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ABSTRACT This paper reports the design of a control system for a class of general nonlinear second-

order systems. The significant problems of singularity and chattering phenomenon, which limit the use

of the conventional terminal sliding mode control (TSMC) in real applications due to the order of the

sliding surface, need to be addressed. In addition, the effects of disturbances and uncertainties need to

be removed, and the response rates are increased. Therefore, the integral full-order terminal sliding mode

(IFOTSM) surface was proposed. To track the specified trajectories with high accuracy, a control approach

is developed for the class of general nonlinear second-order systems by utilizing an IFOTSM surface and

an adaptive compensator. The unknown dynamic model is derived based on a radial basis function neural

network (RBFNN). Consequently, our controller provides good performance with minimum position errors,

robustness against uncertainties, and work without a precise dynamic model. The simulated examples were

performed to analyze the effectiveness of the control approach for position pathway tracking control of a

2-DOF parallel manipulator.

INDEX TERMS Radial basis function neural network, adaptive compensator, full-order terminal sliding

mode control, disturbance, uncertainty, the class of general nonlinear second-order systems, 2-DOF parallel

manipulator.

I. INTRODUCTION

The increasingly rigorous performance requirements of

industrial applications highlight the importance of enhanced

control systems developed for uncertain nonlinear systems

that are normally subject to various nonlinearities, external

disturbances, and uncertainties. Studies on the class of gen-

eral nonlinear second-order systems have proposed many

control methods focused on attaining the desired perfor-

mance against various uncertainties, including external dis-

turbances. Sliding mode control (SMC) has been validated

to provide high robustness against uncertainties and distur-

bances for nonlinear systems [1]–[4]. Accordingly, SMC

is usually applied to industrial application systems [5]–[8].

Nonetheless, several challenges of the traditional SMC still

exist such as the requirement of an exact dynamic model,
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singularity, chattering occurrence, and unidentified conver-

gence time. Various studies have focused on treating these

challenges. For the system state variables to reach the pre-

scribed SMC surface within a definite time, the terminal

sliding mode control (TSMC), based on the nonlinear sliding

mode function, has been used [9], [10]. However, the TSMC

convergence time is slower than the traditional SMC conver-

gence time, and still encompasses a singularity phenomenon.

To handle convergence time and a singularity glitch, numer-

ous fast TSMC (FTSMC) [11], [12] and nonsingular TSMC

(NTSMC) [13], [14] systems have been applied to mag-

netic levitation systems [15], chaos control [16], [17], and

robotic manipulators [2], [18]–[20]. Private control man-

ners such as FTSMC or NTSMC have only focused on the

resolution of individual weaknesses or neglected to han-

dle the other weaknesses of the traditional SMC. For that

reason, the nonsingular fast TSMC (NFTSMC) has been

developed for controlling uncertain nonlinear second-order
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systems [8], [11], [18], [21]–[24]. NFTSMC can deal with

several drawbacks of the traditional SMCor other control sys-

tems based on TSMC. Nonetheless, chattering is not removed

by applying a high-frequency reaching control term to the

control input of the above systems, which include TSMC,

FTSMC, NTSMC, and NFTSMC. As a result, several useful

control systems have been proposed by applying full-order

sliding mode control (FOSMC) [25]–[28], or high-order slid-

ing mode control (HOSMC) [29], [30].

Two of the major challenges in designing a control system

according to SMC or TSMC is knowing the bounds of mod-

eling disturbances and dynamic uncertainties and computing

an exact dynamic model, which is not known in advance for

practical systems. To approximate this unknown model, sev-

eral computing attempts have been proposed, such as neural

networks [8], [31]–[33] and fuzzy logic systems [7], [34], due

to their approximation abilities.

In traditional SMC and traditional TSMC, the drawbacks

have been considered individually or ignored. In response,

this work focuses on the synchronized resolve of SMC

and TSMC drawbacks, including the condition for an exact

dynamic model, the existence of a singularity, chattering

occurrence, and finite-time convergence.

