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Adaptive Neural Network Based Variable Stiffness

Control of Uncertain Robotic Systems Using

Disturbance Observer
Longbin Zhang, Zhijun Li, Senior Member, IEEE, and Chenguang Yang, Senior Member, IEEE

Abstract—The variable stiffness actuator (VSA) has been e-
quipped on many new generation of robots because of its superior
performance in terms of safety, robustness and flexibility. How-
ever, the control of robots with joints driven by variable stiffness
actuators is challenging due to the inherited highly nonlinear
dynamics. In this paper, a novel disturbance observer based
adaptive neural network control is developed for robotic systems
with variable stiffness joints and subject to model uncertainties.
By utilizing a high dimensional integral-type Lyapunov function,
adaptive neural network control is designed to approximate the
model uncertainties, and a disturbance observer is integrated
to compensate for the nonlinear VSA dynamics, as well as the
neural network approximation errors and external disturbance.
The semiglobally uniformly ultimately boundness of the closed-
loop control system has been theoretically established. Simulation
and extensive experimental studies have also been performed to
verify the effectiveness of the proposed approach.

Index Terms—Variable stiffness actuator; Adaptive neural
network; High dimensional integral Lyapunov; Disturbance Ob-
server

I. INTRODUCTION

D
ESPITE advances of automation technologies in the

recent decades, most robots nowadays still underperform

in comparison to our humans in tasks that require dexterity,

safety and efficiency. In the scenarios when robots need to

physically interact with environment or people, instability may

occur during the interaction if the actuators are too stiff. This

would further lead to possible damage of robot or even injuries

of staff. While our humans could perform these interactive

tasks well, even in an unstructured or unknown environment,

by properly adjusting muscle stiffness of our joints to a level

appropriate for the task and the environment. Consider that

human-like performance would enable robots to perform better

for interactive tasks such as medical operation [1], search

[2], rescue [3], and social events. It is therefore desired
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to employ human muscle like variable stiffness actuator to

concurrently guarantee both safety and performance. It brings

in a mechanical compliance that can be adjusted via control

action in the joint actuation. There are a number of significant

work devoted to the development of variable stiffness actuated

mechanical systems [4]-[8]. In [6], a concept design of an

energy-efficient variable stiffness actuator was presented and

implemented. In [7], a hybrid variable stiffness actuator was

proposed, and by controlling the relative motion of gears in

the hybrid control module, position and stiffness of a joint

can be simultaneously controlled. A thorough discussion on

the details influencing the stiffness properties was provided in

[8] for a variable stiffness mechanism.

As aforementioned, variable joint elasticity is deliberately

introduced in the variable stiffness actuator, such that we are

provided the means to adjust the flexibility of a robot to be

adapted to a certain task at mechanical level. However, there

are great challenges associated with the control of variable

stiffness robot joints due to nonlinearities, e.g., the input

nonlinearity, which could lead to the increasing of undesirable

inaccuracy or oscillations, so that robot system performance

could be severely limited, and even become unstable.

To effectively reduce or eliminate the side effect of variable

stiffness on system performance, several methods have been

proposed in the recent decades [9]–[17]. In [9], a sensor-

less force control approach for the robot-assisted motion of

the human arm was presented. A twin direct-drive motor

system with a wire rope had been developed to provide a

precise force sensation and safety for human-robot interaction,

by considering the stiffness in human arm movements, this

method increases the efficiency of the force control system

and realizes comfortable force for human-robot interaction. In

[11], an approach to a variable stiffness actuator with tunable

resonant frequencies was presented, a cellular artificial muscle

actuator based on piezoelectric stack actuators achieves both

variable stiffness and variable resonance functions. In [12], a

new design of actuator with adjustable stiffness was presented.

The proposed actuator design regulates the joint stiffness in a

large range with minimum energy consumption by means of a

small motor. In [13], a variable stiffness joint (VSJ) for a robot

manipulator was designed, and a singular perturbation model

was employed in the nonlinear control design to establish

closed-loop system stability.

