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An adaptive neural control method is proposed in this paper for the flexible air-breathing hypersonic vehicle (AHV) with
constraints on actuators. This scheme firstly converts the original control problem with input constraints into a new control
problem without input constraints based on the control input saturation function. Secondly, on the basis of the implicit function
theorem, the radial basis function neural network (RBFNN) is introduced to approximate the uncertain items of the model. And
the minimal-learning-parameter (MLP) technique is adopted to design the adaptive law for the norm of network weight vector,
which significantly reduces calculations. Meanwhile, the finite-time convergence differentiator (FD) is introduced, through
which the model state variables and their derivatives are accurately estimated to ensure the control effect. Finally, it is
theoretically proved that the closed-loop control system is stable. And the effectiveness of the designed controller is
verified by simulation.

1. Introduction

Air-breathing hypersonic vehicle (AHV) is a new type of
aircraft flying in the near space at a speed of more than
Mach 5. It has outstanding advantages in terms of high
speed, high maneuverability, and large flight envelope that
traditional aircrafts do not have, which possesses potential
applications in both civilian and military fields [1–3]. But
it also has more complex coupling, stronger nonlinearity,
more severe elastic vibration, and tighter control input
constraints than ordinary aircraft due to the flat and slender
body design of the AHV and the integration of scramjet
engine, which make the flight control of AHV a frontier issue
in today’s control field [4, 5].

In the design process of the control law for AHV, by
introducing a neural network to approximate the model’s
unknown dynamics or control laws that are difficult to be
directly implemented, the nonlinear, strong coupling, and
uncertainties of the model can be handled well to ensure
the robust performance of the control law [6, 7]. For the rigid
body model of AHV, the continuous and discrete adaptive
neural controllers are designed, respectively, in [7, 8] by

expressing original model as a strict feedback form and
introducing RBFNN to approximate the model’s unknown
function, which guarantee that the closed-loop signals are
uniformly ultimately bounded but fail to consider the influ-
ence of flexible states. Different from references [7, 8], a
nonsingular direct neural control is proposed in [9] based
on backstepping method by firstly designing the ideal back-
stepping control law for each subsystem of AHV and then
using the RBFNN to approximate the designed ideal control
law online instead of the unknown function of the model.
However, the design process and form of the control law in
[9] are cumbersome and complex, which restrict its applica-
tions in engineering. Two novel neural backstepping control
strategies are proposed in [10, 11], which are designed with
improved backstepping methods, respectively. Simulations
show that the proposed methods in [10, 11] have strong
robustness and superior control effects, but both of them
assume that the model is affine for control input.

On the other hand, considering that AHV controls the
height and attitude of longitudinal motion with elevators, as
the flying height increases, the efficiency of the elevator will
decrease significantly [12]. In addition, the AHV can be
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affected by unknown airflows such as gust and turbulence
during the flight process. Therefore, it is easy to encounter
the phenomenon of elevator saturation when flying at high
altitude. Once the actuators reach saturation, it may cause
failure of the control system [13]. Thence, it requires urgent
development of antisaturation control studies for AHV.
However, the related research in this respect is still relatively
little. Only considering the throttle setting constraint of the
engine, a neural control method based on time-scale decom-
position is designed in [14]. In [13], the neural network is
used to approximate the saturation characteristics of the
control law, which effectively solves the problem of control
input constraint. However, the neural network weight
parameters strongly depend on the model and are difficult
to select. The tracking error is corrected through the designed
auxiliary error compensation system in [15]. Although the
simulation result shows that it has certain feasibility in
dealing with the problem of actuator constraints, it cannot
theoretically guarantee that the tracking error is bounded.
The method of [15] is further extended to AHV flight
control where both control input and flight attitudes are
constrained. However, in the actual project, AHV has no
corresponding actuators to directly limit its flight attitude.

There are two shortcomings in the above studies. First,
forcing AHV’s nonaffine motion model into an affine model
will inevitably result in the loss of certain key dynamic
characteristics. The control law designed based on the simpli-
fied affine model will have the risk of partial or complete
failure. The second is that the difficulty of the controller
design is increased to some extent by introducing the
auxiliary system or using the neural network to approach
the actuator saturation characteristic when dealing with the
actuator constraints of the AHV.

Based on the above shortcomings, it is imperative to
design a simple and effective nonaffine control law to solve
the control problem of AHV when the actuators are con-
strained. This paper studies the control problem of AHV
with actuator constraints and proposes an adaptive neural
control method. By designing the hyperbolic tangent input
saturation function, the original control problem with input
constraints is transformed into a control problem without
input constraints. Different from the above references, the
AHV model is regarded as a pure feedback system with non-
affine control input that is closer to the actual situation of
AHV. Based on the implicit function theorem, the RBFNN
is introduced to accurately approximate the unknown
function of the model. The MLP technique is adopted to
adaptively adjust the norm of the weight vector, which
greatly reduces the amount of adaptive calculations. And
through employing FD to achieve effective estimation of
the system state variables, the control accuracy is ensured.
Simulation examples verify the effectiveness and superiority
of the design method.

