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Abstract — In this paper, the behavior of a grid-connected hybrid 

AC/DC Microgrid has been investigated. Different Renewable 

Energy Sources – photovoltaics modules and a wind turbine 

generator - have been considered together with a Solid Oxide 

Fuel Cell and a Battery Energy Storage System. The main 

contribute of this work is the design and the validation of an 

innovative online-trained artificial neural network based control 

system for a hybrid microgrid. Adaptive Neural Networks are 

used to track the Maximum Power Point of renewable energy 

generators and to control the power exchanged between the 

Front-End Converter and the electrical grid. Moreover, a fuzzy 

logic based Power Management System is proposed in order to 

minimize the energy purchased from the electrical grid. The 

operation of the hybrid microgrid has been tested in the 

Matlab/Simulink environment under different operating 

conditions. The obtained results demonstrate the effectiveness, 

the high robustness and the self-adaptation ability of the 

proposed control system.  

 
Index Terms — Adaptive interaction, fuel cells, microgrid, 

neural networks, photovoltaics, predictive control, wind energy, 

battery energy storage system.  

NOMENCLATURE 

AC      Alternate Current 

ADALINE    ADAptive LInear NEuron 

AI      Adaptive Interaction 

BESS     Battery Energy Storage System 

BP      Back-Propagation 

CL      Context Layer 

CPL     Constant Power Load 

DC      Direct Current 

DPC     Direct Power Control 

DPCM    Deadbeat Predictive Control Method 

ENN     Elman Neural Network 

FEC     Front-End Converter 

FFNN     Feed Forward Neural Network 

FL      Fuzzy Logic 

HL      Hidden Layer 

IncCond    Incremental Conductance 

IL      Input Layer 

LMS     Least Mean Squares 

MG     Micro-Grid 

MPP     Maximum Power Point 

MPPT     Maximum Power Point Tracking 

NN      Neural Network 

OL      Output Layer 

PI      Proportional Integral 

PMS     Power Management System 

PMSG     Permanent Magnetic Synchronous Generator 

PV      Photovoltaic 

RBFN     Radial Basis Function Network 

RES     Renewable Energy Sources 

SOFC    Solid Oxide Fuel Cell 

SN-RBFN   Single Neuron Radial Basis Function Network 

SMC    Sliding Mode Control 

SOC     State Of Charge 

SVM     Space Vector Modulator 

TS-AF     Tangent-Sigmoid Activation Function 

VF     Virtual Flux 

WT     Wind Turbine 

WEGS    Wind Energy Generation System 

 

I. INTRODUCTION 

OWADAYS, the wide diffusion of distributed RES presents 

a new scenario for the regulation of distribution networks 

and the availability of new technologies for storage systems 

encourages their use in power systems [1]. In general, a hybrid 

AC/DC MG integrates different Distributed Generators (e.g. 

solar power sources, wind power generators, cogenerators, 

etc.), a energy storage system and a number of AC and DC 

loads. A FEC can interface the MG with the electric grid and 

can operate either in a grid-connected or islanded mode. The 

use of a PMS is crucial to optimize the power flow through the 

different components of the MG and the exchange of energy 

with the electric grid. Moreover, since the power produced by 

RESs depends on the climatic conditions, MPPT algorithms 

are needed in order to harvest the maximum available energy. 

The intermittent nature of RESs with the time-varying loads 

demand make the use of advanced control structures 

fundamental in order to make the operation of the MG 

reliable, economic, and secure under different operating 

conditions. The MG must also guarantee a high quality power 

supply to both local loads and electrical grid.  

Many works have focused on hybrid microgrids and have 

proposed a number of control schemes for different mode of 

operations [2]-[8]. A multiagent-based energy management 

system to optimizes the economic operation of a MG is 

presented in [2]. A reactive power sharing algorithm in 

hierarchical droop control is developed in [3]. A novel 

coordinated voltage control scheme with islanding capability 

for a MG is proposed in [4]. For highly nonlinear and complex 

AC/DC MGs, control schemes based on artificial intelligence 

techniques such as Fuzzy Logic (FL), Neural Network (NN), 

and evolutionary algorithms are gaining widespread interest. 

Intelligent controllers are very promising because they can 

Adaptive Neural Network-Based Control of a 
Hybrid AC/DC Microgrid 

 N. Chettibi , A. Mellit, G. Sulligoi, IEEE Senior Member, and A. Massi Pavan, IEEE Member 

N 



 2 

adapt to uncertainties and they can be used also when the 

model of the system to be controlled is not available. 

Recently, the NNs with the learning capability are widely 

applied for the control of complex power systems. In [9], a 

back-propagation NN is applied for the real-time estimation of 

the wind speed. A novel discrete-time NN controller for the 

control of DC distribution system is designed in [10]. In [11], 

a RBFN and an improved ENN are proposed as MPPT 

controllers for different types of RES. A RBFN with an ENN 

have been also analyzed in [12] for the wind speed prediction 

in a wind farm.  

The different NNs based techniques proposed in the 

literature can be classified, according to the training algorithm, 

into two categories [13]: offline and online trained NN. 

Offline learning of a neuro-controller is usually accomplished 

using a training dataset coming from the system model or 

from experimental data. When the controlled system is too 

complex to be modeled and/or experimental datasets are not 

available, it is more adequate to use online trained NNs that 

respond dynamically to the system uncertainties resulting from 

nonlinearities, parameters changing and exterior perturbations. 

In this paper, a grid-connected hybrid MG which consist of 

a PV source, a WT generator, a SOFC, a BESS and two 

equivalent DC and AC loads is studied. A PMS based on FL is 

proposed to supervise the power flow in the MG. Online-

trained NNs based MPPT for the RESs in addition to 

ADALINE based linear controllers for both SOFC stack and 

BESS are introduced. Moreover, a simplified deadbeat based 

predictive control scheme is applied for the WEGS. Further, a 

VF-DPC strategy for the bidirectional FEC is adopted. A 

FFNN is proposed for the regulation of the DC-bus voltage. 

Two ENNs based controllers are adopted to ensure the control 

of the bidirectional flow of the active power as well as the 

compensation of the AC load reactive power. An AI based 

algorithm is applied for the online weights adaptation of  the 

proposed FFNN and ENNs. The investigated MG is simulated 

in the Matlab/Simulink environment. Then, the effectiveness 

of the proposed controllers is verified for different test cases.    

The paper is organized as follows: the next Section in on the 

configuration and the modeling of the MG, Section III deals 

with the control scheme, the simulation results are given in 

Section IV, and Section V is on Conclusions and Perspectives. 

II. SYSTEM CONFIGURATION AND MODELING 

As shown in Fig.1, the investigated MG is connected to the 

electric grid though a FEC, while the DC-Bus is fed by four 

energy sources: a 21kWp PV generator, a 10kW WEGS, a 

10kW SOFC, and a 20Ah Lithium-Ion BESS. A bidirectional 

buck-boost converter interfaces the BESS with the DC link. 

Whereas, boost converters are used for coupling the PV source 

and SOFC with the DC-bus. A filter capacitor Cdc is connected 

to the DC-bus to minimise the DC voltage ripples. Moreover, 

the MG includes also AC and DC loads. The circuit model of 

the converters used in the MG is shown in Fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Hybrid Microgrid configuration. 

 

 

 

 

 

 

Fig. 2. Circuit model of the considered converters. 

A. Modeling the PV generator 

The equivalent circuit used to model a PV module is shown 

in Fig.3 and is represented by the following equation [14]: 𝐼𝑃𝑉 = 𝑛𝑝𝐼𝑃𝐻 − 𝑛𝑝𝐼𝑆 [𝑒𝑥𝑝 ( 𝑞𝐴𝐾𝑇) (𝑉𝑃𝑉𝑛𝑠 + 𝐼𝑃𝑉𝑅𝑆) − 1] (1) 

Where IPV and VPV are the PV module’s output current and 
voltage, RS is the series resistance, IPH is the photocurrent, IS is 

the saturation current, q is the electron charge, K is the 

Boltzman constant, A is the diode ideality factor, T is the 

temperature, while nP and nS are the numbers of series and 

parallel-connected solar cells.  
 