The control design in this work takes into account both

robot dynamics and actuator dynamics. As demonstrated in

[18], the actuator dynamics in fact constitute an important part



of the complete robotic dynamics. Typically, the non-smooth

nonlinear characteristics such as variable stiffness, dead zone,

backlash, and hysteresis are the most common nonlinearities

exist in actuators. It is infeasible to obtain precise knowledge

of robot dynamics, and it is also difficult to model the variable

stiffness actuators. Therefore, in this work we employ neural

networks (NNs) technique to compensate for the unknown

nonlinearities and unknown dynamics involved in the robotics

systems, since they are capable of dealing with unknown

dynamics systems and unstructured uncertainties [19], [20],

[21], [22] and [23]. It is well known that NNs are particularly

useful to guarantee stability, robustness, and overall perfor-

mance when controlling uncertain robotic systems.

It is noted that there are few work carried out for uncertain

robotic systems with variable stiffness, while most control

designs for robot equipped with variable stiffness joints are

based on known robot models [10]–[16], and these methods

cannot be applied on uncertain robotic systems directly. In

this paper, we aims to develop new control techniques for

uncertain robot with VSA driven joints. First, we propose

a high dimensional integral Lyapunov function to construct

a Lyapunov-based adaptive control structure, and then use

adaptive neural network to approximate the unknown nonlinear

functions in order to achieve desired tracking performance. A

disturbance observer is also employed to deal with VSA non-

linearity, the neural network approximation errors, and external

disturbance. The proposed high dimensional integral Lyapunov

function enables control design without controller singularity

problem. In comparison to the previous work [10], [14] and

[15], we avoid to use projection method or the traditional

backstepping method [16] which generally involve repeatedly

computation of the time derivatives of virtual control laws.

Our developed new control guarantees semiglobally uniformly

ultimately boundness stability, such that all the signals in the

closed-loop control system are bounded and the tracking errors

converge to the origin. Both simulation and experiment results

demonstrate the effectiveness of the proposed control.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider variable stiffness joints in which an elastic element

is mounted in between the motor and the link, the dynamic

model of robot manipulator as below [16]

M(q)q̈ + C(q, q̇)q̇ +G(q) + fdis = u (1)

Aθ̈ + u = τ (2)

where q ∈ Rm is the vector of joint angles, M(q) ∈ Rm×m is

the inertial matrix, C(q, q̇) ∈ Rm×m is centripetal and Coriolis

torque, G(q) ∈ Rm is gravitational force, fdis ∈ Rm is the

external disturbance, and u is the input nonlinearity caused

by the elastic joints, and θ, τ ∈ Rm, and A ∈ Rm×m are

the motor coordinate, the motor torque, and the motor inertia,

repectively. In this work, it is assumed that M(q), C(q, q̇),
G(q) and fdis are all unknown.

The above robot manipulator dynamics can be formulated

into the following form






ẋ1 = x2,
ẋ2 = B−1(x) [F(x) + d(t) + u]
y = x1

(3)

where x1 = [q1, q2, . . . , qm]T , x2 = [q̇1, q̇2, . . . , q̇m]T ,

B(x) = M(q), F(x) = −C(q, q̇)q̇ − G(q), d(t) = −fdis
and u = [u1, . . . ,um]T ∈ Rm denotes the input nonlinearity

caused by the elastic joints.

The elastic joint characteristics with a nonlinear and variable

stiffness torque function can be described by [25]

u = f(φ, σ) (4)

where u is the joint torque, φ is the joint deflection, σ is

the stiffness variation parameter, and φ = θ − q is the joint

deflection. In general, the torque deflection curve can be an

arbitrary shape, and the characteristic that a linearly variable

stiffness profile u = k(σ)φ is most commonly applied, where

k(σ) is the stiffness. The coordinate σ represents an additional

input, which is used for stiffness variation. The stiffness

characteristics can be described as k = 2ksr
2(2 cos2 φ−1) =

2ks(
ϱ
2πσ)

2(2 cos2 φ − 1) [26], where ks is the spring rate, r
is the lever arm and ϱ is the pitch of the ball screw drive.

In this work, no dynamics is assumed and σ is treated as

quasi-static, and the considered variable stiffness is expressed

as the following continuous-time dynamic model [16]:

du

dt
= kθ̇ − kq̇ (5)

where k is the stiffness.

Notations: Given vector a ∈ Rn and matrix B ∈ Rm×m,

∥a∥2 = aTa and ∥B∥2 = tr(BTB).
In this work, wour objective is to design a controller to

ensure the output of the system track the desired curves yd ∈
Rm with satisfactory accuracy under input nonlinearity and

model uncertainty. And meanwhile all the signals in the control

system are bounded.