2. AHV Model and Preliminaries

2.1. Model Description. Parker, a scholar at the US Air Force
Research Laboratory, based on the study of AHV models by
Bolender and Doman [16] and by neglecting some slow

dynamics and weak coupling of AHV, establishes the
following AHV longitudinal motion model [17]:

V =
T cos θ − γ −D

m
− g sin γ, 1

h =V sin γ, 2

γ =
L + T sin θ − γ

mV
−

g

V
cos γ, 3

θ =Q, 4

Q =
M + ψ1η1 + ψ2η2

Iyy
, 5

k1η1 = −2ζ1ω1η1 − ω2
1η1 +N1 − ψ1

M

Iyy
−
ψ1ψ2η2
Iyy

, 6

k2η2 = −2ζ2ω2η2 − ω2
2η2 +N2 − ψ2

M

Iyy
−
ψ2ψ1η1
Iyy

, 7

where

k1 = 1 +
ψ1

Iyy
,

k2 = 1 +
ψ2

Iyy
,

ψ1 =
0

−L f

m̂f ξϕf ξ dξ,

ψ2 =
La

0

m̂aξϕa ξ dξ,

8

where velocity V , altitude h, flight-path γ, pitch angle θ,
and pitch rate Q are the five rigid body states; m and
Iyy represent vehicle mass and moment of inertia,

respectively; the four flexible modes η1, η1, η2, and η2
denote the first two bending modes of the fuselage; ζi
and ωi i = 1, 2 represent the damping ratio and natural
frequency for flexible modes, respectively; Lf and La rep-

resent the length of forward beam and aft beam; m̂f and

m̂a are the mass distribution of forward beam and aft
beam, respectively; and ϕf ⋅ and ϕa ⋅ are structural

mode shapes [16]. The force map of an AHV model
is shown in Figure 1. The approximations of thrust T ,
drag D, lift L, pitching moment M, and the generalized
forces N i i = 1, 2 are expressed as [17]

T ≈ Cα3

T α
3 + Cα2

T α2 + Cα
Tα + C0

T ,

D ≈ qS Cα2

D α2 + Cα
Dα + C

δ2e
D δ

2
e + C

δe
D δe + C0

D ,

L ≈ qS Cα
Lα + C

δe
L δe + C0

L ,
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Figure 1: Force map of an AHV model.

M ≈ zTT + qSc Cα2

M,αα
2 + Cα

M,αα + C0
M,α + ceδe ,

N1 ≈Nα2

1 α
2 +Nα

1α +N0
1,

N2 ≈Nα2

2 α
2 +Nα

2α +N
δe
2 δe +N0

2,

Cα3

T = β1 h, q Φ + β2 h, q ,

Cα2

T = β3 h, q Φ + β4 h, q ,

Cα
T = β5 h, q Φ + β6 h, q ,

C0
T = β7 h, q Φ + β8 h, q ,

q =
1

2
ρV2,

ρ = ρ0 exp
h0 − h

hs
, 9

where α = θ − γ is the angle of attack; fuel equivalence
ratio Φ and elevator angular deflection δe are control
inputs; c and S are the aerodynamic chord and reference
area, respectively; q represents dynamic pressure; ρ is the
air density at height h; zT means thrust moment arm; ce
is the elevator coefficient; h0 and ρ0 represent nominal
altitude and air density at the altitude h0, respectively;

1/hs is the air density decay rate; Cαi

T i = 1, 2, 3 is the

ith order coefficient of α in T ; C∗i

D i = 1, 2 ; ∗ = α, δe rep-
resents the ith order coefficient of ∗ in D; C∗

L ∗ = α, δe
means coefficient of ∗ in L; C0

∗ ∗ = T ,D, L is the con-

stant coefficient in ∗; Cαi

M,α i = 0, 1, 2 represents the ith

order coefficient of α in M; Nαi

j i = 0, 1, 2 ; j = 1, 2 is

the ith order contribution of α to N j; and N
δe
2 is the

contribution of δe to N2; βi h, q i = 1, 2,… , 8 is the ith
trust fit parameter. For more detailed definitions of the
model geometric parameters and coefficients, the reader
could refer to [17].

2.2. Input Constraint Problem and Model Conversion.
According to [18] and combining (1), (2), (3), (4), (5), and
(9), we know that velocity V is mainly controlled by equiva-
lence ratio Φ since the thrust T is directly affected by Φ. On
the other hand, altitude h is mainly controlled by elevator

angular deflection δe since δe directly affects the pitch rate
Q and then affects the pitch angle θ and flight-path γ,
ultimately controlling the change of h. Therefore, we can
firstly decompose the AHV model into a velocity subsystem
(1) and altitude subsystem ((2), (3), (4), and (5)) and then
design the control law separately [19].

Taking the actual situation into account, the executable
ranges of Φ and δe have certain limits, which are described
as follows:

Φ ∈ Φmin,Φmax ,

δe ∈ δe min, δe max ,
10

where Φmin and Φmax ≥ 0 are the respective upper and lower
bound of Φ; δe min and δe max δemin = −δe max stand for the
upper and lower bound of δe, respectively.

In the above situation of actuator constraints, for velocity
subsystem and altitude subsystem, the control objective is
to design the respective control law Φ and δe under the
constraints of (10) such that V and h track their reference
commands V ref and href .

Obviously, Φ and δe have saturation characteristics
under the constraints of (10). In order to convert the original
control problem with input constraints into a new control
problem without input constraints, here we use hyperbolic
tangent function to approximate Φ and δe

Φ Φ
∗ =

Φmax −Φmin

2
tanh

2Φ∗

Φmax −Φmin

− 1

+
Φmax +Φmin

2
,

δe δ∗e = δe max tanh
δ∗e

δe max

,

11

where Φ∗ and δ∗e ∈ R are the actual input of actuator satura-
tion loop. By (11) and the character of hyperbolic tangent
function, we can know that no matter what values Φ∗ and
δ∗e take, both Φ and δe satisfy the constraint of (10).

At this point, the original control objective can be
converted to design unconstrained Φ

∗ and δ∗e such that V
and h track their reference commands V ref and href .

Remark 1. In order to maintain the normal operating mode
of scramjet engine, a restriction is imposed on the value range
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of Φ, which is generally taken as Φ ∈ 0 05, 1 5 ; taking the
physical limit of the deflection angle of elevator into account,
usually δe ∈ −20∘, 20∘ [20].

