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ABSTRACT 

A nonlinearity is required before matched filtering in mInimum error 

receivers when additive noise is present which is impulsive and highly 

non-Gaussian. Experiments were performed to determine whether the 

correct clipping nonlinearity could be provided by a single-input single­

output multi-layer perceptron trained with back propagation. It was 

found that a multi-layer perceptron with one input and output node, 20 

nodes in the first hidden layer, and 5 nodes in the second hidden layer 

could be trained to provide a clipping nonlinearity with fewer than 5,000 

presentations of noiseless and corrupted waveform samples. A network 

trained at a relatively high signal-to-noise (SIN) ratio and then used 

as a front end for a linear matched filter detector greatly reduced the 

probability of error. The clipping nonlinearity formed by this network 

was similar to that used in current receivers designed for impulsive noise 

and provided similar substantial improvements in performance. 

INTRODUCTION 

The most widely used neural net, the adaptive linear combiner (ALe). is a single­

layer perceptron with linear input and output nodes. It is typically trained using the 

LMS algorithm and forms one of the most common components of adaptive filters. 

ALes are used in high-speed modems to construct equalization filters, in telephone 

links as echo cancelers, and in many other signal processing applications where linear 

filtering is required [9]. The purpose of this study was to determine whether multi­

layer perceptrons with linear input and output nodes but with sigmoidal hidden 

nodes could be as effective for adaptive nonlinear filtering as ALes are for linear 

filtering. 

1 This work wa.s sponsored by the Defense Advanced Research Projects Agency and the Depart­

ment of the Air Force . The views expressed are those of the authors and do not reflect the policy 

or position of the U . S. Government. 



Adaptive Neural Net Preprocessing for Signal Detection 125 

The task explored in this paper is signal detection with impulsive noise where an 

adaptive nonlinearity is required for optimal performance. Impulsive noise occurs 

in underwater acoustics and in extremely low frequency communications channels 

where impulses caused by lightning strikes propagate many thousands of miles [2]. 

This task was selected because a nonlinearity is required in the optimal receiver, the 

structure of the optimal receiver is known, and the resulting signal detection error 

rate provides an objective measure of performance. The only other previous studies 

of the use of multi-layer perceptrons for adaptive nonlinear filtering that we are 

aware of [6,8] appear promising but provide no objective performance comparisons. 

In the following we first present examples which illustrate that multi-layer percep­

trons trained with back-propagation can rapidly form clipping and other nonlinear­

ities useful for signal processing with deterministic training. The signal detection 

task is then described and theory is presented which illustrates the need for nOll­

linear processing with non-Gaussian noise. Nonlinearities formed when the input 

to a net is a corrupted signal and the desired output is the uncorrupted signal are 

then presented for no noise, impulsive noise, and Gaussian noise. Finally, signal 

detection performance results are presented that demonstrate large improvements 

in performance with an adaptive nonlinearity and impulsive noise. 

FORMING DETERMINISTIC NONLINEARITIES 

A theorem proven by Kohnogorov and described in [5] demonstrates that single­

input single-output continuous nonlinearities can be formed by a multi-layer percep­

tron with two layers of hidden nodes. This proof, however, requires complex nonlin­

ear functions in the hidden nodes that are very sensitive to the desired input/output 

function and may be difficult to realize. "More recently, Lapedes [4] presented an 

intuitive description of how multi-layer perceptrons with sigmoidal nonlinearities 

could produce continuous nonlinear mappings. A careful mathematical proof was 

recently developed by Cybenko [1] which demonstrated that continuous nonlinear 

mappings can be formed using sigmoidal nonlinearities and a multi-layer perceptron 

with one layer of hidden nodes. This proof, however, is not constructive and does 

not indicate how many nodes are required in the hidden layer. The purpose of our 

study was to determine whether multi-layer perceptrons with sigmoidal nonlineari­

ties and trained using back-propagation could adaptively and rapidly form clipping 

nonlinearities. 

Initial experiments were performed to determine the difficulty of learning complex 

mappings using multi-layer perceptrons trained using back-propagation. Networks 

with 1 and 2 hidden layers and from 1 to 50 hidden nodes per layer were evalu­

ated. Input and output nodes were linear and all other nodes included sigmoidal 

nonlinearities. Best overall performance was provjded by the three-layer perceptron 

shown in Fig. 1. It has 20 nodes in the first and 5 nodes in the second hidden layer. 