Let Bd(x) ∈ Rm×m be a diagonal matrix with diagonal

elements bdii(x̄,xi) ̸= 0 ∈ Rm(x̄ = x1, i = 1, 2, . . . ,m),
then B(x) can be divided into two parts:

B(x) = Bd(x) + ∆B, (6)

where matrix ∆B is unknown. Therefore, we obtain

B(x)ẋ2 = F(x) + d(t) + u. (7)

Substituting (6) into (8), we have

(Bd(x) + ∆B)ẋ2 = F(x) + d(t) + u. (8)

Considering (2), we can obtain

(Bd(x) + ∆B)ẋ2 = F(x) + d(t) + τ −Aθ̈ (9)

then, we have

Bd(x)ẋ2 = (I −∆BB
−1(x))F(x)−∆BB

−1(x)τ

+(I −∆BB
−1(x))d(t) + τ

−(I −∆BB
−1(x))Aθ̈

= F(x) + τ + g(τ) + r(d) + η(θ), (10)

where F(x) = (I − ∆BB
−1(x))F(x) ∈ Rm,r(d) = (I −

∆BB
−1(x))d(t) ∈ Rm and g(τ) = −∆BB

−1(x)τ ∈ Rm

and η(θ) = −(I −∆BB
−1(x))Aθ̈ ∈ Rm are column vectors.

Remark 2.1: In various robotic and mechanical systems,

input saturation and actuator saturation always exist [27], [28].



Therefore, from the actual implementation, the motor torque

of robotic systems assume to be with bounded saturation

constraints, then, g(τ) = −∆BB
−1(x)τ is bounded.

Lemma 2.1: Given a differentiable continuous function

Ψ(t), ∀t ∈ [t0, t1] satisfying δ1 ≤ ∥Ψ(t)∥ ≤ δ2 with

the positive constants δ1 and δ2. Its derivative Ψ̇(t) is also

bounded.

Proof: According to the Mean Value Theorem, it is

obtained that Ψ(t) − Ψ(0) = Ψ̇(ξ)t with ξ ∈ (t0, t1). Due

to δ1 ≤ ∥Ψ(t)∥ ≤ δ2, δ1 − δ2 ≤ Ψ(t) − Ψ(0) ≤ δ2 − δ1 is

bounded, it is obviously that the derivative Ψ̇(t) is bounded.

Assumption 2.1: For ∀t ∈ R+, the unknown external dis-

turbance d(t) : R+ → Rm of the system is bounded. That

is to say there exists an unknown positive constant that the

inequality ∥d(t)∥ ≤ dM is satisfied.

Assumption 2.2: For the uncertain robotic system (10),

there exist unknown positive constant α1 such that |η̇(θ)| ≤
α1.

We define the following filtered tracking error si describing

the desired dynamics of the error system as

si = ėi + λiei (11)

ei = yi − ydi, i = 1, . . . ,m, (12)

where λ1, λ2, . . . , λm are positive design parameters. We will

obtain a set of linear differential equations whose solutions

ei(i = 1, 2, . . . ,m) converges to zero when si = 0 in (11).

Furthermore, ėi → 0 as t → ∞. From (11), we have

ṡ = B−1
d (x)[F(x(t)) + τ + g(τ)

+r(d) + η(θ)] + ν, (13)

where s = [s1, . . . , sm]T and ν = [ν1, . . . , νm]T with

νi = −y
(2)
di + λiėi, i = 1, . . . ,m. (14)

III. CONTROL SYSTEM DESIGN AND STABILITY ANALYSIS

A. Integral Lyapunov Analysis

The control design objective is to synthesize a controller

which is able to track the desired trajectories with guaranteed

stability and be attenuate the effect caused by nonlinearity of

the variable stiffness actuation.

The following integral Lyapunov function candidate is con-

sidered in order to facilitate the control design:

V1 = sTBϑs, (15)

where

Bϑ =

∫ 1

0

ϑBαdϑ = diag

[
∫ 1

0

ϑBαii(x̄, ϑsi + vi)dϑ

]

, (16)

with Bα = Bd(x̄, ϑsi + vi)α = diag[bdii(x̄, ϑsi +
vi)αii]m×m, i = 1, 2, . . . ,m, x̄ = x1, and matrix α ∈ Rm×m.