 

 

 

 

 

Fig. 3. Single diode equivalent circuit of PV module. 

B. Modeling the Wind Energy Generation System 

The WEGS consists of a WT coupled to a PMSG, where an 

AC-DC Rectifier is used for the interfacing with the DC-bus. 

The mathematical model of the PMSG implemented in the 

synchronous rotating frame dq is given as [15, 16]:  { 𝑉𝑠𝑑 = −𝑅𝑠𝐼𝑠𝑑 − 𝐿𝑠𝑑 𝑑𝐼𝑠𝑑𝑑𝑡 + 𝐿𝑠𝑞𝜔𝑒𝐼𝑠𝑞𝑉𝑠𝑞 = −𝑅𝑠𝐼𝑠𝑞 − 𝐿𝑠𝑞 𝑑𝐼𝑠𝑞𝑑𝑡 − 𝐿𝑠𝑑𝜔𝑒𝐼𝑠𝑑 + 𝜔𝑒𝜙  (2) 

Where Vsd, Vsq, Isd and Isq are the d and q-axis components of 

the stator voltages and currents; Lsd and Lsd are the d and q-

axis inductance, ωe is the generator speed defined as [15]: 𝜔𝑒 = 𝑝.𝜔𝑡 such that p is the number of pole pairs and ωt is 

the angular velocity of WT, ϕ is the permanent magnet flux, 

and Rs is the stator resistance. The electromagnetic torque Te 

developed by the generator can be written as [16]: 
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𝑇𝑒 = 32 𝑝 ((𝐿𝑠𝑑 − 𝐿𝑠𝑞)𝐼𝑠𝑞𝐼𝑠𝑑 + 𝜙𝐼𝑠𝑞)   (3) 

Considering that for nonsalient PMSG Lsd = Lsq=Ls, Eq.3 

can be rewritten as: 𝑇𝑒 = 32𝑝𝐼𝑠𝑞𝜙        (4) 

Since the magnetic flux is constant, the electromagnetic 

torque and the q-axis stator current component Isq are directly 

proportional. Whereas, the reactive power may be controlled 

depending on the d-axis current component Isd. The motion 

equation is given by [15]:  𝐽 𝑑𝜔𝑚𝑑𝑡 = 𝑇𝑡 − 𝑇𝑒 − 𝐹𝜔𝑚       (5) 

Where F is the viscous friction factor, J is the moment of 

inertia. The aerodynamic torque of WT is defined as the ratio 

between the aerodynamic power Pt and the WT angular 

velocity: 𝑇𝑡 = 𝑃𝑡 𝜔𝑡⁄ = 0.5𝜋𝜌𝑅2𝐶𝑃𝑉𝑊3 𝜔𝑡⁄     (6) 

Where ρ, VW, R, CP are the air density, the wind speed, the 

radius of turbine blade and the power coefficient, respectively. 

C. Modeling the Solid Oxide Fuel Cell  

The dynamic model adopted for the SOFC [17,18] is based 

on the relationship between the FC output voltage Vfc and the 

partial pressures of hydrogen, oxygen, and water PH2, PO2, 

PH2O, respectively. The SOFC terminal voltage Vfc is 

determined using the Nernst’s equation and Ohm’s law as 

[17,18]: 𝑉𝑓𝑐 = 𝑁0 (𝐸0 + 𝑅𝑇2𝐹 (𝑙𝑛 (𝑃𝐻2𝑃𝑂20.5𝑃𝐻2𝑂 ))) − 𝑟𝐼𝑓𝑐   (7) 

Where N0 is the number of series connected cells, E0 is the 

free reaction voltage, R is the universal gas constant, T is the 

temperature, F is the Faraday’s constant, Ifc is the FC output 

current, and r is the ohmic resistance.  

D. Modeling the Battery Energy Storage System 

The Matlab/Simulink module used for the BESS simulation 

consists of a controlled voltage source series-connected with 

an internal resistance [19]. The battery output voltage and the 

State Of Charge (SOC) are calculated as follows: 𝑉𝑏 = 𝐸0 − 𝑅𝑖𝑛𝐼𝑏 −𝐾 𝑄𝑄−∫ 𝐼𝑏(𝑡)𝑑𝑡𝑡0 + 𝐴𝑒𝑥𝑝 (−𝐵 ∫ 𝐼𝑏𝑑𝑡𝑡0 ) (8) 𝑆𝑂𝐶 = 100(1 − ∫ 𝐼𝑏𝑑𝑡𝑡0 𝑄 )        (9) 

Where Vb and Ib are the BESS terminal voltage and current, 

E0 is the BESS no-load voltage, Rin is the internal resistance, K 

is the polarization voltage, Q is the BESS capacity, A is the 

exponential zone amplitude, and B is the inverse exponential 

zone time constant. In this paper, a 20 Ah Lithium-Ion battery 

bank is used. 

III. CONTROL STRUCURE OF THE HYBRID MICROGRID  

The main tasks of the control system of a hybrid MG are: to 

minimize the amount of power purchased from the electric 

grid, to make the RESs based generators operate at their MPPs 

and to ensure a high-quality power supply to local loads and to 

electric grid. Being motivated by the benefits of learning 

ability, robustness against uncertainties and adaptability, a 

number of intelligent NN controllers have been designed and 

used instead of the conventional controllers, in order to satisfy 

the above requirements.  

A. MPPT control of PV generator 

The PV source exhibits a nonlinear behavior depending 

upon the variable operating conditions, and the maximum 

output power is generated at an unique operating point. 

Several MPPT algorithms heva been proposed in the 

litherature to extract the maximum energy from PV modules. 

One of them is the well-known incremental conductance 

(IncCond) algorithm [20,21]. This method consists in the 

regulation of the PV voltage according to the MPP voltage 

reference. At each iteration, the PV voltage reference is 

adjusted based on the comparison of the incremental 

conductance (dI/dV) of the PV source with the negative 

instantaneous conductance (-I/V). The position of the 

operating point with respect to the MPP on the PV power 

curve is known based on the following equation [20]:    

{  
  𝑑𝐼𝑑𝑉 = − 𝐼𝑉                     𝑎𝑡 𝑡ℎ𝑒 𝑀𝑃𝑃𝑑𝐼𝑑𝑉 > − 𝐼𝑉       𝑎𝑡 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑃𝑃𝑑𝐼𝑑𝑉 < − 𝐼𝑉       𝑎𝑡 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑃𝑃   (10) 

The IncCond method is simple and easy to implement. But, 

the convergence speed and the steady state power oscillations 

depend mainly on the size of the step change in the reference 

voltage. In this paper, a SN-RBFN based controller is applied 

to overcome the nonlinear issues arising with such MPPTs. 

The aim is to enhance the dynamic performance and the 

tracking accuracy of the IncCond algorithm. The MPP of the 

studied PV generator is tracked  through a DC-DC boost 

converter. As shown in Fig.4a, a PI voltage controller 

generates the gate signal of the power switch, while the SN-

RBFN based controller generates the PV voltage reference. 