This network could form a wide variety of mappings and required only slightly more 

training than other networks. It was used in all experiments. 
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Figure 1: The multi-layer perceptron with linear input and output nodes that was 

used in all experiments. 

The three-layer network shown in Fig. 1 was used to form clipping and other 

deterministic nonlinearities. Results in Fig. 2 demonstrate that a clipping nonlinear­

ity ('auld be formed with fewer than 1,000 input samples. Input/output point pairs 

were determined by selecting the input at random over the range plotted and using 

tlte deterministic clipping function shown as a solid line in Fig. 2. Back-propagation 

training [7] was used with the gain term (11) equal to 0.1 and the momentum term 

(0') equal to 0.5. These values provide good convergence rates for the clipping func­

tion and all other functions tested. Initial connection weights were set to small 

random values. 

The multi-layer percept ron from Fig. 1 was also used to form the four nonlinear 

functions shown in Fig. 3. The "Hole Punch" is useful in nonlinear signal process­

ing. It performs much the same function as the clipper but completely eliminates 

amplitudes above a certain threshold le\'el. Accurate approximation of this function 

required more than 50,000 input samples. The "Step" has one sharp edge and could 

be roughly approximated after 2,000 input samples. The "Double Pulse" requires 

approximation of two close "pulses" and is the nonlinear function analogy of the 

disjoint region problem studied in [3]. In this examplf>, back-propagation training 

approximated the rightmost pulse first after 5,000 input samples. Both pulses were 

then approximated fairly well after 50,000 input samples. The "Gaussian Pulse" 

is a smooth curve that could be approximated well after only 2,000 input samples. 

These results demonstrate that back-propagation training with sigmoidal 1I0nlin­

earities can form many different nonlinear functions. Qualitative results on training 

times are similar to those reported in [.1]. In this previous study it was de mOll-
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Figure 2: Clipping nonlinearities formed using back-propagation training and the 

multi-layer perceptron from Fig. 1 (top) and the rms error produced by these Ilon­

linearities versus training time (bottom). 

strated that simple half-plane decision regions could be formed for classification 

problems with little training while complex disjoint decision regions required long 

training times. These new results suggest that complex nonlinearities with many 

sharp discontinuities require much more training time than simple smooth curves. 

THE SIGNAL DETECTION TASK 

The signal detection task was to discriminate between two equally likely input sig­

nals as shown in Fig. 4. One signal (so(t)) corresponds to no input and the other 

signal (Sl(t)) was a sinewa\'c pulse with fixed duration and known amplitude, fre­

quency, and phase. Noise was added to these inputs, the resultant signal was passed 

through a memoryless nonlinearity, and a matched filter was then used to select hy­

pothesis Ho corresponding to no input or HI corresponding to the sinewave pulse. 

The matched filter multiplied the output of the nonlinearity by the known time­

aligned signal waveform, integrated this product over time, and decided HI if the 

result was greater than a threshold and Ho otherwise. The threshold was selected 

to provide a minimum overall error rate. The optimum nonlinearity Ilsed in the de­

tector depends on the noise distribu tion. If the signal levels are small relati\'e to the 

noise levels, then the optimum nonlinearity is approximated by f (J') = t;~ In{ (In (J')). 

where r .. (x) is the instantaneous probability density function of the noise (2]- This 

function is linear for Gaussian noise but has a clipping shape for impulsi\'e noise. 
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Figure 3: Four deterministic nonlinearities formed using the multi-layer perceptron 

from Fig. 1. Desired functions are plotted as solid lines while functions formed 

using back-propagation with different numbers of input samples are plotted using 

dots and dashes. 

Examples of the signal, impulsive noise and Gaussian noise are presented in Fig. 5. 

The signal had a fixed duration of 250 samples and peak amplitude of 1.0. The 

impulsive noise was defined by its amplitude distribution and inter-arrival time. 

Amplit udes had a zero mean, Laplacian distribution with a standard de\'iation (IJ) 

of 14.1 in all experiments. The standard deviation was reduced to 2.8 in Fig. 5 

for illustrative purposes. Inter-arrival times (L\T) between noise impulses had a 

Poisson distribution. The mean inter-arrival time was varied in experiments to 

obtain different SIN ratios after adding noise. For example varying inter-arrival 

times from 500 to 2 samples results in SIN ratios that vary from roughly 1 dB to 

- 24 dB. Additive Gaussian noise had zero mean and a standard oeviation (IJ) of 

0.1 in all experiments. 