For easy analysis, we choose α11 = . . . = αmm. v = ẏd − ξ
where ξ = [ξ1, ξ2, . . . , ξm]T ∈ Rm with ξi = λiei, i =
1, 2, . . . ,m. Constants λi are design coefficients to be selected

appropriately such that e → 0 as v → 0, and ϑ is a scalar

and independent of s and v. we choose suitable Bd(x) and

α, such that bdiiαii > 0.

According (16), (15) can be rewritten as

V1 =
m
∑

i=1

s2i

∫ 1

0

ϑBαii(x̄, ϑsi + vi)dϑ.

Then, we derive a new high dimensional Lyapunov function

candidate which is proposed for the robotic mechanical system

and could effectively deal with the so-called control singularity

problem of robotic nonlinear system that usually occurs in

adaptive feedback linearization control as detailed later.

From the definition of Bα, there exist the minimum and

maximum eigenvalues λmin(Bα) and λmax(Bα) of Bα, such

that

0 ≤ λmin(Bα)s
T s ≤ sTBαs ≤ λmax(Bα)s

T s. (17)

Noting that ϑ is a scalar and independent of s, x̄ and v

and integrating both sides of above equation with ϑ, one can

obtain

0 ≤ sT
(
∫ 1

0

ϑBαdϑ

)

s ≤

(
∫ 1

0

ϑλmax(Bα)dϑ

)

sT s, (18)

such that we always have V1 ≥ 0.

Differentiating (15) with the time t and considering that Bα

and Bϑ are symmetric, we have

V̇1 = 2sTBϑṡ+ sT
(

∂Bϑ

∂s
ṡ

)

s

+sT
(

∂Bϑ

∂x̄
˙̄x

)

s+ sT
(

∂Bϑ

∂v
v̇

)

s, (19)

with

∂Bϑ

∂s
ṡ = diag

[
∫ 1

0

ϑ
∂Bαii

∂si
ṡidϑ

]

, (20)

∂Bϑ

∂x̄
˙̄x = diag





∫ 1

0

ϑ
m
∑

j=1

∂Bαii

∂x̄j

˙̄xjdϑ



 , (21)

∂Bϑ

∂v
v̇ = diag

[
∫ 1

0

ϑ
∂Bαii

∂vi

v̇idϑ

]

, i = 1, . . . ,m.(22)

According to the equality below

∂Bϑ

∂s
s = diag

[
∫ 1

0

ϑ
∂Bαii

∂si
sidϑ

]

=

∫ 1

0

ϑ2 ∂Bα

∂ϑ
dϑ. (23)

we can further derive

sT
(

∂Bϑ

∂s
ṡ

)

s = sT
(

[

ϑ2Bα

]
∣

∣

1

0
− 2

∫ 1

0

ϑBαdϑ

)

ṡ

= sTBαṡ− 2sTBϑṡ. (24)

Noting that ϑ is a scalar and independent of v, since σ =

ϑsi, we have ∂Bϑ

∂v
s = diag

[

∫ 1

0
ϑ∂Bαii

∂vi
sidϑ

]

=
∫ 1

0
ϑ∂Bα

∂ϑ
dϑ

and ν = −v̇. We can have

sT
(

∂Bϑ

∂v
v̇

)

s = sT
(

−

∫ 1

0

ϑ
∂Bα

∂ϑ
dϑ

)

ν

= −sTBαν + sT
∫ 1

0

Bανdϑ. (25)



Considering (24) and (25), we can rewrite (19) as

V̇1 = sTBαṡ− sTBαν

+sT
[(

∂Bϑ

∂x̄
˙̄x

)

s+

∫ 1

0

Bανdϑ

]

. (26)

Using (13), we have

V̇1 = sTBαB
−1
d (x)

[

F(x) + τ + g(τ) + r(d)

+η(θ)] + sT
[(

∂Bϑ

∂x̄
˙̄x

)

s+

∫ 1

0

Bανdϑ

]

(27)

Since Bd, α and Bdα are symmetric, we have

BαB
−1
d (x) = Bd(x)αB

−1
d (x) = α. (28)

Then, we can rewrite (27) as

V̇1 = sTα[F(x) + τ + g(τ) + r(d) + η(θ)]