Remark 2. Although the problem of actuator saturation is
often considered when planning the trajectory, AHV can be
affected by unknown airflows such as gusts and turbulences
as well as sudden actuator failures during the flight process,
which will cause the actuator to be saturated instantly such
that the actual executable range of it will be even smaller than
its theoretical value [13].

3. Adaptive Neural Controller Design

3.1. RBFNN Approximation. RBFNN has the characteristics
of simple structure, strong learning, and fault tolerance and
has the ability of globally approximating nonlinear continu-
ous functions [21]. It can be expressed as a mapping from
input to output.

y =W
T
h X , 12

where X = X1, X2,… , Xn
T
∈ Rn is the input vector (n

represents the dimension of the input vector), W =

w1,w2,… ,wN
T
∈ RN stands for the weight vector (N

is the number of hidden layer nodes), h X =

h1 X , h2 X ,… , hN X
T
∈ RN , hi X , denotes the acti-

vation function. Here, hi X is chosen as the following
Gaussian function:

hi X = exp −
X − ci

2

2b2i
, i = 1, 2,… ,N , 13

where b = b1, b2,… , bN
T
∈ RN , bi, is the width of the ith

Gaussian function; c = c1, c2,… , cN ∈ Rn×N (ci represents
the center of the ith Gaussian function), which can be
expressed as follows:

c =

c11 ⋯ c1N

⋮ ⋱ ⋮

cn1 ⋯ cnN

14

For any unknown nonlinear continuous function F X ,
using the RBFNN and by selecting enough nodes (select-
ing a sufficiently large N), there must be an ideal weight

vector W
∗ = w∗

1 ,w
∗
2 ,… ,w∗

N
T
∈ RN that satisfies [21]

F X =W
∗T
h X + μ,  μ ≤ μM, 15

where μ ∈ R is the approximation error and μM ∈ R+

stands for the upper bound of approximation error. When
taking N large enough, μM can be arbitrarily small.

Remark 3. Since exp ⋅ is a strictly monotonically increasing

and positive function and − X − ci
2/ 2b2i ≤ 0, there is

0 < hi X ≤ hi 0 = 1. Therefore, there must be a bounded

constant h ∈ R+ such that h X ≤ h.

3.2. Controller Design for Velocity Subsystem. Based on the
research conclusion of [7], here velocity subsystem is further
expressed as a more general nonaffine form of control input

V = FV V ,Φ 16

Combined with (11), the above formula can be
rewritten as

V = FV V ,Φ∗ , 17

where FV V ,Φ∗ is a completely unknown continuously
differentiable function.

In order to design the control law Φ
∗, the following

theorem is given firstly.

Theorem 1. For any V ,Φ∗ ∈ΩV × R, the following
inequality is established:

∂FV V ,Φ∗

∂Φ
∗ > 0, 18

where ΩV is a controllable area.

Proof 1. From (11), (16), and (17), we can know

∂FV V ,Φ∗

∂Φ
∗ =

∂FV V ,Φ∗

∂Φ
·
∂Φ

∂Φ
∗

=
∂FV V ,Φ /∂Φ

cosh2 2Φ∗/ Φmax −Φmin − 1

19

According to [17], there is

∂FV V ,Φ

∂Φ
> 0 20

Therefore,

∂FV V ,Φ∗

∂Φ
∗ > 0 21

Define velocity tracking error

V =V −V ref
22

Taking time derivative along (22) and using (17) yield

V =V − V ref = FV V ,Φ∗ −V ref
23

Let

F∗
V V ,Φ∗ = FV V ,Φ∗ − kVΦ

∗ 24

where kV ∈ R+ is the design parameter.
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Combine (23) and (24)

V =V −V ref = F∗
V V ,Φ∗ + kVΦ

∗ − V ref
25

Design the control law Φ
∗ as

Φ
∗ = kV

−1
Φ

∗
0 −Φ

∗
1 , 26

where

Φ
∗
0 = −kV1V − kV2

t

0

Vdτ + V ref 27

kV1 and kV2 ∈ R
+ stand for design parameters and Φ

∗
1 is

the neural control law to be designed to counteract the
influence of uncertain term F∗

V V ,Φ∗ .
In order to facilitate the subsequent design process, the

implicit function theorem is introduced here [22].

Theorem 2. Assume that the implicit function Ψ R
l ×

R
r
→ R

l is continuously differentiable at each point ς, σ
on the open set Y ⊂ R

l × R
r . ς0, σ0 is the point in Y ;

Ψ ς0, σ0 = 0 and the Jacobian matrix ∂Ψ/∂ς ς0, σ0 is

nonsingular. Then, for any σ ∈G, a neighborhood U ⊂ R
l of

ς0 and a neighborhood G ⊂ R
r of σ0 can make the equation

Ψ ς, σ = 0 which has a unique solution ς ∈U , and the
solution can be expressed as ς = g0 σ , where g0 ⋅ is a
continuously differentiable function on σ = σ0.

Remark 4. Theorem 2 shows that once the implicit function
Ψ ς, σ satisfies all conditions in the theorem, ς can be
expressed as a continuously differentiable function of σ, that
is, ς = g0 σ . At this time, using RBFNN to approximate
Ψ ς, σ , only σ, instead of ς, is used as the input signal
of the neural network to obtain a satisfactory approxima-
tion effect. This is where the special meaning of the implicit
function theorem lies.

Let

Γ V ,Φ∗
0 ,Φ

∗
1 ≜ F∗

V V ,Φ∗ −Φ
∗
1

= F∗
V V , kV

−1
Φ

∗
0 −Φ

∗
1 −Φ

∗
1

28

To illustrate that Γ V ,Φ∗
0 ,Φ

∗
1 satisfies the implicit

function theorem, the following theorem is given.

