, which is the complement set

of Dmax in [0,D], i.e., 0 ≤ p̂(t, r) < pmax. In this case,
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from(40), we have

p̃(t, r) < 0 (45)

∂

∂t
p̂(t, r) = γp[|zn||Fr[v](t)| − σpp̂(t, r)] (46)

Substituting (45) and (46) into (42), we have

∆ ≤ −gn(x, uθn)|zn|

∫

r∈Dc
max

p̃(t, r)|Fr[v](t)|dr

+ḡn|zn|

∫

r∈Dc
max

p̃(t, r)|Fr[v](t)|dr

−σpḡn

∫

r∈Dc
max

p̃(t, r)p̂(t, r)

≤ −σpḡn

∫

r∈Dc
max

p̃(t, r)p̂(t, r)dr (47)

Combining Case (a) with Case (b), (42) can be written as

∆ ≤ −σpḡn

∫ D

0

p̃(t, r)p̂(t, r)dr (48)

By Young’s Inequality, we can rewrite (48) further as

∆ ≤ −
σpḡn

2

∫ D

0

p̃2(t, r)dr +
σpḡnD

2
p2
max (49)

Substituting (49) into (41), we have

V̇n ≤ −γnVn + [gn(x, uθn)g0(v
θ0)Nn(ζn) + 1]ζ̇n + ρn

(50)

where γn and ρn are positive constants defined as

γn = min{2(kn −
1

4cn1
),

σn

λmax(Γ
−1
n )

, σdγd, σpγp}

ρn =
σn‖W

∗
n‖

2

2
+

σdd
∗2

2
+ 0.2785ωd∗ + cn1(ε

∗
n + C)2

+
σpḡnD

2
p2
max (51)

Multiplying both sides of (50) and integrating over [0, t], we

have

Vn ≤
ρn

γn

+ [Vn(0) −
ρn

γn

]e−γnt + e−γnt

∫ t

0

[gn(x, uθn)

g0(v
θ0)Nn(ζn) + 1]ζ̇neγnτdτ (52)

≤ cn + e−γnt

∫ t

0

[gn(x, uθn)g0(v
θ0)Nn(ζn)

+1]ζ̇neγnτdτ (53)

where cn = ρn

γn
+ Vn(0). According to Assumptions

1, 2, and 6, we can regard gn(x, u)g0(v) in (53) as

g(·), which is a time-varying parameter and takes val-

ues in the known closed intervals I = [h0gn
, h1ḡn],

with 0 /∈ I . Using Lemma 1, we can conclude that

Vn(t), ζn(t) and hence zn(t), Ŵn, ˆ̄dn are SGUUB. From

the boundedness of zn(t), the boundedness of the ex-

tra term e−γn−1t
∫ t

0
c(n−1)2g

2
n−1(x̄n−1, x

θn−1

n )z2
neγn−1τdτ at

Step (n − 1) is readily obtained. Applying Lemma 1 for

(n − 1) times backward, it can be seen from the above

iterative design procedure that Vj , zj , Ŵj ,
ˆ̄dj , and hence, xj ,

are SGUUB on [0, tf ).
The following theorem shows the stability and control

performance of the closed-loop adaptive system.

Theorem 1: Consider the closed-loop system consisting

of the plant (1) with the unknown hysteresis nonlin-

earities (2), and the control and adaptation laws (35)-

(40). Under Assumptions 1-6, given some initial conditions

zi(0), Ŵi(0), d̂(0) (i = 1, 2, ..., n), belong in Ω0, we can

conclude that the overall closed-loop neural control system

is semi-globally uniformly ultimately bounded (SGUUB) in

the sense that all of the signals in the closed-loop system

are bounded i.e., the states and weights in the closed-loop

system will remain in the compact set defined by

Ω =

{

zj , W̃j , d̃
∣

∣

∣
|zj | ≤

√

2µj , ‖W̃j‖ ≤

√

2µj

λmin(Γ−1
j )

,

|d̃| ≤
√

2γdµn, j = 1, ..., n.
}

(54)

where µj = cj + cj0 with cj0 being the upper bound

of e−γjt
∫ t

0
[gj(x̄j , x

θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ , j = 1, ..., n;

and cj =
ρj

γj
+ Vj(0) +

cj2

γj
ḡ2

j supτ∈[0,t][z
2
j+1(τ)], cn =

ρn

γn
+ Vn(0), Vj(0) = 1

2z2
j (0) + 1

2W̃T
j (0)Γ−1

j W̃j(0),

Vn(0) = 1
2z2

n(0) + 1
2W̃T

n (0)Γ−1
n W̃n(0) + 1

2γd
d̃2

n(0) +
ḡn

2γp

∫ D

0
p̃2(0, r)dr, j = 1, ..., n − 1. Furthermore, the states

and weights in the closed-loop system will eventually con-

verge to the compact set defined by

Ωs =

{

zj , W̃j , d̃
∣

∣

∣
|zj | ≤

√

2µ∗
j , ‖W̃j‖ ≤

√

2µ∗
j

λmin(Γ−1
j )

,

|d̃| ≤
√

2γdµ∗
n, j = 1, ..., n.