Consequently, the objective is to develop a controller

for the class of general nonlinear second-order systems.

The suggested system has the following major advantages:

1) it inherits the benefits of RBFNN and IFOSMC, including

good performance with minimum position errors, robustness

against uncertainties, and work without a precise dynamic

model; 2) it consists of a control input system with chatter-

ing reduction; 3) compared to RBFNN-SMC and RBFNN-

TSMC, ARBFNN-IFOSMC provides better performance and

stronger resistance against disturbances and uncertainties;

and 4) stability and tracking error convergence of the class of

general nonlinear second-order systems was fully confirmed

by the Lyapunov benchmark.

The remainder of this report is arranged as follows. After

the introduction, the preliminaries and problem formulations

are stated, followed by the design approach for the proposed

controller, where the proposed system is applied to allow

position pathway tracking control simulation for a 2-DOF

parallel manipulator. The tracking performance is compared

with those of the RBFNN-SMC and RBFNN-TSMC to eval-

uate the effectiveness of the proposed control system. Finally,

conclusions are provided.

II. PROBLEM FORMULATIONS

A class of general nonlinear second-order systems is

considered as follows:

{

ẋ1 = x2

ẋ2 = F(x, t) + D(x, t) + Q(x, t)uin,
(1)

where x =
[

x1, x2
]T

represents the system state vector,

F (x, t) ∈ Rn, Q (x, t) ∈ Rn×n are the smooth nonlinear

vector fields, and D (x, t) ∈ Rn represents the disturbances

and uncertainties.

The target of this article is to develop a control sys-

tem such that the controlled variables of the system fol-

low the designated trajectory with minimum position errors,

robustness against uncertainties, and work without a precise

dynamic model. Accordingly, the tracking positional error is

defined as:

e1 = x1 − xd . (2)

The following assumption is essential for developing the

control algorithm in the next part.

Assumption 1:We assume that the lumped uncertain com-

ponents are first-order differentiable and have the existence

of the defined positive constant satisfying the following

condition:

∣

∣Ḋ (x, t)
∣

∣ ≤ 4, (3)

where 4 is the defined positive constant.

III. DESIGN SYNTHESIS OF THE CONTROL SYSTEM

In this part, a control method is developed for the class of

general nonlinear second-order systems, which is described

by in the two following steps.

A. DESIGN OF THE INTEGRAL FULL-ORDER TERMINAL

SLIDING MODE (IFOTSM) SURFACE

First, with the tracking position error from Eq. (2), an

IFOTSM surface is proposed as:

s = ė2 +

∫ t

0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ, (4)

where s = [s1, s2, . . . , sn]
T ∈ Rn×1 is a sliding variable,ω1,

ω2 are positive constants, 0 < µ1 < 1, µ2 = 2µ1/(1 + µ1),

e1 = [e11, e12, . . . , e1n]
T ∈ Rn×1 represents the tracking

position errors, e2 = [e21, e22, . . . , e2n]
T ∈ Rn×1 represents

the tracking velocity error, ė2 is the time derivative of e2, and

e[µ(·)] is defined as follows:

e[µ(·)] = |e|µ(·) sgn [e] . (5)

where µ1 > 0, µ2 > 0 and sgn [e] =







1 if e > 0

−1 if e < 0

0 if e = 0

With Eq. (2), Eq. (1) can be expressed in the following error

state space form as:

{

ė1 = e2

ė2 = F (x, t) + D (x, t) + Q (x, t) uin − ẍd .
(6)

Substituting Eq. (6) into the IFOTSM surface (4) yields:

s = F (x, t) + D (x, t) + Q (x, t) uin

−ẍd +

∫ t

0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ. (7)
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B. DESIGN OF THE INTEGRAL FULL-ORDER TERMINAL

SLIDING MODE CONTROL (IFOTSMC)

For system (1) to operate with quality performance, the con-

trol input system is designed as follows:

uin = −Q−1 (x, t)
(

ueq + usw
)

. (8)

Here, the equivalent control term is designed as:

ueq = F (x, t) − ẍd +

∫ t

0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ, (9)

and the switching control term is designed as:

u̇sw = (4 + ̟) sgn (s) . (10)

Accordingly, the following theorem is formed to complete

the proof.