Theorem 3. Define

kV >
1

2

∂FV V ,Φ∗

∂Φ
∗

29

Then there are a controllable area ΩV ⊂ R and a unique
Φ

∗
1 for any V ,Φ∗

1 ∈ΩV × R; Φ∗
1 satisfies

Γ V ,Φ∗
0 ,Φ

∗
1 = 0 30

Proof 2. According to [23], a sufficient condition for the
existence of Φ∗

1 is that the following inequality holds:

∂F∗
V V ,Φ∗

∂Φ
∗
1

< 1 31

Consider (18), (24), (26), and (29), there are

∂F∗
V V ,Φ∗

∂Φ
∗
1

=
∂ FV V ,Φ∗ − kVΦ

∗

∂Φ
∗
1

=
∂ FV V ,Φ∗ − kVΦ

∗

∂Φ
∗

∂Φ
∗

∂Φ
∗
1

=
∂FV V ,Φ∗

∂Φ
∗ − kV

1

kV

=
1

kV

∂FV V ,Φ∗

∂Φ
∗ − 1 < 1

32

Therefore, Φ∗
1 exists.

Further,

∂Γ V ,Φ∗
0 ,Φ

∗
1

∂Φ
∗
1

=
∂ F∗

V V ,Φ∗ −Φ
∗
1

∂Φ
∗
1

=
∂ FV V ,Φ∗ − kVΦ

∗

∂Φ
∗
1

− 1

=
∂ FV V ,Φ∗ − kVΦ

∗

∂Φ
∗

∂Φ
∗

∂Φ
∗
1

− 1

=
∂FV V ,Φ∗

∂Φ
∗ − kV −

1

kV
− 1

= −
1

kV

∂FV V ,Φ∗

∂Φ
∗ ,

33

where Φ∗ = kV
−1

Φ
∗
0 −Φ

∗
1 .

Combine (18) and (33)

∂Γ V ,Φ∗
0 ,Φ

∗
1

∂Φ
∗
1

< 0 34

According to Theorem 3 and (34), Γ V ,Φ∗
0 ,Φ

∗
1 satisfies

the implicit function theorem. Therefore,Φ∗
1 can be regarded

as a function of Φ∗
0 and V , and further F∗

V V ,Φ∗ can be
regarded as a function of Φ∗

0 and V .

Define X1 = V ,Φ∗
0

T
∈ R2 as the input vector of RBFNN

and introduce RBFNN to approximate F∗
V V ,Φ∗

F∗
V V ,Φ∗ =W

∗T
V h X1 + ε,  ε ≤ εM , 35

where W∗T
V = w∗

V1,w
∗
V2,… ,w∗

VN1

T
∈ RN1 is the weight

vector, N1 is the number of nodes, and ε and εM are approx-
imation errors and its upper bounds, respectively. And

h X1 = h1 X1 , h2 X1 ,… , hN1
X1

T
∈ RN1 , where hi X1

is the activation function; here, hi X1 is chosen as the
Gaussian function.
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The following is based on the MLP technique to
adaptively adjust the norm of the RBFNN weight vector.

Define ωV = W
∗
V

2 and design Φ
∗
1 as

Φ
∗
1 =

1

2
VωVh

T
X1 h X1 , 36

where ωV is the estimation of ωV , and its adaptive law is
designed as

ωV =
μV
2
V

2
h
T
X1 h X1 − 2ωV , 37

where μV ∈ R+ is the design parameter.
Substitute (27) and (36) into (26) and finally get the

control law Φ
∗

Φ
∗ = k−1V −kV1V − kV2

t

0

Vdτ + V ref −
1

2
VωVh

T
X1 h X1

38

Remark 5. Different from [24] in which the weight vector
of the neural network is directly adjusted online, this
paper regards W∗

V as a whole based on the MLP technique.
Adaptive adjustment of ωV requires only one online
learning parameter ωV , and the computational complexity
of the approximation algorithm is significantly reduced.

3.3. Controller Design for Altitude Subsystem. Define altitude
tracking error

h = h − href 39

Taking time derivative along (39) and using (2) yield

h = V sin γ − href
40

The reference trajectory of γ is chosen as

γd = arcsin
−kγ1h − kγ2

t

0
hdτ + href

V
, 41

where kγ1 , and kγ2 ∈ R
+ are design parameters. If γ→ γd,

known by (40) and (41), the dynamic response of h is

h + kγ1h + kγ2h = 0 42

Performing Laplace transformation on both sides of (42)
can get its characteristic equation

s2 + kγ1s + kγ2 = 0 43

The two characteristic roots −kγ1 − kγ1
2 − 4kγ2 /2 and

−kγ1 + kγ1
2 − 4kγ2 /2 of (43) are negative real numbers, so

the system (42) is stable and h is exponentially convergent.

Therefore, as long as γ→ γd, h can track href stably. In this
way, the control objective of the altitude subsystem turns to
ensure that γ tracks γd.

Define x1 = γ, x2 = θ, and x3 =Q. Based on the research
conclusion of [7], the remaining part of the altitude subsys-
tem ((3), (4), and (5)) is further expressed as the following
more general nonaffine form:

x1 = f1 x1, x2 ,

x2 = x3,

x3 = f3 x, δe

44

Considering (11), the above formula can be rewritten as

x1 = f1 x1, x2 ,

x2 = x3,

x3 = f3 x, δ∗e ,

45

where x = x1, x2, x3
T. f1 x1, x2 and f3 x, δ∗e are completely

unknown continuously differentiable functions.