+sT
[(

∂Bϑ

∂x̄
˙̄x

)

s+

∫ 1

0

Bανdϑ

]

. (29)

Using (16), we can obtain

V̇1 = sTα[F(x) + τ + g(τ) + r(d) + η(θ)]

+sT
[
∫ 1

0

ϑ

(

∂Bα

∂x̄
˙̄x

)

sdϑ+

∫ 1

0

Bανdϑ

]

.(30)

Considering Bα = Bdα, we have

V̇1 = sTα[F(x) + Φ + τ

+g(τ) + r(d) + η(θ)] (31)

where

Φ =

∫ 1

0

ϑ

(

∂Bd

∂x̄
˙̄x

)

sdϑ+

∫ 1

0

Bdνdϑ, (32)

∂Bd

∂x̄
˙̄x = diag





m
∑

j=1

∂bdii
∂x̄j

˙̄xj



 , i = 1, . . . ,m. (33)

B. Model Based Controller

Let us define D = r(d) + g(τ) + η(θ), and then we can

express (10) as

Bd(x)ẋ2 = F(x) + τ +D. (34)

Then, considering Lemma 2.1, Assumption 2.1 and As-

sumption 2.2, we can obtain

∥Ḋ∥ ≤ ρ, (35)

with ρ > 0 being an unknown constant.

We define an auxiliary variable z to facilitate the design of

a nonlinear disturbance observer. Its definition is

z = D −Kx2, (36)

where K = KT > 0 is a matrix to be specified. According

to (34), (36), and Bd(x) is a diagonal matrix with diagonal

elements, the derivative of z with respect to time is

ż = Ḋ −KB−1
d (x)[(F(x) + τ +D] (37)

To achieve the estimate of system disturbance D, we

must firstly obtain the estimate of intermediate variable z;

Therefore, based on (35) and (37), the following equation is

proposed,

˙̂z = −KB−1
d (x)[(F(x) + τ + D̂], (38)

where D̂ is the estimate of D.

Motivated by (36), we can obtain the estimate of disturbance

D as following

D̂ = ẑ +Kx2. (39)

The estimation error of disturbance is defined as D̃ = D−
D̂. Taking into account (36) and (39), we have

z̃ = z − ẑ = D − D̂ = D̃. (40)

Taking the derivative of (40) with regard to time t, then

considering (37) and (38), we obtain

˙̃D = ˙̃z = ż − ˙̂z = Ḋ −KB−1
d (x)D̃, (41)

Then, the model based controller can be designed as:

τ = −Φ−K1αs− D̂ −F(x) (42)

where constant matrices K1 = KT
1 > 0 will be chosen

appropriately.

Let us consider the following Lyapunov function candidate

V2 = V1 +
1

2
D̃T D̃ (43)

Considering (31), the derivative of V2 with regard to time

can be derived as

V̇2 = sTα[F(x) + r(d) + g(τ) + η(θ) + Φ + τ ]

+D̃T ˙̃D (44)

Considering (34), D = r(d)+g(τ)+η(θ) and applying the

control law (42), we have

V̇2 = sTα[D̃ −K1αs] + D̃T ˙̃D, (45)

Considering (35), (41) and the following facts

sTαD̃ ≤
sTααs

2
+

D̃T D̃

2
, (46)

D̃T Ḋ ≤
D̃T D̃

2
+

∥Ḋ∥2

2
, (47)

we obtain

V̇2 ≤ −sTαK1αs+
sTααs

2
+ D̃T D̃ +

ρ2

2
−D̃TKB−1

d D̃

≤ −sTα(K1 − 0.5Im×m)αs+
ρ2

2
−D̃T (KB−1

d − Im×m)D̃. (48)

When we choose positive definite matrix K1 and K to

make λmin (α(K1 − 0.5Im×m)α) ≥
∫ 1

0
ϑλmax(Bα)dϑ, and

KB−1
d − Im×m > 0, the following inequality can be estab-

lished

V̇2 ≤ −κV2 + C, (49)

where κ = min{λmin(KB−1
d − Im×m), 1}, C = ρ2

2 .



We can obtain the following inequality, by multiplying eκt

and then integrating both sides of the above inequality with

respect to time:

V2 ≤
(

V2(0)−
C

κ

)

e−κt +
C

κ
≤ V2(0) +

C

κ
. (50)

Since V2 is ultimately bounded as t → ∞ as can be seen

the above inequality. Thus, s and D̃ are also bounded. This

completes the proof.