Theorem 1: Consider a class of general nonlinear second-

order systems (1). If the proposed control input system is

designed for system (1) as Eqs. (8)-(10), then system (1) is

guaranteed to have stability.

Proof:Applying the control input system (8)-(10) to Eq. (7)

gives:

s = F (x, t) + D (x, t) −

(

usw + F (x, t) − ẍd

+
∫ t
0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ

)

−ẍd +

∫ t

0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ

= D (x, t) − usw. (11)

Taking the time derivative of Eq. (11) gives:

ṡ = Ḋ (x, t) − u̇sw

= Ḋ (x, t) − (4 + ̟) sgn (s) . (12)

Consider the following Lyapunov function as follows:

L =
sT s

2
. (13)

With the result of Eq. (12), the time derivative of Eq. (13) is

derived as

L̇ = sT ṡ

= sT
(

Ḋ (x, t) − (4 + ̟) sgn (s)
)

=
(

Ḋ (x, t) s− 4 |s|
)

− ̟ |s| ≤ −̟ |s| . (14)

Based on Eq. (14), the requirement for the Lyapunov stability

benchmark [35] is guaranteed, wherein proof of stability is

confirmed.

Nonetheless, the design approach requires an exact

dynamic mode of F (x, t) and satisfies Assumption 1. It is not

trivial to precisely estimate dynamic uncertainties, external

disturbances, and provide an exact dynamic function in the

control system. To handle these challenges, a robust control

approach will be developed for the class of general nonlin-

ear second-order systems based on an IFOTSM surface and

RBFNN. Here, two nonlinear terms in the IFOTSM surface

and an adaptive compensator will be used to compensate for

the effects of the dynamic uncertainties, disturbances, and

error from the RBFNN, while an RBFNN will be utilized to

approximate an unknown dynamic model.

FIGURE 1. The architecture of an RBFNN.

C. RADIAL BASIS FUNCTION NEURAL NETWORK

RBFNNs have major advantages, including a highly paral-

lel structure, robust tolerance to external disturbances and

uncertainties, nonlinear function approximation [23], and

online adaptation capability. Compared to other neural net-

works, RBFNN has a simpler and quicker convergence rate.

An RBFNN includes three layers, input, hidden and output,

which are shown in Figure 1.

The following RBFNN output is defined as:

H (µ) = θT9 (µ) + ε (µ) , (15)

where µ ∈ Rn and H (µ) correspond to the RBFNN input

and output. θT ∈ Rn×m represents the weight matrix linking

the hidden layer and the output layer, 9 (µ) represents the

nonlinear function of the hidden nodes, and ε (µ) ∈ Rn

represents an approximation error.

A Gaussian function is defined for the nonlinear function

as follows:

9 (µ) = exp
(

− (µ − ηl)
T (µ − ηl)/d

2
l

)

, l = 1, 2, . . . ,m,

(16)

where d and η correspond to the width and center of the

Gaussian function.

D. DESIGN OF AN ADAPTIVE RADIAL BASIS FUNCTION

NEURAL NETWORK INTEGRAL FULL-ORDER TERMINAL

SLIDING MODE CONTROL (ARBFNN-IFOTSMC)

In this report, RBFNN is used to approximate the unknown

dynamic model as follows:

h (x) = F (x, t) . (17)

Define ĥ (x) as an approximated function of h (x). ĥ (x) can

be described by a RBFNN, as follows:

ĥ (x) =

∫ t

0

θ̂T9 (x) dt. (18)

Here, θ̂ is the adaptable parameter vector.
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The optimal parameter θ∗ can be described as follows:

θ∗
H = argmin

{

sup
x∈2x

∣

∣

∣
h (x) − ĥ

(

x, θ̂
)∣

∣

∣

}

. (19)

Accordingly, RBFNN (18) can exactly approximate the

arbitrary value of h (x), which is given by the following

Lemma [23].