Remark 6. Due to the strong coupling between the rigid body
states and the flexible modes in the AHV model ((1), (2), (3),
(4), (5), (6), and (7)), here the dynamic characteristics of
strong nonlinearity and strong coupling in the original model
are regarded as completely unknown continuous differentia-
ble functions ((16) and (44)) by referring to the method of
[25]. The proposed method in this paper will use RBFNN
to accurately approximate these continuous differentiable
functions and then complete the design of the control law
and ensure the stability of the closed-loop control system.

In order to design the control law δ∗e , the following
theorem is given firstly.

Theorem 4. For any x, δ∗e ∈Ω
x
× R, the following inequal-

ities are established:

∂f1 x1, x2
∂x2

> 0,

∂f3 x, δ∗e
∂δ∗e

> 0,

46

where Ω
x
is a controllable area.

Proof 3. According to the results in [17], we can know

∂f1 x1, x2
∂x2

> 0,

∂f3 x, δe
∂δe

> 0

47
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Consider (11), (44) and (45), there is

∂f3 x, δ∗e
∂δ∗e

=
∂f3 x, δ∗e

∂δe
·
∂δe
∂δ∗e

=
∂f3 x, δe /∂δe
cosh2 δ∗e /δemax

48

Combining (47) and (48), we can see that (46) is true.

In order to avoid the cumbersome and complicated
design process of the traditional backstepping method in
designing the control law, the following equivalent transfor-
mation is performed on the system (45).

Step 1. Let z1 = x1 = γ and z2 = z1 = f1 x1, x2 . From (45), the
time derivative of z2 is derived as

z2 =
∂f1 x1, x2

∂x1
x1 +

∂f1 x1, x2
∂x2

x2

=
∂f1 x1, x2

∂x1
f1 x1, x2 +

∂f1 x1, x2
∂x2

x3

≜ f h1 x

49

Step 2. Let z3 = z2 = f h1 x . From (45), the time derivative of
z3 is derived as

z3 =
∂f h1 x

∂x1
x1 +

∂f h1 x

∂x2
x2 +

∂f h1 x

∂x3
x3

=
∂f h1 x

∂x1
f1 x1, x2 +

∂f h1 x

∂x2
x3 +

∂f h1 x

∂x3
f3 x, δ∗e

≜ f h2 x, δ∗e

50

After the above transformation, system (45) is as follows:

z1 = z2,

z2 = z3,

z3 = f h2 x, δ∗e ,

51

where f h2 x, δ∗e is a completely unknown continuously
differentiable function.

Remark 7. From (46), (49) and (50), there is

∂f h2 x, δ∗e
∂δ∗e

=
∂f h1 x

∂x3

∂f3 x, δ∗e
∂δ∗e

=
∂f1 x1, x2

∂x2

∂f3 x, δ∗e
∂δ∗e

> 0

52

Define flight-path tracking error e and error function E

e = γ − γd = z1 − γd,

E =
d

dt
+ λ

3 t

0

edτ = e + 3λe + 3λ2e + λ3
t

0

edτ,
53

where λ ∈ R+ stands for the design parameter. Since s + λ 3

is a Hurwitz polynomial, when E is bounded, e must
be bounded.

According to (51) and (53), we obtain

e = z1 − γd = z2 − γd,

e = z2 − γd = z3 − γd,

   ⃛e = z3 −   γ⃛d = f h2 x, δ∗e −   γ⃛d

54

Considering that z2 and z3 are unknown, we can know
that z2 = γ and z3 = γ from the previous model transforma-
tion process. A new finite-time convergence differentiator
(FD) will be used below to accurately estimate differential
signal. By taking γ as the input signal of FD (take n = 4), we
can get the estimated values of z2 and z3, which are expressed
as ẑ2 and ẑ3, respectively. Similarly, the estimations of γd, γd,
and   γ⃛d can be obtained via taking γd as the input signal of FD

(take n = 4), which are expressed as γd, γd, and
  γ⃛d.

Therefore, the estimations of the first three derivatives of
e can be expressed as

ê = ẑ2 − γd,

ê = ẑ3 − γd,

   ⃛̂e = f h2 x, δ∗e −   γ⃛d

55

From (53) and (55), we obtain the estimation of E

Ê = ê + 3λê + 3λ2e + λ3
t

0

edτ 56

Let

Fh x, δ∗e = f h2 x, δ∗e − khδ
∗
e , 57

where kh ∈ R
+ is the design parameter.

Combine (55), (56), and (57)

Ê = khδ
∗
e + Fh x, δ∗e −   γ⃛d + 3λê + 3λ2ê + λ3e 58

Design the control law δ∗e as

δ∗e = k−1h δ∗e0 − δ∗e1 , 59

where δ∗e0 = −kh1Ê +   γ⃛d − 3λê − 3λ2ê − λ3e, kh1 ∈ R
+ repre-

sents the design parameter, and δ∗e1 is the neural control
law to be designed to counteract the influence of the
uncertain term Fh x, δ∗e .

Let

H x, δe
∗
0 , δe

∗
1 ≜ Fh x, δ∗e − δe

∗
1

= Fh x, kh
−1 δe

∗
0 − δe

∗
1 − δe

∗
1

60
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Similar to velocity subsystem, to illustrate that
H x, δe

∗
0 , δe

∗
1 satisfies the implicit function theorem, the

following theorem is given.