}

(55)

where µ∗
j = c′j + cj0, j = 1, ..., n, and c′j =

ρj

γj
+

c12

γj
ḡ2

j supτ∈[0,t][z
2
j+1(τ)], c′n = ρn

γn
, j = 1, ..., n − 1.

Proof: Based on the previous iterative derivation proce-

dures from Step 1 to Step n of backstepping, from (21) (30)

to (53), and according to Lemma 1, we can conclude that

Vj , zj , Ŵj ,
ˆ̄d and hence xj are SGUUB, i = 1, 2, ..., n, i.e.,

all the signals in the closed-loop system are bounded.

From (53), letting cn0 be the upper bound of the term

e−γnt
∫ t

0
[gn(x, uθn)g0Nn(ζn)+1]ζ̇neγnτdτ , µn = cn +cn0,

and noting the definition of Vn in (32), we have

|zn| ≤
√

2µn, ‖W̃n‖ ≤

√

2µn

λmin(Γ−1
n )

, | ˜̄d| ≤
√

2γdµn

Similarly, in the rest of steps from n−1 to 1, letting cj0 be the

upper bound of e−γjt
∫ t

0
[gj(x̄j , x

θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ

and µj = cj + cj0 in (30), we can obtain

|zj | ≤
√

2µj , ‖W̃i‖ ≤

√

2µj

λmin(Γ−1
j )

, j = 1, 2, ..., n − 1.

Furthermore, we can rewrite (52) as

Vn ≤
ρn

γn

+ [Vn(0) −
ρn

γn

]e−γnt + cn0
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As t → ∞, we have

Vn ≤ c′n + cn0

where c′n = ρn

γn
. Therefore, define µ∗

n = c′n + cn0, we can

conclude that when t → ∞,

|zn| ≤
√

2µ∗
n, ‖W̃n‖ ≤

√

2µ∗
n

λmin(Γ−1
n )

, | ˜̄d| ≤
√

2γdµ∗
n

Similar conclusions can be made about zj , Ŵj as follows

|zj | ≤
√

2µ∗
j , ‖W̃j‖ ≤

√

2µ∗
j

λmin(Γ−1
j )

with µ∗
j = c′j + cj0 and c′j =

ρj

γj
+

cj2

γj
ḡ2

j supτ∈[0,t][z
2
j+1(τ)]

as t → ∞.

IV. SIMULATION STUDIES

Consider a second-order nonlinear system with the gen-

eralized Prandtl-Ishlinskii hysteresis in (1), where f1 =
x2 + 0.05 sin(x2), f2 = 1−e−x2

1+e−x2
+ u + 0.1 sin(u), d(t) =

0.1 sin(6t), the density function p(r) = 0.08e−0.0024(r−1)2 ,

r ∈ [0, 100], and h(v)(t) = 0.4(|v| arctan(v) + v). Our

objective is to make the output, y, to track the desired

trajectory, yd = 0.8 sin(0.5t) + 0.1 cos(t).
The simulation results are shown in Figures 1 and 2. From

Figure 1, we can observe that the good tracking performance

has been achieved and the tracking error converge to a small

neighborhood of zero after a while. At the same time, the

boundedness of the control signal v and the hysteresis output

is shown in Figures 2.

V. CONCLUSION

Adaptive neural control has been proposed for a class of

unknown nonlinear systems in pure-feedback form preceded

by the uncertain generalized Prandtl-Ishlinskii hysteresis. We

adopted the Mean Value Theorem to solve the non-affine

problem both in the unknown nonlinear functions of the

system dynamics and in the unknown input function of the

generalized Prandtl-Ishlinskii hysteresis model. The closed-

loop control system has been theoretically shown to be

SGUUB using Lyapunov synthesis method.
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Fig. 1. Tracking performance
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Fig. 2. Control signal and hysteresis output
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