The proposed MPPT regulator is based on the principle of the 

IncCond technique. The learning ability of the SN-RBFN 

tracker ensures the self-adaptation to any change of operating 

conditions.The adopted SN-RBFN contains a single hidden 

node that uses the Gaussian function defined as [22]:   𝑓(𝑥) = 𝑒𝑥𝑝 (− ‖𝑥−𝑐‖22𝑏2 ) = ℎ        (11) 

Where c is the central point of the Gaussian function f(x), b 

is the width value of f(x), and x=[x1,x2,x3] is the input vector 

and ‖ ‖ denotes the Euclidean norm. The SN-RBFN output 

(y) is calculated as: 𝑦 = 𝑉𝑝𝑣𝑟𝑒𝑓 = 𝑎0 + 𝑎1𝑓(𝑥)     (12) 

Where a0 and a1 are the bias and the weight of the SN-RBFN 

respectively, and Vpvref is the PV voltage reference at the 

output of MPPT controller. The SN-RBFN’s inputs are: the 

instantaneous conductance (I/V), the incremental conductance 

(ΔI/ΔV), and the reference voltage error (ΔVpvref(k)=Vpvref(k)-

Vpvref(k-1)). In this paper, a supervised learning rule based 

gradient descent method [11,23] is adopted for the online 

update of the SN-RBFN parameters. The objective function 

used for the weights adaptation is defined as:  𝜎(𝑘) = 𝑒𝑦(𝑘)2 2⁄ = (𝑦𝑑 − 𝑦)2 2⁄        (13) 

Where ey is the output error, and yd is the desired output 

voltage. The goal of the online learning process of the SN-
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RBFN is to minimize the performance index function σ(k). 
Thus, the adaptation laws of the SN-RBFN gains are given 

according to the gradient descent method as follows:  𝑎𝑖(𝑘 + 1) = 𝑎𝑖(𝑘) + ∆𝑎𝑖(𝑘) + 𝛼(𝑎𝑖(𝑘) − 𝑎𝑖(𝑘 − 1))  (14) 𝑐𝑗1(𝑘 + 1) = 𝑐𝑗1(𝑘) + ∆𝑐𝑗1(𝑘) + 𝛼 (𝑐𝑗1(𝑘) − 𝑐𝑗1(𝑘 − 1))  (15) 𝑏(𝑘 + 1) = 𝑏(𝑘) + ∆𝑏(𝑘) + 𝛼(𝑏(𝑘) − 𝑏(𝑘 − 1))   (16) 

Where α is the momentum factor, k is the k-th iteration, 

i=0,1, and j=1,2,3. According to the BP algorithm based on 

the gradient descent rule, the SN-RBFN parameters ai, cj1 and 

b are adjusted by computing the gradient of the error function 

σ(k) with respect to the SN-RBFN coefficients, so that σ(k) is 

eliminated. The derivative of the error function σ(k) against 

each SN-RBFN’s gain is evaluated by propagating the error 

term back through the NN. Thus, the SN-RBFN parameters 

are adjusted using the formulas : 

   ∆𝑎0(𝑘) = −𝜇 𝜕𝜎𝜕𝑎0 = −𝜇 𝜕𝜎𝜕𝑦 𝜕𝑦𝜕𝑎0 = 𝜇𝑒𝑦(𝑘)        (17) ∆𝑎1(𝑘) = −𝜇 𝜕𝜎𝜕𝑎1 = −𝜇 𝜕𝜎𝜕𝑦 𝜕𝑦𝜕𝑎1 = 𝜇𝑒𝑦(𝑘)𝑓(𝑥)    (18) ∆𝑐𝑗1(𝑘) = −𝜇 𝜕𝜎𝜕𝑐𝑗1 = −𝜇 𝜕𝜎𝜕𝑦 𝜕𝑦𝜕ℎ 𝜕ℎ𝜕𝑐𝑗1 = 𝜇𝑎1𝑒𝑦(𝑘)(𝑥𝑗 − 𝑐𝑗1) 𝑓(𝑥) 𝑏2⁄  

                       (19) ∆𝑏(𝑘) = −𝜇 𝜕𝜎𝜕𝑏 = −𝜇 𝜕𝜎𝜕𝑦 𝜕𝑦𝜕ℎ 𝜕ℎ𝜕𝑏 = 𝜇𝑎1𝑒𝑦(𝑘)‖𝑥 − 𝑐‖2 𝑓(𝑥) 𝑏3⁄   

                     (20) 

Where μ denotes the learning rate. We define the variable 

Gin(k)= (I(k)/V(k))+(ΔI(k)/ΔV(k)) that has to be equal to zero 

at the MPP. Since the desired output of SN-RBFN based 

MPPT controller (yd)  is unknown, the error eG(k)=(0 - Gin(k)) 

is used instead of ey(k) in Eq.17-20. Thus, the iterative 

learning algorithm of the SN-RBFN based MPPT controller is 

given as: 

{  
  𝑎0(𝑘 + 1) = 𝑎0(𝑘) + 𝜇𝐺𝑖𝑛(𝑘) + 𝛼(𝑎0(𝑘) − 𝑎0(𝑘 − 1))𝑎1(𝑘 + 1) = 𝑎1(𝑘) + 𝜇𝐺𝑖𝑛(𝑘)𝑓(𝑥) + 𝛼(𝑎1(𝑘) − 𝑎1(𝑘 − 1))𝑐𝑗1(𝑘 + 1) = 𝑐𝑗1(𝑘) + 𝜇𝑎1𝐺𝑖𝑛(𝑘)(𝑥𝑗 − 𝑐𝑗1)𝑓(𝑥) 𝑏2⁄ + 𝛼 (𝑐𝑗1(𝑘) − 𝑐𝑗1(𝑘 − 1))𝑏(𝑘 + 1) = 𝑏(𝑘) + 𝜇𝑎1𝐺𝑖𝑛(𝑘)‖𝑥 − 𝑐‖2 𝑓(𝑥) 𝑏3⁄ + 𝛼(𝑏(𝑘) − 𝑏(𝑘 − 1))  

(21) 

Once the term Gin(k) converges to zero, the SN-RBFN 

stabilizes at the reached operating power point that correspond 

to the MPP of PV source at the given climatic condition. 

B. Predictive torque control for the PMSG  

The block diagram of the control scheme of the AC-DC 

converter used for the PMSG is depicted in Fig.4.b. A DPCM  

based on the Deadbeat approach [24-26] is applied  to drive 

the AC-DC rectifier in order to improve the dynamic 

performance of the classical direct torque control scheme of 

PMSG. Besides, an ADALINE based MPPT controller is 

proposed for the tight regulation of the rotating speed of WT. 

The main tasks of the PMSG control system are to 

instantaneously follow the MPP of WT generator, to track the 

electromagnetic torque reference,  and to maintain the direct 

stator current component close to zero.   

The basic idea of the adopted DPCM is to compute, at each 

sampling period, and apply the optimal stator voltage vector 

that ensures the minimization, at the next sampling instant, of 

the tracking errors between the predicted and the reference 

values of the controlled variables [24,25]. Using the calculated 

voltage vector, the proper switching pulses for rectifier are 

generated through the Space-Vector Modulator (SVM). 

- Discrete time model  

The model of the PMSG developed in the rotating dq frame 

is used to predict the future values of the controlled variabes, 

which are the electromagnetic torque Te and the direct stator 

current Isd. Then, the reference stator voltage components Vsd 

and Vsq that should be generated during one sampling period 

are calculated in function of the tracking errors of the 

regulated  quantities Te and Isd. The stator flux magnitude of 

PMSG is indirectly controlled using the d-axis current 

component. 