C. Adaptive Neural Network Controller

However, the controller we proposed in (42) may not be

realizable since it is hardly to obtain complete and accurate

information about the robotic system. In this case, we may not

know F(x) exactly. The model based controller we proposed

can hardly be implemented without knowing exact values of

F(x). To overcome the practical issue faced by this controller,

the RBFNN is used to estimate the parameters related to the

model.

In our control design, radial basis function neural network

(RBFNN) is chosen to approximate the unknown functions

in robot dynamics. In general, RBFNN can smoothly approx-

imate any continuous function H(Z) over the compact set

Ωz ∈ Rq to any arbitrary accuracy as

H(Z) = W ∗TS(Z) + µ, (51)

where Si(Z) for i = 1, 2, . . . , l is Gaussian function defined

as below

Si(Z) = exp[
−(Z − ci)

T (Z − ci)

b2i
], (52)

and ci = [ci1, ci2, . . . , ciq] is the center of receptive field, bi is

the width of the Gaussian function. From its definition, we see

that there exists a positive constant δ such that ∥S(Z)∥ ≤ δ
with δ > 0. W ∗ is the optimal constant weight, and µ
is the smallest approximation error of RBFNN. According

the RBFNN approximation theory, it is apparent that the

approximation error has an upper bound µ∗, i.e., |µ| ≤ µ∗,

with a positive constant µ∗ > 0.

We can further employ RBFNN to approximate the un-

known function vector F(x) as

F(x) = −W ∗TS(Z)− ε, (53)

where W ∗ := blockdiag[W ∗
i ], i = 1, 2, . . . , l are the op-

timal NN weights, S(Z) = [ST
1 (Z), ST

2 (Z), . . . , ST
l (Z)]T

is the Radial Basis Function, Z = [xT
1 ,x

T
2 ]

T , and ε =
[ε1, ε2, . . . , εm]T . It is easy to show that there exists a constant

ε∗ > 0 such that ∥ε∥ ≤ ε∗.

In (10), the unknown nonlinear function vector F(x) is

approximated by RBFNN. Considering (53), we have

Bd(x)ẋ2 = τ + g(τ)−W ∗TS(Z)− ε+ η(θ) + r(d). (54)

To efficiently tackle the problem of unknown approximation

error ε, we can treat it as a part of the system external

disturbance. Let us define D = r(d) + g(τ) + η(θ) − ε, and

then (54) can be expressed as

Bd(x)ẋ2 = τ +D −W ∗TS(Z). (55)

Then, according to the approximation theory of the radial

basis function neural network, the unknown approximation

error ε satisfies ∥ε∥ ≤ ρ1 , where ρ1 is an unknown positive

constant. Thus, similar to (35), we also have

∥Ḋ∥ ≤ ρ, (56)

with ρ > 0 being an unknown constant.

We define an auxiliary variable z to facilitate the design of

a nonlinear disturbance observer. Its definition is

z = D −Kx2, (57)

where K = KT > 0 is a matrix to be designed.

Considering (55), the derivative of z with respect to time is

ż = Ḋ −Kẋn

= Ḋ −KB−1
d (x)[τ +D −W ∗TS(Z)] (58)

To achieve the estimate of system disturbance D, we

need to firstly obtain the estimate of intermediate variable z;

Therefore, based on (56) and (58), the following equation is

proposed,

˙̂z = −KB−1
d (x)[τ + D̂ − ŴTS(Z)], (59)

where D̂ is the estimate of D, and Ŵ = blockdiag[Ŵi], i =
1, 2, . . . ,m is the estimate of W ∗.

Motivated by (57), we can obtain the estimate of disturbance

D as following

D̂ = ẑ +Kx2. (60)

The estimate error of disturbance is defined as D̃ = D−D̂.

Taking into account (57) and (60), we have

z̃ = z − ẑ = D − D̂ = D̃. (61)

Taking the derivative of (61) with regard to time t, then

considering (58) and (59), we obtain

˙̃D = ˙̃z = ż − ˙̂z

= Ḋ −KB−1
d (x)[D̃ + W̃TS(Z)], (62)

where W̃ = Ŵ −W ∗.