Lemma 1: For arbitrary positive constant ε > 0 and any

real continuous function h (X) on the compact set 2X ∈ Rn,

there is a neural approximator existence ĥ (X) that holds a

similar form as Eq. (18), such that

sup
X∈2X

∣

∣

∣
h (X) − ĥ

(

X , θ̂

)∣

∣

∣
< ε. (20)

Consequently, the unknow dynamic model can be

described as

ė2 =

∫ t

0

θ∗T9 (x) dt + Q (x, t) uin − ẍd + Ŵ, (21)

where Ŵ = D (x, t) + ε is the lumper uncertainty, including

disturbances, dynamic uncertainties, and NN approximation

error. To facilitate the next design step, the time derivative

of the lumper uncertainty is assumed to be bounded by an

unknown positive constant,
∣

∣Ŵ̇
∣

∣ ≤ 5.

The proposed control law is designed as follows:

uin = −Q−1 (x, t)
(

ueq + uasw
)

. (22)

Here, the equivalent control law is constructed as

τeq (t) =

∫ t

0

θ̂T9 (x) dt − ẍd +

∫ t

0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ,

(23)

and uasw is an adaptive compensator for substituting the

control term of usw in Eq. (12), describing uasw as

u̇asw =
(

5̂ + ̟

)

sgn (s) . (24)

The adaptive laws are designed as

˙̂
5 = γ −1 |s| , (25)

˙̂
θ = κ−1s9 (x) , (26)

where 5̂ is the estimated value of the design parameter

5, ̟ is a positive constant, and γ, κ indicate the adaptive

parameters.

The control design approach for the robot system is

described in Theorem 2 below.

Theorem 2: For the system (1), if suitable IFOTSM sur-

faces are proposed as (4) and the control input signal is

constructed as (22)–(24) with its parameter updating rules

designed as (25) and (26), then the stability of the system

(1) is secured with the desired performance, and the tracking

errors reach zero.

Proof: Identify the adaptive estimation error and NN

weight approximation error, respectively, as follows:

5̃ = 5̂ − 5, (27)

θ̃ = θ∗ − θ̂ . (28)

FIGURE 2. Block diagram of the proposed control scheme.

The sliding surface in Eq. (7) is rewritten as:

s =

∫ t

0

θ∗T9 (x) dt + Q (x, t) uin

−ẍd + Ŵ +

∫ t

0

(

ω1e
[µ1]
1 + ω2e

[µ2]
2

)

dσ. (29)

Substituting control laws (22)–(24) into Eq. (29) provides:

s =

∫ t

0

θ̃T9 (x) dt − uasw + Ŵ. (30)

Taking the time derivative of Eq. (30) gives:

ṡ = θ̃T9 (x) −
(

5̂ + ̟

)

sgn (s) + Ŵ̇. (31)

The positive-definite Lyapunov functional is selected as:

L2 =
sT s

2
+

γ 5̃T 5̃

2
+

κθ̃T θ̃

2
. (32)

With the result of Eq. (31), the time derivative of Eq. (32) is

derived as:

L̇2 = sT ṡ+ γ 5̃T ˙̃
5 − κθ̃T

˙̂
θ

= sT
(

θ̃T9 (x) −
(

5̂ + ̟

)

sgn (s) + Ŵ̇

)

+ γ

(

5̂ − 5

)

˙̂
5 − κθ̃T

˙̂
θ

= sT θ̃T9 (x) − 5̂ |s| − ̟ |s| + Ŵ̇s

+ γ

(

5̂ − 5

)