Thus, the continuous-time model represented by Eq.2 is 

discretized using the Euler forward method, such that the 

current derivatives are approximated as [27]:  𝑑𝐼𝑑𝑡 ≈ 𝐼(𝑘+1)−𝐼(𝑘)𝑇𝑠           (22) 

Where TS is the sampling period, k and k+1 are the actual 

and future sampling instants, respectively. The future values 

of d-axis and q-axis components of stator current are 

expressed using Eq.2 and Eq.22 as follows: 

{ 𝐼𝑠𝑑(𝑘 + 1) = 𝑇𝑠𝐿𝑠 [−𝑉𝑠𝑑(𝑘) − 𝑅𝑠𝐼𝑠𝑑(𝑘) + 𝐿𝑠𝜔𝑒𝐼𝑠𝑞(𝑘) + 𝐿𝑠𝑇𝑠 𝐼𝑠𝑑(𝑘)]𝐼𝑠𝑞(𝑘 + 1) = 𝑇𝑠𝐿𝑠 [−𝑉𝑠𝑞(𝑘) − 𝑅𝑠𝐼𝑠𝑞(𝑘) − 𝐿𝑠𝜔𝑒𝐼𝑠𝑑(𝑘) + 𝜔𝑒𝜙 + 𝐿𝑠𝑇𝑠 𝐼𝑠𝑞(𝑘)] (23) 

The linear relationship between the q-axis stator current and 

the generator torque of Eq.4 can be rewritten as: 

           𝐼𝑠𝑞 = 23𝑝𝜙 𝑇𝑒          (24) 

By replacing Eq.24 in Eq. 23, we found :  

{ 𝐼𝑠𝑑(𝑘 + 1) = 𝑇𝑠𝐿𝑠 [−𝑉𝑠𝑑(𝑘) − 𝑅𝑠𝐼𝑠𝑑(𝑘) + 23𝑝𝜙 𝐿𝑠𝜔𝑒𝑇𝑒(𝑘)] + 𝐼𝑠𝑑(𝑘)𝑇𝑒(𝑘 + 1) = 3𝑝𝜙𝑇𝑠2𝐿𝑠 [−𝑉𝑠𝑞(𝑘) − 2𝑅𝑠3𝑝𝜙𝑇𝑒(𝑘) − 𝐿𝑠𝜔𝑒𝐼𝑠𝑑(𝑘) + 𝜔𝑒𝜙] + 𝑇𝑒(𝑘)(25) 

According to deadbeat principle [26], the predictive control 

target here is to get, at the next sampling instant (k+1), both 

predicted values of the generator torque and d-axis current 

component ideally equal to their respective references: { 𝑇𝑒∗(𝑘 + 1) = 𝑇𝑒(𝑘 + 1)𝐼𝑠𝑑∗ (𝑘 + 1) = 𝐼𝑠𝑑(𝑘 + 1)          (26) 

By substituting Equ.26 in Equ.25, we obtain: 

{ 𝐼𝑠𝑑∗ (𝑘 + 1) = 𝑇𝑠𝐿𝑠 [−𝑉𝑠𝑑(𝑘) − 𝑅𝑠𝐼𝑠𝑑(𝑘) + 23𝑝𝜙 𝐿𝑠𝜔𝑒𝑇𝑒(𝑘)] + 𝐼𝑠𝑑(𝑘)𝑇𝑒∗(𝑘 + 1) = 3𝑝𝜙𝑇𝑠2𝐿𝑠 [−𝑉𝑠𝑞(𝑘) − 2𝑅𝑠3𝑝𝜙 𝑇𝑒(𝑘) − 𝐿𝑠𝜔𝑒𝐼𝑠𝑑(𝑘) + 𝜔𝑒𝜙] + 𝑇𝑒(𝑘)(27) 

Since the d-axis current reference Isd
* is constantly zero, it 

can be assumed that the present setpoint of d-axis current is 

equal to the future reference [26]:  𝐼𝑠𝑑∗ (𝑘 + 1) = 𝐼𝑠𝑑∗ (𝑘)        (28) 

On the other hand, as shown in Fig 4.b, the external speed 

control loop provides the actual torque set point Te
*(k). 

Assuming that the tracking error of the rotational speed is 

constant during two successive sampling period, the future 

reference value of Te
 at the instant (k+1) is estimated using the 

linear Lagrange extrapolation [24,27] as presented in Fig4.c. 

Thus, the future torque reference is calculated as : 𝑇𝑒∗(𝑘 + 1) = 2𝑇𝑒∗(𝑘) − 𝑇𝑒∗(𝑘 − 1)     (29) 
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Substituting Eq.29 and Eq.28 in Eq.27, the d-axis and q-axis 

components of the required stator voltage vector are given as: 

{ 𝑉𝑠𝑑(𝑘) = −𝑅𝑠𝐼𝑠𝑑(𝑘) + 23𝑝𝜙 𝐿𝑠𝜔𝑒𝑇𝑒(𝑘) − 𝐿𝑠𝑇𝑠 ∆𝐼𝑠𝑑(𝑘)𝑉𝑠𝑞(𝑘) = − 2𝑅𝑠3𝑝𝜙𝑇𝑒(𝑘) − 𝐿𝑠𝜔𝑒𝐼𝑠𝑑(𝑘) + 𝜔𝑒𝜙 − 2 𝐿𝑠3𝑝𝜙𝑇𝑠 (∆𝑇𝑒(𝑘) + 𝑑𝑇𝑒∗(𝑘))(30) 

Where ΔTe(k) and ΔIsd(k) are the instantaneous tracking 

errors of the torque and the d-axis current, respectively. While, 

dTe
*(k) is the current variation in the torque reference: { ∆𝐼𝑠𝑑(𝑘) = 𝐼𝑠𝑑∗ (𝑘) − 𝐼𝑠𝑑(𝑘)∆𝑇𝑒(𝑘) = 𝑇𝑒∗(𝑘) − 𝑇𝑒(𝑘)𝑑𝑇𝑒∗(𝑘) = 𝑇𝑒∗(𝑘) − 𝑇𝑒∗(𝑘 − 1)      (31) 

- ADALINE based speed controller 

Traditionally, a Proportional Integral (PI) controller is used 

to regulate the rotating speed of WT in order to extract the 

maximum wind energy. However, a PI controller with fixed 

gains for a time-varying WEGS, which is subject to random 

wind speed and parameters variations, can yield to poor 

dynamic performance. To overcome this drawback, an 

adaptive ADALINE (ADaptive LInear NEuron) network 

based controller is adopted in this paper, to control the 

rotational speed by producing the reference for the 

electromagnetic torque. The ADALINE based speed controller 

consists of a single neuron with linear activation function, 

where the output is calculated as [13, 28]:    𝑦𝑤(𝑘) = 𝑇𝑒∗(𝑘) = ∑ 𝑥𝑖(𝑘)𝑤𝑖(𝑘)𝑛=3𝑖=1 = 𝑋𝜔𝑇 .𝑊𝜔  (32) 

Where wi is the ith weight coefficient (i=1,2,3), xi is the ith 

input signal and n is the number of inputs. Xω and Wω are the 

inputs and weights vectors, respectively. The ADALINE 

output is the electromagnetic torque reference Te
*(k), while the 

inputs are the measured speed at the instant k ωe(k), the actual 

speed error eω(k)=ωe
*(k)-ωe(k), and the previous error eω(k-1). 

Such that ωe
*(k) is the speed reference. The Widrow–Hoff 

Least Mean Square (LMS) learning algorithm [28] is used for 

the online update of the ADALINE’s weights. Where, the goal 

of the self-learning process of the ADALINE based speed 

controller is to minimize the mean square of the instantaneous 

error eω(k). Using the transformation 𝑋′ = 0.5 𝑠𝑔𝑛(𝑋𝜔) +0.5𝑋𝜔 [28], the weight vector is adjusted as:  𝑊𝜔(𝑘 + 1) = 𝑊𝜔(𝑘) + 𝛼𝜔 𝑒𝜔(𝑘)𝑋′𝜆+‖𝑋′‖2      (33) 

Where Wω(k+1) and Wω(k) are the weight vectors at the next 

and present iteration, k+1 and k, respectively. 𝜆 is a correction 

factor, αω is the learning rate, and ‖𝑋′‖2 is the squared norm of 

the input vector 𝑋′. The learning coefficient αω which has a 

value in the interval [0.1,1] affect considerably the speed of 

convergence to the optimal weighting factors of the 

ADALINE network. The continuous adjustment of the 

ADALINE’s weights using the normalized LMS law of 

Equ.33, ensures the self-adaptation of the adopted speed 

controller to any change of working conditions unlike the PI 

regulator with fixed gains . 