ADAPTIVE TRAINING WITH NOISE 

The three-layer perceptron was traineq as shown in Fig. 6 using the signal plus Iloist> 

as the input and the uncorrupted signal as the desired output. Network weights 

were adapted after every sample input using back-propagation training. Adaptive 

nonlinearitics formed during training are shown in Fig. 7. These are similar to those 



Adaptive Neural Net Preprocessing for Signal Detection 129 

SO(II--­

S,II)~ 
~-...o{ 

MEMORYlESS 
NONLINEARITY 

NOISE 'I • I(x) 

N(tl 

MATCHED 
FILTER 

DETECTOR 

Figure 4: The signal detection task was to discriminate between a sinewa\·e pulse 

and a no-input condition with additive impulsive noise. 
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Figure 5: The input to the nonlinearity with no noise, additive impulsive noise, and 

additive Gaussian noise. 

required by theory. No noise results in nonlinearity that is linear over the range 

of the input sinewave (-1 to + 1) after fewer than 3,000 input samples. Impulsive 

noise at a high SIN ratio (6.T = 125 or SIN = -5 dB) results in a nonlinearity 

that clips above the signal level after roughly 5,000 input samples and then slowly 

forms a "Hole Punch" nonlinearity as the number of training samples increases. 

Gaussian noise noise results in a nonlinearity that is roughly linear over the range 

of the input sinewave after fewer than 5,000 input samples. 

SIGNAL DETECTION PERFORMANCE 

Signal detection performance was measured using a matched filter detector and the 

nonlinearity shown in the center of Fig. 7 for 10,000 input training samples. The 

error rate with a minimum-error matched filter is plotted in Fig. 8 for impulsive 

lIoise at SIN ratios ranging from roughly 5 dB to -24 dB. This error rate was 

estimated from 2,000 signal detection trials. Signal detection performance always 

improved with the nonlinearity and sometimes the improvement was dramatic. The 

error rate provided with the adaptively-formed nonlinearity is essentially identical 
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Figure 6: The procedure used for adaptive training. 
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Figure 7: Nonlinearities formed with adaptive training with no additive noise, with 

additive impulsive noise at a SIN level of -5 dB, and with additive Gaussian noise. 

to that provided by a clipping nonlinearity that clips above the signal level. This 

error rate is roughly zero down to - 24 dB and then rises rapidly with higher levels 

of impulsive noise. This rapid increase in error rate below -24 dB is not shown in 

Fig. 8. The error rate with linear processing rises slowly as the SIN ratio drops and 

reaches roughly 36% when the SIN ratio is -24 dB. 

Further exploratory experiments demonstrated that the nonlinearity formed by 

back-propagation was not robust to the SIN ratio used during training. A clipping 

nonlinearity is only formed when the number of samples of uncorrupted sinewave 

input is high enough to form the linear function of the curve and the number of 

samples of noise pulses is low, but sufficient to form the non~ill('ar clipping section 

of the nonlinearity. At high noise levels the resulting nonlinearity is not linear Over 

the range of the input signal. It instead resembles a curve that interpolates between 

a flat horizontal input-output curve and the desired clipping curve. 

SUMMARY AND DISCUSSION 

In summary, it was first demonstrated that multi-layer perccptrons with linear 
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Figure 8: The signal detection error rate with impulsive noise when the SIN ratio 

after adding the noise ranges from 5 dB to - 24 dB. 

input and output nodes could approximate prespecified clipping nonlinearities re­

quired for signal detection with impulsive noise with fewer than 1,000 trials of 

back-propagation training. More complex nonlinearities could also be formed but 

required longer training times. Clipping nonunearities were also formed adaptively 

using a multi-layer perceptron with the corrupted signal as the input and the noise­

free signal as the desired output. Nonlinearities learned using this approach at high 

S / N ratios were similar to those required by theory and improved signal detection 

performance dramatically at low SIN ratios. Further work is necessary to further 

explore the utility of this technique for forming adaptive nonlinearities. This work 

should explore the robustness of the nonlinearity formed to variations in the input 

S / N ratio. It should also explore the use of multi-layer perccptrons and back­

propagation training for other adaptive nonlinear signal processing tasks such as 

system identification, noise removal, and channel modeling. 
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