˙̂
5 − κφ̃T

˙̂
θ. (33)

Applying the updating laws (25)–(26) to (33) yields:

L̇2 = −5̂ |s| − ̟ |s| + 5s +
(

5̂ − 5

)

|s|

= −̟ |s| +
(

Ŵ̇s − 5 |s|
)

≤ −̟ |s| . (34)
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As shown in Eq. (34), if the constant of ̟ is selected to

be greater than zero, L̇2 will be negative-definite. According

to the Lyapunov benchmark [35], L̇2 becoming negative-

definite implies that s and 5̃ reach zero, and the tracking error

variables thus approach zero as well. Therefore, Theorem 3 is

proven.

FIGURE 3. The kinematic illustration of the robotic system.

IV. NUMERICAL SIMULATION RESULTS

While the ARBFNN-IFOTSMC can be applied for a class of

second-order nonlinear system such as serial robotic manipu-

lators, parallel robotic manipulators, spacecraft, we consider

a five-bar manipulator acting on a horizontal plane as an

example that was presented in [36], [37] and its kinematic

illustration was shown in Fig. 3. The dynamic model of the

planar five-bar manipulator is given by [37]:

M̂aθ̈a + Ĉaθ̇a + 1τa = τa, (35)

where θa =
[

θa1, θa2
]T

is the active joint angle vector;

θ̇a =
[

θ̇a1, θ̇a2
]T

is the active joint velocity vector; θ̈a =
[

θ̈a1, θ̈a2
]T

is the active joint acceleration vector; M̂a ∈ R2×2

is the estimated inertia matrix; Ĉa ∈ R2×2 is the estimated

centripetal Coriolis matrix; 1τa is the vector of modeling

errors and uncertainties; and τa ∈ R2×1 is the actuator output

related to the control input uin. The detailed computations

of M̂a and Ĉa were presented in [37]. The vector 1τa from

Eq. (35) is presented as the following:

1τa = 1Maθ̈a + 1Caθ̇a + Fa, (36)

where 1Ma and 1Ca are the bounded modeling errors and

Fa is the friction force.

The robot in Eq. (37) is rewritten with the following

expression:

θ̈a = M̂−1 (θa)

[

τa − Ĉaθ̇a − 1τa

]

. (37)

Then, we assign uin = τa as the control input, x = [x1, x2]
T

as the state vector in which x1, x2 are corresponding to

θa, θ̇a ∈ R2×1. The robotic dynamic of Eq. (35) can be

described in the following state space form as:

{

ẋ1 = x2

ẋ2 = F(x, t) + D(x, t) + Q(x, t)uin,
(38)

where F (x, t) = M̂−1 (θa)

[

−Ĉaθ̇a

]

∈ R2×1, Q (x, t) =

M̂−1 (θa) ∈ R2×2 are the smooth nonlinear vector fields and

D (x, t) = M̂−1 (θa) [−1τa] ∈ R2×1 presents the distur-

bances and uncertainties.

To evaluate the effectiveness of ARBFNN-IFOTSMC, its

performance is compared with those of RBFNN-SMC and

RBFNN-TSMC. The design of RBFNN-SMC and RBFNN-

TSMC are represented in Appendices A and B, respectively.

Simulation studies were performed on aMATLAB–Simulink

environment with a fixed-step size of 10−3 and the mechan-

ical model of the 2-DOF parallel manipulator is built using

a SimMechanics toolbox. This 2-DOF parallel manipulator

operates on the horizontal plane. Hence, the end-effector of

the parallel manipulator is controlled to track a circular path

on the XY plane. The link parameters in the mechanical

model are set as Table 1.

TABLE 1. parameters of the mechanical model.