C. Control of the SOFC stack  

As depicted in Fig.4.d, an ADALINE based power 

controller with two adaptive weights regulates the SOFC’s 
output power to follow the power reference provided by the 

central power supervisor. The inputs of the ADALINE 

controller are the power error (efc(k) =Pfc
 (k)-P*

fc(k)), and the 

change of error (defc(k)=efc(k)-efc(k-1)). Such that, Pfc
*(k) and 

Pfc(k) are  the power reference and the output power generated 

by the SOFC stack, respectively. Whereas, the output is the 

duty cycle Dfc(k) that controls the commutation time of the 

switching device of the boost converter. The control error 

Efc(k) used for the online learning process of the SOFC’s 
power controller is defined in function of  the sliding surface 

Sfc(k) as: 𝐸𝑓𝑐(𝑘) = 0−𝑆𝑓𝑐(𝑘) = −[𝜆1. 𝑒𝑓𝑐(𝑘) + 𝑑𝑒𝑓𝑐(𝑘)]    (34) 

Where 𝜆1 is a positive constant. According to the SMC 

principle [29], the control goal here is to maintain the 

trajectory of the state variable, which is the SOFC’s output 

power, on the sliding surface Sfc(k)=0 for the whole time. With 

reference to the LMS algorithm [13], the weight vector (Wfc) 

of the SOFC’s controller is updated at each iteration of  the 

online training process as follows:   𝑊𝑓𝑐(𝑘 + 1) = 𝑊𝑓𝑐(𝑘) + 2𝛼2 𝐸𝑓𝑐(𝑘)𝑋𝑓𝑐(𝑘)   (35) 

Where Xfc is the input vector and α2 is the learning rate of the 

SOFC’s controller. In this case, the connective weights are 

adapted in such way that the sliding surface Sfc(k) tend to zero, 

so that the power tracking error will be eliminated. 

 

 
Fig. 4. a) SNRBN based PV controller, b) control scheme of WEGS, 

c) Estimation of future value of torque [24], d) SOFC’s controller, 

and e) BESS’s controller. 
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D. Control of the BESS 

The control of the charge and discharge of BESS is 

performed through a bidirectional DC-DC converter. As 

shown in Fig.4.e, the BESS power reference P*
b, provided by 

the PMS, is divided by the BESS terminal voltage to generate 

the current set point I*
b. Then, an ADALINE based controller 

is used to regulate the BESS’s output current Ib to follow its 

setpoint I*
b. The inputs of the BESS’s ADALINE regulator are 

the actual BESS current error eb(k) and the past current error 

eb(k-1). Whereas, the output is the duty cycle Db(k) of the 

PWM control signal of the buck-boost converter. Such that, 

the present current error eb(k) is defined as the difference 

between the current reference I*
b(k) and the measured BESS 

current Ib(k). The control objective used for the adaptation of 

the gains is expressed in term of the sliding surface Sb(k) as: 𝐸𝑏(𝑘) = 0 − 𝑆𝑏(𝑘) = −[𝜆2. 𝑒𝑏(𝑘) + 𝑑𝑒𝑏(𝑘)]   (36) 

Where Eb(k) is the error term used for the weights update, 𝑑𝑒𝑏(𝑘) = 𝑒𝑏(𝑘) − 𝑒𝑏(𝑘 − 1) is the change of the BESS current 

error, and 𝜆2 is a positive constant. Where, the ADALINE’s 

weights vector Wb are online adjusted via a LMS-rule as 

follows: 𝑊𝑏(𝑘 + 1) = 𝑊𝑏(𝑘) + 2𝛼3 𝐸𝑏(𝑘)𝑋𝑏(𝑘)     (37) 

Where Xb and α3 are, respectively, the  input vector and the 

learning rate of the BESS’s controller. If the sliding function 

Sb(k) in the steady state, is close to zero, that means that the 

trajectory of the BESS’s current Ib is forced to stay on it.  

E. Control of the FEC 

A Virtual Flux based Direct Power Control  [30] scheme is 

applied for the control of the FEC. Assuming that the grid 

voltage vector 𝑢𝑔 and the inductance filter L are virtual AC 

motor quantities, the grid VF voltage Ψ𝑔is defined as:     Ψ𝑔 = ∫𝑢𝑔𝑑𝑡 = ∫𝑢𝑐 − 𝑅𝑖𝑐 − 𝐿 𝑑𝑖𝑐𝑑𝑡    𝑑𝑡      (38) 𝑢𝑐 is the inverter voltage vector and 𝑖𝑐is the FEC output 

current vector. The voltage drop across the filter resistance R 

is neglected. In the stationary αβ frame, the αβ components of 

the grid VF are calculated in term of the inverter switching 

states (Sa,Sb,Sc), the αβ current components (icα,icβ) and the 

measured DC-link voltage VDC:  {Ψ𝑔𝛼 = ∫ 𝑉𝐷𝐶3 (2𝑆𝑎 − 𝑆𝑏 − 𝑆𝑐)𝑑𝑡 − 𝐿 𝑖𝑐𝛼Ψ𝑔𝛽 = ∫ 𝑉𝐷𝐶√3 (𝑆𝑏 − 𝑆𝑐)𝑑𝑡 − 𝐿 𝑖𝑐𝛽      (39) 

Based on the grid VF components Ψgα,β, the instantaneous 

active and reactive power (P,Q) can be estimated as [30]: {𝑃 = 32𝜔 ∙ (Ψ𝑔𝛼𝑖𝑐𝛽 −Ψ𝑔𝛽𝑖𝑐𝛼)𝑄 = 32𝜔 ∙ (Ψ𝑔𝛼𝑖𝑐𝛼 +Ψ𝑔𝛽𝑖𝑐𝛽)       (40) 

In a conventional DPC scheme, PI controllers are used to 

control the DC-bus voltage as well as the active and reactive 

power flows. However, the irregular RESs power generation 

and the time-varying load demand require that the FEC works 

dynamically over a wide range of MG operation. For this 

purpose, NN based controllers are used in the adopted  VF-

DPC scheme instead of the linear PI controllers in order to 

improve the dynamic performance and to react adaptively to 

the varying conditions. As depicted in Fig.5, a FFNN is 

employed for the outer DC voltage control loop, while ENNs 

based controllers are applied for the power control loops. The 

Adaptive Interaction algorithm proposed by Brandt and Lin 

[31] is used for the online weights adaptation of the proposed 

FFNN and ENN controllers. 

 

 

 

 

 

 

 

 

Fig. 5. VF-DPC scheme of the FEC. 

 

 

 

 

 

 

 

 

Fig. 6. a) Architecture of the ENN based power controller, b) a 

exemple of the simulink block used for FFNN weights adaptation 

with AI rule. 

- The principle of the AI algorithm for NN training 

The adjustment of the NN weights with the adaptive 

interaction algorithm is equivalent but simpler than the well-

known BP approach. Moreover, it does not need to back 

propagate the output error through the network [31]. The most 

prominent features of the AI approach are the adaptation 

during the interaction of neurons and the low computational 

requirements in comparison to the BP algorithm. In this 

subsection, the NN weights adaptation law based on the AI 

algorithm is given.  The output of each node in the l-th layer of 

a NN is calculated as:  𝑥𝑛(𝑙) = 𝑓𝑛(𝑙) (𝑛𝑒𝑡𝑛(𝑙)) = 𝑓𝑛(𝑙) (∑ 𝑤𝑖𝑥𝑖(𝑙−1)𝑁𝑖=1 )    (41) 

Where xn
(l)

 and fn(l) are the output and the activation function of 

the n-th node in the l-th layer respectively, xi
(l-1) is i-th input of 

n-th node, wi is the connection weight from i-th input to the n-

th node, and N is the number of inputs to the l-th layer. The 

training process aims to minimize the cost function E 

expressed as [13]:   𝐸 = 12∑ 𝑒𝑛2𝑚𝑛=1           (42) 
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Where      𝑒𝑛 = {𝑥𝑛(𝑙) − 𝑑𝑛      𝑓𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (43) 

m is the number of the output neurons. dn is the desired 

output of the n-th output neuron. The weights of the NN can be 

dynamically updated according to the AI law [13,31] as 

follows:  ∆𝑤𝑖 = 𝑓𝑛(𝑙)′(𝑛𝑒𝑡𝑛(𝑙)) 𝑥𝑖(𝑙−1)𝑥𝑛(𝑙) ∑ 𝑤𝑜𝑗∆𝑃𝑗=1 𝑤𝑜𝑗 − 𝛾𝑓𝑛(𝑙)′(𝑛𝑒𝑡𝑛(𝑙))𝑥𝑖(𝑙−1)𝑒𝑛 (44) 