Theorem 5. If

kh >
1

2

∂f h2 x, δ∗e
∂δ∗e

, 61

then there are a controllable area Ωh ⊂ R
3 and a unique δ∗e1

for any x, δ∗e1 ∈Ωh × R; δ∗e1 satisfies

H x, δe
∗
0 , δe

∗
1 = 0 62

Proof 4. From [23], a sufficient condition for the existence of
δ∗e1 is that the following inequality holds:

∂Fh x, δ∗e
∂δ∗e1

< 1 63

Consider (52), (59) and (61), there are

∂Fh x, δ∗e
∂δ∗e1

=
∂ f h2 x, δ∗e − khδ

∗
e

∂δ∗e1

=
∂ f h2 x, δ∗e − khδ

∗
e

∂δ∗e

∂δ∗e
∂δ∗e1

=
∂f h2 x, δ∗e

∂δ∗e
− kh

1

kh

=
1

kh

∂f h2 x, δ∗e
∂δ∗e

− 1 < 1

64

Therefore, δ∗e1 exists.

Further,

∂

∂δ∗e1
H x, δ∗e0, δ

∗
e1 =

∂

∂δ∗e1
Fh x, δ∗e − δ∗e1

=
∂

∂δ∗e1
f h2 x, δ∗e − khδ

∗
e − 1

=
∂

∂δ∗e
f h2 x, δ∗e − khδ

∗
e

∂δ∗e
∂δ∗e1

− 1

=
∂f h2 x, δ∗e

∂δ∗e
− kh −

1

kh
− 1

= −
1

kh

∂f h2 x, δ∗e
∂δ∗e

65

Combine (52) and (65)

∂

∂δ∗e1
H x, δ∗e0, δ

∗
e1 < 0 66

According to Theorem 5 and (66), H x, δe
∗
0 , δe

∗
1 satisfies

the implicit function theorem. Therefore, δ∗e1 can be regarded
as a function of δe

∗
0 and x, and further Fh x, δ∗e can be

regarded as a function of δe
∗
0 and x.

Define X2 = x
T, δe

∗
0

T
∈ R4 as the input vector of RBFNN

and introduce RBFNN to approximate Fh x, δ∗e

Fh x, δ∗e =W
∗T
h h X2 + ι,  ι ≤ ιM, 67

where W
∗T
h = w∗

h1,w
∗
h2,… ,w∗

hN2

T
∈ RN2 is the weight

vector, N2 is the number of nodes, and ι and ιM stand for
approximation errors and its upper bounds, respec-

tively. h X2 = h1 X2 , h2 X2 ,… , hN1
X2

T
∈ RN2 , hi X2 ,

is the activation function which is chosen as the Gaussian
function here.

Define ωh = W
∗
h

2 and design δ∗e1 as

δ∗e1 =
1

2
Êωhh

T
X2 h X2 , 68

where ωh is the estimation of ωh, and its adaptive law is
designed as

ωh =
μh
2
Ê
2
h
T
X2 h X2 − 2ωh, 69

where μh ∈ R
+ is the design parameter.

3.4. Finite-Time Convergence Differentiator (FD)

Theorem 6. Consider the following FD [26]:

ξ1 = ξ2,

ξ2 = ξ3,

⋮

ξn−1 = ξn,

ξn = Rn −a1 arctan ξ1 − υ t − a2 arctan
ξ2
R

−⋯− an arctan
ξn
Rn−1

,

70

where R, ai i = 1, 2,… , n ∈ R+ stand for the design parame-
ters. There are ϕ > 0 and ιϕ > n so that

ξi − υ i−1 t =O
1

R

ιϕ−i+1

, i = 1, 2,… , n, 71

whereO 1/R ιϕ−i+1 denotes the approximation of 1/R τϕ−i+1

order between ξi and υ i−1 t , ϕ = 1 − ϑ /ϑ, ϑ ∈ 0, min
ι/ ι + n , 1/2 , n ≥ 2.
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Proof 5. The detailed proof process of Theorem 6 can be
found in [26].

Remark 8. In (70), ξi i = 1, 2,… , n is the state variable of
the system, ξ1 is the estimation of υ t , and ξi i = 2, 3,
… , n is the estimation of the i − 1th derivative of υ t . At
the same time, (71) shows that the estimation error is a

high-order infinitesimal of 1/R τϕ−i+1.

Use the above FD to estimate z2, z3, γd, γd, and   γ⃛d of (54)

ẑ1 = ẑ2,

ẑ2 = ẑ3,

ẑ3 = ẑ4,

ẑ4 = R4
1 −a11 arctan ẑ1 − γ − a12 arctan

ẑ2
R1

− a13 arctan
ẑ3
R2
1

− a14 arctan
ẑ4
R3
1

,

γd ′ = γd,

γd ′ = γd,

γd ′ =   γ⃛d,

  γ⃛d ′ = R4
2 −a21 arctan γd − γd − a22 arctan

γd
R2

− a23 arctan
γd
R2
1

− a24 arctan
  γ⃛d
R3
2

,

72

where Ri, aij i = 1, 2 ; j = 1, 2, 3, 4 ∈ R+ are design parame-

ters; ẑ1, ẑ2, ẑ3, and ẑ4 represent the estimations of z1 γ ,

z2 γ , z3 γ , and z4   γ⃛ , respectively; and γd, γd, γd, and
  γ⃛d stand for the estimations of γd, γd, γd, and   γ⃛d.

4. Stability Analysis

Theorem 7. For the velocity subsystem of AHV (17), consider-
ing the saturation characteristic of Φ (11), and adopting the
control law (26) and the adaptive law (37) under the premise
of Theorem 1, the closed-loop control system is semiglobally
uniformly ultimately bounded.