To establish the modeling errors 1Ma, 1Ca simula-

tions were performed with different parameters, both in the

mechanical model of the robot as well as in the controllers:

r̂i1 = 0.9ri1 and r̂i2 = 0.9ri2 in which r̂i1, r̂i2 (i = 1, 2) are

utilized for determining M̂a, Ĉa.

In themechanical model, the frictions of the system involve

viscous friction and Coulomb friction torques that are com-

puted from the following formula:

fai = Fcisgn
(

θ̇ai
)

+ Fviθ̇ai, (i = 1, 2), (39)

where the coefficients are selected as Fc1 = Fc2 = 0.3, and

Fv1 = Fv2 = 0.7.
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In addition, the 2-DOF parallel manipulator system is

also troubled by external disturbance forces da (t) =
[

da1 (t) da2 (t)
]T

=
[

2 2
]T

at t = 3.0 s.

The selected control parameters of three different con-

trol methodologies: RBFNN-SMC, RBFNN-TSMC, and

ARBFNN-IFOTSMC are stated in Table 2.

TABLE 2. selected parameters of the control methods.

The RBFNN had ten neurons in the input layer, seven

neurons in the hidden layer, and two neurons in the out-

put layer. The weight of RBFNN is initialed with a zero

value.

FIGURE 4. The desired trajectory and real trajectory of the end-effector.

The simulation studies were performed to compare the

control methods in two terms of their positional accuracies

and the resulting chattering phenomenon in their control

input systems when the parallel manipulator tracked a desired

circular path. Fig. 4 illustrates performance comparison of

the position trajectory tracking when using three different

control methodologies: RBFNN-SMC, RBFNN-TSMC, and

ARBFNN-IFOTSMC. The end-effector of the robot manip-

ulator has the initial position at the top of the designated

circular path. For that reason, the initial position of the end

effector of the robot manipulator is not on the specified cir-

cular trajectory, the real path of the robot in the operation had

FIGURE 5. The tracking errors of the end-effector in the X-direction.

FIGURE 6. The tracking errors of the end-effector in the Y-direction.

a malfunction at the starting of motion. The simulation results

of the tracking errors of the end-effector on the X-direction

and Y-direction are depicted in Figs. 5 and 6, respectively.

These controllers can be used to track the specified tra-

jectory. The tracking accuracy of the ARBFNN-IFOTSMC

had the least amount of tracking errors, on the order of

10−6–10−7, in the presence of uncertainties and external

disturbances.

The control input signals for all control types, including

RBFNN-SMC, RBFNN-TSMC, and ARBFNN-IFOTSMC

are depicted in Fig. 7. In Figs 7a and 7b, the RBFNN-SMC

and RBFNN-TSMC offer a discontinuous control signal

with serious chattering behavior. On the contrary, ARBFNN-

IFOTSMC offers a continuous control signal for the robot

manipulator, as depicted in Fig. 7c.

The adaptive parameters of the adaptive compensator in

the proposed system are depicted in Fig. 8; alteration of the

influences of external disturbances and uncertainties leads

to adaptive parameters with corresponding alteration. These

adaptive parameters will converge to constant values along

with the system converging to the IFOTSM surface.

Remark 1: Throughout simulation analyses and compar-

ison among those of RBFNN-SMC, RBFNN-TSMC, and

ARBFNN-IFOTSMC, the simulated results and tracking

performance comparison could be expected to exhibit the
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FIGURE 7. Control input signals: (a) RBFNN-SMC, (b) RBFNN-TSMC, and
(c) ARBFNN-IFOTSMC.

FIGURE 8. Variation of the adaptive gains at Joint 1 and Joint 2.

effectiveness and viability of our proposed control algorithm.

In future studies, the ARBFNN-IFOTSMC will be applied

to the real robot manipulator and compared with other

state-of-the-art control systems to validate the effectiveness

of this control methodology. We will also consider the

effects of the measurement devices and errors associated

with it.