Where γ>0 is the adaptation coefficient and P is the number 

neurons in the next layer. woj is the weight connecting o-th with 

j-th neuron. The Tangent-Sigmoid Activation Function (TS-

AF) of neurons is defined as:  𝑥𝑛(𝑙) = 𝑓𝑛(𝑙) (𝑛𝑒𝑡𝑛(𝑙)) = 21+𝑒−𝑛𝑒𝑡𝑛(𝑙) − 1 = 1−𝑒−𝑛𝑒𝑡𝑛(𝑙)1+𝑒−𝑛𝑒𝑡𝑛(𝑙)   (45) 

The  time derivative of TS-AF is so calculated as: 

 𝑓𝑛(𝑙)′ (𝑛𝑒𝑡𝑛(𝑙)) = 12 (1 − (𝑥𝑛(𝑙))2)       (46) 

- ENN based power controllers 

The proposed ENN based power controller shown in Fig.6.a 

consist of four layers [32]: the IL, the HL, the CL, and the OL. 

The neurons in the CL known as memory units store the 

previous outputs of  the hidden neurons that offer better 

learning efficiency. The inputs of ENN based active power 

controller are the tracking error eP(k)=P*(k)-P(k) and its 

derivative deP(k)=eP(k)-eP(k-1) whereas, its output is the q-axis 

component of the control voltage vector (Vcq). Further, the 

inputs of the reactive power ENN controller are the error 

eQ(k)=Q*(k)-Q(k)  and the change of error deQ(k)= eQ(k)-eQ(k-

1), while the output is the d-axis component of the inverter 

voltage vector (Vcd). The TS-AF is used for the neurons of the 

HL and OL of the ENNs.The basic function of each layer is 

described as follows:  

1) The output of each node in the IL is defined as: 𝑥𝑖(1)(𝑘) = 𝑓𝑖(1) (𝑛𝑒𝑡𝑖(1)) = 𝑛𝑒𝑡𝑖(1),     𝑖 = 1,2    (47) 

k is the k-th iteration and 𝑛𝑒𝑡𝑖(1)is the input of the i-th node.  

2) The output of the Hidden layer’s neurons is:  𝑥𝑗(2)(𝑘) = 𝑓𝑗(2)(𝑛𝑒𝑡𝑗(2)) = 𝑓𝑗(2)(∑ 𝑤𝑟𝑗𝑥𝑟(3)𝑟 (𝑘) + ∑ 𝑤𝑖𝑗𝑖 𝑥𝑖(1)(𝑘))   (48) 

Where 𝑥𝑗(2)is the output of the j-th node in HL, wij are the 

connective weights from the input nodes to hidden nodes,  𝑥𝑟(3)(𝑘) is the output of the CL, wrj  are the connective weight 

from the hidden neurons to the context neurons, and 𝑓𝑗(2)is the 

TS-AF in the HL.  

3) The feedback from the HL to the CL input is described as: 𝑥𝑟(3)(𝑘) = 𝑥𝑗(2)(𝑘 − 1)        (49) 

4) The output signal from the Output Layer is calculated as: 𝑥𝑜(4)(𝑘) = 𝑓𝑜(4)(𝑛𝑒𝑡𝑜(4)) = 𝑓𝑜(4)(∑ 𝑤𝑗𝑜𝑗 𝑛𝑒𝑡𝑗(2)(𝑘))     (50) 

Where 𝑥𝑜(4) is the network output, 𝑓𝑜(4)is the TS-AF, and 𝑤𝑗𝑜  are the weights connection between the HL and the OL. 

The ENN weights are online adjusted based on the AI law (of 

Eq.44), by tacking into account the Eq.46, as follows : 

{  
  ∆𝑤𝑖𝑗(𝑘) = 12 [1 − (𝑥𝑗(2))2] 𝑥𝑖(1)𝑥𝑗(2)𝑤𝑜𝑗∆𝑤𝑜𝑗    𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐼𝐿 𝑎𝑛𝑑 𝐻𝐿 ∆𝑤𝑟𝑗(𝑘) = 12 [1 − (𝑥𝑗(2))2] 𝑥𝑟(3)𝑥𝑗(2)𝑤𝑜𝑗∆𝑤𝑜𝑗   𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶𝐿 𝑎𝑛𝑑 𝐻𝐿∆𝑤𝑜𝑗(𝑘) = − 𝛾2 [1 − (𝑥𝑜(3))2] 𝑥𝑗(2)𝑒𝑛         𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐻𝐿 𝑎𝑛𝑑 𝑂𝐿

(51) 

The invariance condition SP,Q(k).dSP,Q(k)=0 that should be 

satisfied in the sliding mode is considered for the training 

algorithm of the ENN based power controller as suggested in 

[33].Thus, the term SP,Q(k).dSP,Q(k) is used instead of the output 

error en in the adaptation law of ENN of Equ.51, where: 

     { 𝑆𝑃,𝑄(𝑘) = 𝜆3. 𝑒𝑃,𝑄(𝑘) + 𝑑𝑒𝑃,𝑄(𝑘)𝑑𝑆𝑃,𝑄(𝑘) = 𝑆𝑃,𝑄(𝑘) − 𝑆𝑃,𝑄(𝑘 − 1)    (52) 

Where SP,Q and dSP,Q are the sliding surface and its 

derivative for, respectively, the active and reactive powers (P 

and Q). 𝜆3 is a positive constant. The control goal of the 

proposed ENNs is to drive the state variables P and Q to the 

sliding surfaces SP and SQ respectively, in finite time. 

-  FFNN based DC voltage controller 

The three-layer FFNN [31] described by Eq.53 controls the 

DC-bus voltage. The tracking error of the DC voltage eV(k) = 

VDC
*(k)-VDC(k) and the previous error eV(k-1) represent the 

inputs of the adopted FFNN.  

  {  
  𝑥𝑖(1)(𝑘) = 𝑓𝑖(1)(𝑛𝑒𝑡𝑖(1)) = 𝑛𝑒𝑡𝑖(1)𝑥𝑗(2)(𝑘) = 𝑓𝑗(2)(𝑛𝑒𝑡𝑗(2)) = 𝑓𝑗(2)(∑ 𝑤𝑖𝑗𝑖 𝑥𝑖(1)(𝑘))𝑥𝑜(3)(𝑘) = 𝑓𝑜(3)(𝑛𝑒𝑡𝑜(3)) = 𝑓𝑜(3)(∑ 𝑤𝑜𝑗𝑗 𝑥𝑗(2)(𝑘))  (53) 

Where 𝑛𝑒𝑡𝑖(1) is the i-th input of FFNN, 𝑥𝑖(1)(𝑘) is the i-th 

output of the IL, 𝑥𝑗(2)(𝑘) is the output of the HL, 𝑛𝑒𝑡𝑜(3) is the 

input of the output neuron, 𝑥𝑜(3)(𝑘) is the output of FFNN, wij 

means the weight between the i-th node of the IL and j-th node 

of the HL, woj is the weight connecting the j-th node of the HL 

to the OL, and 𝑓𝑗(2), 𝑓𝑜(3)are the TS-AFs for the HL and the OL 

respectively. The control output signal of the FFNN is 

multiplied by the measured DC-bus voltage to determine the 

active power reference P*(k). As depicted in Fig.6.b, the FFNN 

weights are online adapted according to the AI rule using the 

following: 

{  
  ∆𝑤𝑖𝑗(𝑘) = 12 [1−(𝑥𝑗(2))

2]𝑥𝑗(2) 𝑥𝑖(1)𝑤𝑜𝑗∆𝑤𝑜𝑗   𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐼𝐿 𝑎𝑛𝑑 𝐻𝐿 ∆𝑤𝑜𝑗(𝑘) = − 𝛾2 [1 − (𝑥𝑜(3))2] 𝑥𝑗(2)𝑒𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐻𝐿 𝑎𝑛𝑑 𝑂𝐿(54) 

The error en between the desired and estimated output, in 

Eq.54, is replaced by the term SV(k)+dSV(k)  such that: 

        { 𝑆𝑉(𝑘) = 𝜆4. 𝑒𝑉(𝑘) + 𝑑𝑒𝑉(𝑘)𝑑𝑆𝑉(𝑘) = 𝑆𝑉(𝑘) − 𝑆𝑉(𝑘 − 1)       (55) 𝜆4 is a positive constant. SV and dSV are, respectively, the 

sliding surface and its derivative for the DC-link voltage 

control. 