Proof 6. Define the estimation error of ωV

ωV = ωV − ωV 73

Substitute (26), (27), (35), and (36) into (25)

V =Φ
∗
0 −Φ

∗
1 + F∗

V V ,Φ∗ −V ref

= −kV1V − kV2

t

0

Vdτ −
1

2
VωVh

T
X1 h X1

+W
∗T
V h X1 + ε

74

Choose the following Lyapunov function candidate:

LV =
V

2

2
+
kV2
2

t

0

Vdτ
2

+
ω2
V

2μV
75

Taking time derivative of (75) and invoking (37), (73)
and (74) yield

LV =VV + kV2V
t

0

Vdτ +
ωVωV

μV

=V −kV1V − kV2

t

0

Vdτ −
1

2
VωVh

T
X1 h X1 +W

∗T
V h X1 + ε

+ kV2V
t

0

Vdτ +
ωV

μV

μV
2
V

2
h
T
X1 h X1 − 2ωV

= −kV1V
2
−
1

2
V

2
ωVh

T
X1 h X1 +VW∗T

V h X1 +Vε −
2ωVωV

μV

76

Notice that

VW∗T
V h X1 ≤

V
2

2
W

∗T
V h X1

2
+
1

2
,

Vε ≤
V

2

4
+ ε2M , 2ωVωV ≥ ω2

V − ω2
V

77

Also from Cauchy-Schwarz inequality

W
∗T
V h X1 ≤ W

∗
V h X1 78

Further,

VW
∗T
V h X1 ≤

V
2

2
W

∗
V

2
h X1

2 +
1

2

=
V

2

2
ωVh

T
X1 h X1 +

1

2

79

Then (76) becomes

LV ≤ − kV1 −
1

4
V

2
−
ω2
V

μV
+
1

2
+ ε2M +

ω2
V

μV
80
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Let kV1 > 1/4, and define the following compact sets:

ΩV = V ∣ V ≤
1/2 + ε2M + ω2

V /μV
kV1 − 1/4

,

ΩωV
= ωV ∣ ωV ≤

1/2 + ε2M + ω2
V /μV

1/μV

81

If V ∉ΩV or ωV ∉ΩωV
, then LV < 0. Therefore, the

closed-loop control system is semiglobally uniformly ulti-

mately bounded. Further, these error signals V and ωV are
semiglobally uniformly ultimately bounded and can be
invariant to the following sets ΩV and ΩωV

. The radiuses of

ΩV and ΩωV
can be made arbitrarily small by choosing kV1

that is big enough and μV that is small enough, and the

tracking errors V and ωV can also be arbitrarily small.

Theorem 8. For the altitude subsystem of AHV (51), consider-
ing the saturation characteristic of δe (11) and adopting the
control law (59), the adaptive law (69) and FD (72) under
the premise of Theorem 4, the closed-loop control system is
semiglobally uniformly ultimately bounded.

Proof 7. Define the estimation error of ωh

ωh = ωh − ωh 82

Then, define the estimation error of FD

χ1 = ẑ2 − z2,

χ2 = ẑ3 − z3,

χ3 = γd − γd,

χ4 = γd − γd,

χ5 =
  γ⃛d −   γ⃛d

83

According to Theorem 6, there is χiM ∈ R+ i = 1, 2,… , 5

χi ≤ χiM 84

Substitute (59), (67), and (68) into (58)

Ê = −kh1Ê −
1

2
Êωhh

T
X2 h X2 +W

∗T
h h X2 + ι 85

Choose the following Lyapunov function candidate:

Lh =
1

2
Ê
2
+

ω2
h

2μh
86

Taking time derivative of (86) and invoke (69), (82), and
(85) yield

Lh = ÊÊ +
ωhωh

μh

= Ê −kh1Ê −
1

2
Êωhh

T
X2 h X2 +W

∗T
h h X2 + ι

+
ωh

μh

μh
2
Ê
2
h
T
X2 h X2 − 2ωh

= −kh1Ê
2
−
1

2
Ê
2
ωhh

T
X2 h X2 + ÊW∗T

h h X2

+ Êι −
2ωhωh

μh
87

Since

ÊW∗T
h h X2 ≤

Ê
2

2
W

∗T
h h X2

2
+
1

2
,

2ωhωh

μh
≥
ω2
h

μh
−
ω2
h

μh
,

Êι ≤ Êι ≤
Ê
2

4
+ ι2M

88

According to Cauchy-Schwarz inequality,

W
∗T
h h X2 ≤ W

∗
h h X2 89

Further,

ÊW∗T
h h X2 ≤

Ê
2

2
W

∗
h

2
h X2

2 +
1

2

=
Ê
2

2
ωhh

T
X2 h X2 +

1

2

90

Then (87) becomes

Lh ≤ − kh1 −
1

4
Ê
2
−
ω2
h

μh
+
1

2
+ ι2M +

ω2
h

μh
91

Let kh1 > 1/4, and define the following compact sets:

ΩÊ = Ê ∣ Ê ≤
1/2 + ι2M + ω2

h/μh
kh1 − 1/4

,

Ωωh
= ωh ∣ ωh ≤

1/2 + ι2M + ω2
h/μh

1/μh

92

If Ê ∉ΩÊ or ωh ∉Ωωh
, then Lh < 0. Thus, these error

signals Ê and ωh are semiglobally uniformly ultimately
bounded and can be invariant to the following sets ΩÊ and
Ωωh

. The radiuses of ΩÊ and Ωωh
can be made arbitrarily
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small by choosing big enough kh1 and small enough μh, and

the tracking errors Ê and ωh can also be arbitrarily small.
Combine (53), (54), (55) and (56) and (83)

E = Ê + z3 − ẑ3 + γd − γd + 3λ z2 − ẑ2 + γd − γd

= Ê + χ4 − χ2 + 3λ χ3 − χ1

93

Consider (84), then (93) can become

E ≤ Ê + χ4M + χ2M + 3λ χ3M + χ1M
94

Therefore, E and e are also bounded, then the closed-loop
control system is semiglobally uniformly ultimately bounded.
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Figure 2: Simulation result of Case 1.