Based on RBFNN, we propose the following RBFNN

control law:

τ = ŴTS(Z)− Φ−K1αs− D̂ (63)

where constant matrix K1 = KT
1 > 0 will be chosen

appropriately.

The adaptive neural network updating law can be designed

as

˙̂
W i = −Γi[Si(Z)αiisi + ςŴi] (64)

where Γi ∈ Rm(i = 1, 2, . . . ,m) is a symmetric positive

definite constant matrix; ς is positive constants.

Theorem 3.1: Consider the nonlinear robot system (3) sub-

ject to unknown external disturbance, model uncertainty, and

variable stiffness. All closed-loop system signals are semiglob-

ally uniformly bounded with the disturbance observer based

RBFNN control designed in (63) and the the RBFNN weight

adaptation law (64) under Assumption 2.1.



Proof: Reconsider the following Lyapunov function can-

didate

V2 = V1 +
1

2
D̃T D̃ +

1

2

m
∑

i=1

W̃T
i Γ−1

i W̃i (65)

Let us combine (31) and (53). Then, the derivative of V2

with regard to time can be derived as

V̇2 = sTα[−W ∗TS(Z)− ε+ g(τ) + f(d) + η(θ)

+Φ + τ ] + D̃T ˙̃D +
m
∑

i=1

W̃T
i Γ−1

i
˙̃W i (66)

Considering (55), D = f(d)+g(τ)+η(θ)−ε and applying

the control law (63), we have

V̇2 = sTα[W̃S(Z) + D̃ −K1αs]

+D̃T ˙̃D +
m
∑

i=1

W̃T
i Γ−1

i
˙̃W i, (67)

Considering (56), (62), (64), ∥S(Z)∥ ≤ δ, and the following

facts

sTαD̃ ≤
sTααs

2
+

D̃T D̃

2
, (68)

D̃T Ḋ ≤
D̃T D̃

2
+

∥Ḋ∥2

2
, (69)

m
∑

i=1

W̃T
i Si(Z)siαii = sTαW̃TS(Z), (70)

we obtain

V̇2 ≤ −sTα(K1 − 0.5Im×m)αs+
ρ2

2

−D̃T (KB−1
d − 2Im×m)D̃ +

ς∥W ∗∥2

2

−
ς −KB−1

d δ

2

m
∑

j=1

W̃T
i W̃i. (71)

where we use the following facts: D̃TKB−1
d W̃TS(Z) ≤

∥D̃∥2

2 +
KB

−1

d
S(Z)∥W̃∥2

2 , and −ςW̃T
i Ŵi = −ς∥W̃i∥

2 −

ςW̃T
i W ∗

i ≤ − ς∥W̃i∥
2

2 +
ς∥W∗

i
∥2

2 .

When we choose positive definite matrix K1 and K and

positive constant ς to make λmin (α(K1 − 0.5Im×m)α) ≥
∫ 1

0
ϑλmax(Bα)dϑ, KB−1

d −2Im×m > 0 and ς−KB−1
d δ > 0,

the following inequality can be established

V̇2 ≤ −κV2 + C, (72)

where

κ = min

(

λmin(KB−1
d − 2Im×m)

ς−KB
−1

d
δ

λmax(
∑

m

i=1
Γ−1

i
)
, 1

)

,

(73)

C =
ς∥W ∗∥2

2
+

ρ2

2
. (74)

We can obtain the following inequality, by multiplying eκt

and then integrating both side of the above inequality with

respect to time:

V2 ≤
(

V2(0)−
C

κ

)

e−κt +
C

κ
≤ V2(0) +

C

κ
. (75)

Since V2 is ultimately bounded as t → ∞ as can be seen

the above inequality. Thus, s, D̃ and W̃ are also bounded.

This completes the proof.