F. Fuzzy Logic based Power Management System  

A centralized PMS is used in order to minimize the power 

flow from the electric grid. For several conditions of power 

generation and demand, it imposes the power references for 

the power converters interfacing the SOFC and BESS . The 
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SOC of BESS should be maintained in secure range [SOCmin - 

SOCmax]. The power supervision process begins from the 

calculation of the net power value Pnet as: 𝑃𝑛𝑒𝑡 = 𝑃𝑅𝐸𝑆 − 𝑃𝐿 = (𝑃𝑃𝑉 + 𝑃𝑊𝑇) − (𝑃𝐿𝑎𝑐 + 𝑃𝐿𝑑𝑐)   (56) 

Where PRES is the power produced by the RESs, PL is the 

total load demand, PPV  is the power produced by the PV 

source, PWT is the power provided by the WT, PLdc and PLac are 

the DC and AC loads demand. The FEC injects power to the 

electric grid only when the renewable power generation 

exceeds the loads demand and the BESS is fully charged 

(SOC>SOCmax). If the load demand is greater than the 

available RESs power, the SOFC and the BESS contribute to 

cover the energy shortage. In the case where SOC < SOCmin, 

the SOFC feeds the loads and guarantees the charge of the 

BESS. Vice versa, if SOC > SOCmin and the power demand 

exceeds the SOFC rated power, the BESS starts to discharge 

in order to feed the loads. Otherwise, the needed power comes 

from the electric grid, if the demand surpasses the rated power 

of the MG. A Mamdani inference system [34] based fuzzy 

logic controller calculates the power references (Pfc
*, Pb

*) for 

the local controllers of FC and BESS. The PMS has two inputs 

and two outputs: the inputs are Pnet and SOC, while the  

outputs are the set points for the BESS and the SOFC 

controllers. The fuzzy rule table of the PMS, proposed to 

decide the power setpoints Pfc
* and Pb

*, are given in Table. I.  

 
TABLE I.  FUZZY RULES FOR PB

*
 AND PFC

*
 DURING BOTH PERIODS OF 

POWER LACK AND EXCESS. 

Linguistic terms assigned to the fuzzy sets mean: Negative Medium (NM), 

Negative Small (NS), ZEro (ZE), Positive Small (PS), Positive Medium (PM), 

Positive Big (PB), and Positive very Big (PB+). H, L, M mean High, Low, 

and Medium membership functions, respectively. 

IV. SIMULATION RESULTS 

In order to demonstrate the effectiveness of the proposed 

control structure, the operation of the MG has been tested in 

the Matlab/Simulink environment for different climatic 

conditions and loads demand. The main simulation parameters 

are listed in Table. II. The DC loads, which are interfaced with 

the DC-microgrid through power electronic converters, behave 

as Constant Power Loads (CPLs) [35].  

 

A. Test under variable irradiance and wind speed  

First of all, the investigated MG is tested for variable 

irradiation level and changing wind speed in order to check 

the tracking capability of the proposed MPPT controllers. The 

DC and AC loads demand are fixed to 5kW and 20kW, 

respectively. The rapid and gradual change in the irradiation 

level is depicted in Fig.7.a. The variation of the current and 

voltage at the output of PV source are shown in Fig.7.b and 

Fig.7.c. The PV reference voltage provided at the output of the 

SN-RBFN is depicted in Fig.7.d. Further, for the comparaison 

purpose, the Fig.7.e illustrates the PV output power obtained 

using both the adopted SN-RBFN controller and the standard 

IncCond algorithm. It is clear that the adopted neural tracker 

for PV source performs very well for changing solar 

irradiation. The correct MPP is rapidly reached for each 

irradiation level thanks to the online learning process of the 

SN-RBFN. The convergence time of the SN-RBFN for the 

insolation level of 1kW/m2 is about 38ms, which is less than 

the time achieved with the IncCond algorithm (about 92ms). 

Moreover, as can be seen from Fig.7.e, the power oscillations 

around the MPP in the steady state are considerably reduced 

with the SN-RBFN in comparison with the IncCond method. 

The static power error of the SN-RBFN is (about 0.305W) 

lower than the static error of the IncCond method (0.887W). 

When a change in the solar irradiance happens, the proposed 

PV controller converges rapidly and re-tracks accuratly the 

new MPP as presented in Fig 7.b and 7.c. At the beginning of 

each step change in irradiance, the online learning process of 

the SN-RBFN restarts to recalculate the new optimal 

parameters (𝑎𝑖 , 𝑐𝑗1, 𝑏) that justify the presence of a small 

transient ripples in the voltage reference as shown in Fig7.d.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. a) Solar irradiance, b) PV current, c) PV voltage, d) SN-RBFN output 

voltage reference e) PV output power (T=25°C). 

     Pnet 

SOC    
NM NS PS PM PB PB+ 

H ZE/- ZE/- PB/- PS/PM PB/PB PB/PB 

M NB/- NS/- ZE/PS ZE/PB PS/PB PB/PB 

L NB/- NS/- NB/PM NS/PB NS/PB NS/PB 

TABLE II.  SIMULATION PARAMETERS  

Symbol Description  Value  

PMSG parameters 

Rs Stator resistance 0.00829 

Lsd , Lsq d and q stator inductance 0.174mH 

 Permanent magnet flux 0.071wb 

p Number of pole pairs 6 pair 

J System Inertia 0.089kg.m2 

BPMSX120 PV module parameters 

VOC Open circuit voltage 42.1V 

ISC Short circuit current 3.87A 

VMPP MPP voltage 33.7V 

IMPP MPP current 3.56A 

K Boltzmann constant 1.38×10-23J/K 

q Electron charge  1.6×10-19C 

Battery bank parameters 

Q Rated capacity 20 Ah 

E0 Nominal voltage 240 V 

Rin Internal Resistance 0.12 Ω 
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In the same test case, the wind speed changes from 12m/s to 

10m/s at the instant 0.25s then increases to 14m/s at 0.5s. The 

obtained results with the applied DPCM are presented in Fig 

8. As shown in Fig.8.a, the ADALINE based speed controller 

outperforms the classical PI controller and offers a shorter 

response time (about 38ms) , an minimal overshoot and 

closely zero steady-state error during each step change in wind 

speed. By applying the adequate stator voltage vector, the 

correct control of the generator torque and d-axis current 

component (Isd) is assured for different wind conditions as 

depicted in Fig.8.b. A fast transient response of the 

electromagnetic torque is obtained with good steady state 

characteristic. Further, due to the fixed switching frequency, 

the torque and flux ripples are considerably reduced as shown 

in Fig.8.b,c. The FFNN ensures the stabilization of the DC-bus 

voltage at the desired setpoint as depicted in Fig.8.d regardless 

of the climatic conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 8. a) Rotational speed, b) Electromagnetic torque d-axis stator current, c) 

Stator flux amplitude d) DC-link voltage (SOC=100%). 