11International Journal of Aerospace Engineering



5. Simulation Results

With AHV longitudinal motion model as the controlled
object, the tracking simulation of velocity and altitude refer-
ence commands is performed. The initial velocity and alti-
tude of AHV are taken as V = 2500m/s and h = 27000m.
Velocity step and altitude step are chosen as ΔV = 200m/s
and Δh = 200m. Both the velocity and altitude reference
inputs are given by a second-order reference model with a

damping ratio of 0.9 and a natural frequency of 0 1 rad/s.
The design parameters of the controller are chosen as
kV = 5, kV1 = 8, kV2 = 0 01, kγ1 = 2, kγ2 = 0 01, kh = 0 9,

kh1 = 30, and λ = 7. The design parameters of the adaptive
law are taken as μV = μh = 0 05. The design parameters of
FD are chosen as R1 = R2 = 0 05, a11 = a13 = a21 = a23 = 0 5,
and a12 = a14 = a22 = a24 = 0 1. The node number of RBFNN
is chosen as N1 =N2 = 20. In the velocity subsystem, the cen-
ter c1 of the Gaussian function is evenly spaced in [2500m/s,
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Figure 3: Simulation result of Case 2.
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3100m/s]× [−0.1, 1], and the width b1 is selected as 6.56. In
altitude subsystem, the center c2 of the Gaussian function is
evenly spaced in [−1°, 1°]× [0°, 5°]× [−5°/s, 5°/s]× [0 rad,
0.35 rad]; the width b2 is selected as 0.01. Three cases are
considered in the simulation study.

Remark 9. In the above stability analysis of the control law, in
order to ensure the stability of the closed-loop control
system, the range of values of related parameters (such as
kV1 > 1/4, kh1 > 1/4) is given. At the same time, in order to

ensure tracking accuracy, the selection principle of related
parameters is also analyzed (e.g., parameters kV1 and kh1
should be taken large enough, and parameters μV and μh
should be taken small enough). The selection of parameters
in the simulation is based on the above principles and is
determined by repeated debugging.

Case 1. Considering Remark 1, we assume that actuators are
constrained as Φ ∈ 0 05, 1 5 and δe ∈ −20∘, 20∘ . Simulta-
neously, to verify the robustness of the controller, it is
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Figure 4: Simulation result of Case 3.
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assumed that there is a perturbation of ±40% for the aero-
dynamic coefficient of the AHV model, which is expressed
as C = C0 1 + 0 4 sin 0 1πt , where C0 represents the
nominal value and C stands for the simulation value.
And after 50 s, add external disturbances d1 = 2 sin 0 1πt
and d2 = 0 02 sin 0 1πt to (1) and (5) in the AHV model,
respectively. The subscript “1” in the figures shows the result
obtained by the proposed method, and the subscript “2”
shows the result obtained by the method of [27].

Case 2. Combining Remark 2, we further suppose that actu-
ators are subject to stricter constraints, resulting in a smaller
executable range than the theoretical value, which are taken
as Φ ∈ 0 05, 1 2 and δe ∈ −18∘, 18∘ . Other simulation
conditions are the same as Case 1.

Case 3. The control problem of nonlinear systems with
actuator constraints has been considered extensively in the
existing results, such as [28, 29]. In order to compare with
the method in this paper, the adaptive dynamic surface
control method considering actuator constraints proposed
in [29] is applied to the AHV model. All conditions in the
simulation are the same as in Case 2. The subscript “1”
represents the result of the proposed method. The subscript
“2” represents the result of the method proposed in [29].

When the control inputs are constrained as described in
Case 1 (see Figures 2(h) and 2(i)), both the proposed method
and method of [26] can guarantee that V and h track their
reference commands V ref and href (see Figures 2(a) and
2(d)). However, the tracking accuracy and anti-interference
ability of the proposed method in this paper are significantly
improved than those of the method in [26] (see Figures 2(b)
and 2(e)). At the same time, the changes in the flight-path
angle and flexible states are also smoother than [26] (see
Figures 2(c), 2(f), and 2(g)). When actuators of AHV are
subject to stricter constraints (see Figures 3(h) and 3(i)), the
stability of the closed-loop system cannot be guaranteed with
the method of [26]. But through using the proposed method
in this paper, the control objective can still be achieved (see
Figures 3(a), 3(b), 3(d), and 3(e)). And the proposed method
can effectively inhibit flexible states (see Figures 3(c) and
3(f)). In Case 3, the method proposed in [29] can guarantee
that V and h track their reference commands when the
actuators are constrained (see Figures 4(a) and 4(d)). How-
ever, since the method does not use the relevant means to
estimate the uncertain dynamics of the model, the tracking
error is significantly larger than the method proposed in this
paper (see Figures 4(b) and 4(e)). At the same time, com-
pared with the method in [29], the control curve obtained
by the method is smoother (see Figures 4(h) and 4(i)), which
is more suitable for engineering applications.

6. Conclusion

(1) An adaptive neural control law based on input
saturation function is designed in this paper, which
guarantees the stability of the closed-loop system

and the boundedness of tracking error when the
actuator reaches saturation.

(2) When the AHV model encounters perturbation of
aerodynamic coefficient and external disturbances,
the proposed method can still ensure good tracking
accuracy, which proves that the algorithm has
strong robustness.

(3) The controller designed in this paper can still effec-
tively suppress the flexible states when the actuator
is constrained. Simulation examples verify the effec-
tiveness and superiority of the design method.

(4) In this paper, only the most common amplitude
saturation problem of the actuator is considered,
and the rate and bandwidth constraint problem
is not discussed. These will serve as a further
research direction.
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