V. CONCLUSIONS

This study reports the design of the control system for

the class of general nonlinear second-order systems. The

suggested system has the following major advantages:

1) it receives the advantages of both RBFNN and IFOSMC,

including good performance with minimum position errors,

robustness against uncertainties, and work with a precise

dynamic model; 2) it consists of a control input system with

chattering reduction; 3) ARBFNN-IFOSMC provides bet-

ter performance and stronger resistance against disturbances

and uncertainties compared to RBFNN-SMC and RBFNN-

TSMC; and 4) stability and tracking error convergence of

the class of general nonlinear second-order systems was fully

confirmed by the Lyapunov benchmark.

APPENDIX A

DESIGN RBFNN-SMC

Set x1 − xd as the tracking positional error and xd as the

desired trajectory values. Then, define the sliding variable

and time derivative of the sliding variable as follows:

s = ė+ αe, (40)

ṡ = ë+ αė, (41)

where α is a positive constant.

With Eq. (38), Eq. (41) can be expressed as follows:

ṡ = ẋ2 − ẍd + α (ẋ1 − ẋd )

= F (x, t) + D (x, t) + Q (x, t) uin − ẍd + α (ẋ1 − ẋd ) .

(42)

To obtain the desired performance for the robot system,

the controller is designed as follows:

uin = −Q−1 (x, t)
(

ueq + usw
)

. (43)

The equivalent control signal of ueq is computed in the case

of ṡ = 0 and D (x, t) = 0. Consequently, the term of the

equivalent control is designed as follows:

ueq = F (x, t) − ẍd + α (ẋ1 − ẋd ) + KV s, (44)

and the switching control term is designed as:

usw = Ksgn (s) , (45)

where K is a positive constant and KV is a diagonal matrix.

We will utilize a neural network to approximate the nonlin-

ear unknown dynamic function of the robotic system F (x, t).

Accordingly, the controller of Eq. (43) becomes

uin = −Q−1 (x, t)

(

θ̂T9 (x) − ẍd + α (ẋ1 − ẋd )

+KV s+ gsgn (s)

)

. (46)

APPENDIX B

DESIGN RBFNN-TSMC

The following is the design approach of RBFNN-TSMC.

e = x1 − xd is the tracking error and ė = x2 − ẋd is

the tracking velocity error. Then, the NFTSM surface was

selected:

s = e+ β−1sig (ė)α , (47)

where s =
[

s1, s2
]T

∈ R2×1 is the sliding surface,

sig (ė)α = (|ė1|
α sgn (ė1) , . . . , |ėn|

α sgn (ėn)), 1 < α < 2.

For system (35) to operate with the desired performance,

the controller is designed as follows:

uin = −Q−1 (x, t)
(

ueq + usw
)

. (48)

The equivalent control signal of ueq is computed in the case

of ṡ = 0 and D (x, t) = 0. Therefore, the time derivative of

the sliding surface is described as follows:

ṡ = ė+ αβ−1 |ė|α−1 ë. (49)

From Eq. (38), ë can be express as:

ë = F (x, t) + D (x, t) + Q (x, t) uin − ẍd . (50)
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Substituting (50) into (49) gives:

ṡ = ė+ αβ−1 |ė|α−1 (F (x, t) + D (x, t)+Q (x, t) uin−ẍd ) .

(51)

Once the robot model F (x, t) is exactly calculated, then the

ueq control input signal can be defined as follows:

ueq = F (x, t) − ẍd + βα−1ė2−α + KV s. (52)

The switching control term is designed as:

usw = (4 + ̟) sgn (s) , (53)

where KV is a diagonal matrix.

We will utilize a neural network to approximate the nonlin-

ear unknown dynamic function of the robotic system F (x, t).

Accordingly, the controller of Eq. (48) becomes

uin = −Q−1 (x, t)

(

θ̂T9 (x) − ẍd + β 1
α
ė2−α

+KV s+ (4 + ̟) sgn (s)

)

. (54)
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