 

B. Test for variable loads demand 

A second test was performed in order to validate the proposed 

control system under varying loads demand. In this case, the 

power demand of the DC equivalent load (PLdc) changes from 

5kW to 8kW at 0.25s then increases to 10kW at 0.5s. Further, 

the unbalanced ohmic-inductive AC load demand (PLac,QLac) 

varies from (39kW, 0VAR) to (53kW, 0VAR) at t=0.25s, then 

changes at t = 0.5s to (1kW, 15kVAR) and finally varies to 

(24 kW, 7kVAR) at the instant t = 0.75s as depicted in Fig.9.a 

and 9.d. As expected the proposed control scheme performs 

well and reacts dynamically to the change of load conditions 

without the need to a priori knowledge about the controlled 

system. The weights of the proposed neuro-controllers are 

continually adapted during the operation of the system. The 

decoupled control of the active and reactive powers is 

achieved based on the recurrent ENNs controllers as shown in 

Fig9.b and Fig9.d. With reference to the behavior of the 

proposed fuzzy based PMS, Fig.9.c shows that, the power set-

points for the local controllers of both SOFC and BESS are 

tightly determined according to the availability of the power 

generated by the RESs. While the RESs with the SOFC stack 

cannot meet the loads request in the period [0,0.25s], the 

BESS is activated to feed the energy lack as presented in 

Fig9.b and Fig9.c. On the contrary, when the power of the MG 

is not enough in the time interval [0.25s-0.5s], the power 

deficit is covered by the electric grid, while both FC and 

BESS are switched on to generate their rated powers as 

depicted in Fig9.b and Fig9.c. When the total load demand PL 

does not exceed the available RESs power in the period [0.5s-

0.75s], the BESS operates in the charge mode and the inverter 

injects the energy excess into the electric grid. In the period 

[0.75s-1s], the SOFC stack responds to the load demand 

where, the BESS is set in the idle mode as shown in Fig9.c. 

The ADALINE based controllers developed for the SOFC and 

BESS ensure an accurate following of the references delivered 

from the PMS as shown in Fig.9.c.The Fig.9.d shows the 

capability of the inverter to compensate the reactive power of 

the AC load. To verifiy the performance of the proposed fuzzy 

PMS, a comparaison with the conventional one based on states 

is completed. The classical PMS is established based on 

deterministic supervision rules with the same strategy of 

power managing of the proposed PMS. The Fig.10 shows the 

power references for both FC and BESS using the PMS based 

on states and the supervisory based on FL.  

A second case study was performed and depicted in Fig.11, 

where the DC load demand (PLdc = 20kW) is greater than the 

AC side demand (PLac = 5kW and QLac = 0VAR) and the 

available RESs power is insufficient (G = 0.1kW/m2,VW = 

8m/s, where initial SOC=30%). In this case, the FEC operates 

as rectifier and provides the power deficit form the electric 

grid to the DC load as shown in Fig11.b. The DC link voltage 

is perfectly maintained in tolerable range as depicted in 

Fig11.a. It can be noticed that the MPP of PV source is 

reached  using the SN-RBFN after 0.31ms as shown in 

Fig11.b. The obtained results show the ability of the neural 

based VF-DPC scheme to control the FEC with a bidirectional 

flow of active power. 

C. Test for Perturbed grid conditions  

This test was performed in order to prove the robustness of 

the proposed control system against faults in the electric grid. 

A three-phase voltage sag (70% of voltage RMS) occurs 

during the period [0.3s, 0.45s] when the climatic conditions 

are stable. The initial SOC value is set 30%. As shown in 

Fig12.a, the power needed to feed the loads is provided by the 

RESs . During the voltage dip period, the active  power 

surplus is injected into the grid. In this case, the central PMS 

commands are to turn off the SOFC stack and to charge the 

BESS. Thus, the renewable generation surplus is used to 

charge the BESS whereas, the FC power is constantly zero as 

depicted in Fig.12.b. As can be seen from Fig 12.c, the DC-

link voltage is maintained stable at the desired reference with 

reduced transient fluctuations. Further, the phase current 

waveforms shown in Fig.12.d are sinusoidal and balanced 

irrespective of grid fault. The negative sequences of the 

inverter output current in the αβ coordinates, shown in 

Fig.12.e, demonstrate the symmetry of the FEC output current. 
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Fig. 9. a) AC and DC loads, b) inverter, and grid Powers c) SOFC and BESS 

powers d) Inverter, grid and AC load reactive Powers                         (VW = 

14m/s, T = 25°C, G = 1kW/m2, initial SOC = 70%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Comparaison of the PMS based FL and PMS based states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. a) DC bus voltage, b) Total load, microgrid, and grid powers. 

D. Test for variable temperature and noisy wind speed  

This test aims to verify the stability of the proposed control 

method under changing temperature and noisy wind speed. At 

constant irradiance (G=1kW/m2 and initial SOC=90%)), the 

temperature varies at the instant 0.25s from 27°C to 25°C and 

then decreases at 0.5s to 23°C. The Fig 13.b illustrates the 

wind speed profile. According to [36], the wind speed is 

calculated using the following model:   𝑉𝑊 = 𝐴0 + 0.6 sin(𝜔𝑡) + 0.6 sin(3.5𝜔𝑡) + 0.3 sin(12.35𝜔𝑡) +0.06 sin (35𝜔𝑡)    (57) 

In our case, the average speed A0 =11.5m/s, ω=2π/tW  and 

tW=2.5s. Furthermore, the DC power demand is decreased 

from PLdc=9kW to PLdc=4kW at the instant 0.5s. The active and 

reactive power demand of the ohmic-capacitive AC load are 

varied, respectively, from (PLac=26kW, QLac=-15kVAR) to 

(PLac=44kW, QLac=-38kVAR) at t=0.35s then change to the 

initial values at the instant 0.705s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

 

 
Fig. 12. a) AC load, inverter, and grid powers b) SOFC and BESS powers c) 

DC-link voltage d) Inverter output current under voltage sag e) Negative 

sequences of the inverter current in the αβ coordinates. 

With reference to the Fig.13.a, the proposed SN-RBFN 

exhibits  satisfactory tracking performance and offer a less 

static PV voltage oscillations than the IncCond algorithm. The 
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response time of the SN-RBFN is less (about 35ms) than that 

of the IncCond controller (70ms). As can be seen from 

Fig.13.c, the ADALINE based speed controller ensures good 

control performances for a noisy wind speed 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.13. a) PV voltage for varied temperature , b) Wind speed profile, c) 

rotational speed ,d) speed tracking error, e) generator torque, f) inverter active 

and reactive powers. 

The Fig.13.d shows that the tracking error is considerably 

reduced in comparaison with the classical PI controller. 

Moreover, the electromagnetic torque follows perfectly the 

varied set-point with closely zero static error as depicted in 

Fig.13.e. Furthermore, the proposed VF-DPC scheme 

guarantees the response to the AC loads demand of active and 

reactive power as shown in Fig.13.f with better control 

performances than the classical VF-DPC based PI regulators: 

With the ENN based active power control, a shorter settling 

time and more smooth static response is obtained. Whereas, a 

more precise tracking of the reactive power setpoint is 

achieved with the adopted ENN. 

 

V. CONCLUSION 

This work is on the design and validation of an online 

trained neural network based control system for a grid-

connected hybrid AC/DC microgrid.  

A number of artificial intelligence based controllers have 

been developed to follow the maximum power point of the 

renewable energy sources available in the microgrid, to 

control the power flow between the front-end converter and 

the electric grid, and to minimize the purchased energy 

optimizing the utilization of the battery energy storage system.  

The performance of the proposed control system has been 

tested for different situations: variable climate conditions, 

variable loads demand, and perturbed grid conditions. 

The obtained results show the possibility to control complex 

non-linear systems without the availability of precise models. 

Moreover, the proposed techniques are flexible, adaptable, 

require low computational costs, and are easy to implement in 

real-time applications. 

The simulation runned for a number of different conditions 

of power generation and demand demonstrate the 

effectiveness, robustness and self-adaptation ability of the 

proposed control system.  

As perspective of this paper, the developed artificial 

intelligence based controllers will be implemented on a Field 

Programmable Gate Array (FPGA) platform and tested under 

real conditions. 
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