IV. SIMULATION AND EXPERIMENT

A. Simulation Studies

In this section, simulation results are presented to demon-

strate the effectiveness of the proposed method. Let us consider

a 2-DOF robotic manipulator system, and according to the

dynamic models (1), (2) and (3), we define

M(q) =

[

M11 M12

M21 M22

]

, (76)

C(q, q̇) =

[

C11 C12

C21 C22

]

, G(q) =

[

G1

G2

]

(77)

where M11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2cosq2) + I1 + I2,

M12 = m2(l
2
c2 + l1lc2cosq2) + I2, M21 = m2(l

2
c2 +

l1lc2cosq2)+I2, M22 = m2l
2
c2+I2; C11 = −m2l1lc2q̇2sinq2,

C12 = −m2l1lc2(q̇1 + q̇2)sinq2, C21 = m2l1lc2q̇1sinq2,

C22 = 0; G1 = (m1lc2 +m2l1)gcosq1 +m2lc2gcos(q1 + q2),
G2 = m2lc2gcos(q1 + q2). We choose parameters as m1 =
2kg, m2 = 0.85kg, l1 = 0.35m, l2 = 0.31m, g = 9.81m/s2,

I1 = 1
4m1l

2
1, I2 = 1

2m2l
2
2.

We consider Bd = diag[0.05(0.5 cos q2 + 1), 0.1(1 +
0.5 sin q1)], A = diag[0.0001, 0.0001], ks = 200, and define

the desired trajectory as yd = [sin t, sin t]T . We choose 16

nodes neural network to approximate the unknown functions

in the robotic system. Let Ŵi(0) = [0, . . . , 0]T be the initial

values of the adaptive law (64). The design parameters are

set to α = I2×2, K = diag[8.0, 3.0], K1 = diag[5.0, 5.0],
λ1 = 12, λ2 = 10.5, Γ1 = 0.3Ir×r, Γ2 = 0.3Ir×r, ς1 = 2,

and ς2 = 4.

Remark 4.1: The choices of parameters are based on the

experience of designer accumulated from trial and error in

simulation studies. As a matter of fact, there is no criteria

for the selection of control parameters for nonlinear control

system in the literature. The influence on the system behavior

can only be evaluated by trial and error through experimental

tests.

The simulation results are shown in Figs. 1-6. Figs. 1 and 2

show the tracking performance of the given trajectories. Fig. 3

shows the tracking errors. Figs. 4 shows the controller output

of the joints with variable stiffness effect. The norm of chosen

RBFNN weights is shown in Fig. 5. The estimate trajectories

of disturbance D are presented in Fig. 6.

B. System Description of Baxter Robot

In order to verify the proposed control techniques, we

carry out experiment on a Baxter robot, which is a semi-

humanoid robot consisting of two 7DOF (degree of freedom)

arms installed on left/right arm mounts respectively and a

torso based on a movable pedestal, as illustrated in Fig. 7.

In Baxter robot, instead of connecting the motor shaft directly

to the joint (usually through a gear box), the elastic springer

is employ to reduce the impact of possible collision when

interacting with environment. This allows Baxter robot reduce
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Fig. 3. Tracking errors e1 (solid) and e2(dashed).
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Fig. 6. Disturbance estimate trajectories of D̂1

(solid) and D̂2 (dashed).

the impact when its arm hits an obstacle. In each joint of the

Baxter robot arm, each motor is coupled to the joint through a

spring, so that the torque generated by twist of spring, rather

than the torque from the motor directly drives the link. This

enables the robot to behave in a human-like elastic manner.

Due to the elastic property of the spring, improved shock

tolerance and reduced danger in cases of collision could be

achieved. In addition, the Baxter robot is able to sense a

collision at a very early time instant, before it hits badly onto

a subject. The internal control system for Baxter robot runs

on Robot Operating System (ROS). The joint positions and

velocities are published by ROS at 100 Hz.

C. Experiment Studies

We utilize two joints of the Baxter robot with elastic joints

driven joint to verify the effectiveness of the established

controllers. The two rotation joints are utilized in the exper-

iments, in which we choose Bd = diag[0.05(0.5 cos q2 +
1), 0.1(1 + 0.5 sin q1)], and define the desired trajectory as

yd = [sin t, sin t]T . We use 16 nodes neural network to

approximate the unknown functions in the robotic system.

Let Ŵi(0) = [0, . . . , 0]T be the initial values of the adaptive

law (64). The design parameters’ values are set to α = I2×2,

K = diag[0.2, 0.5], K1 = diag[1.6, 1.2], λ1 = 12, λ2 = 10.5,

Γ1 = 0.3Ir×r, Γ2 = 0.3Ir×r, ς1 = 10, and ς2 = 12. The

experimental results with Baxter robot joints in Figs. 8-

13. Figs. 8 and 9 show the tracking performance of the

given trajectories. Fig. 10 shows the tracking errors. Figs. 11

shows the controller output of the joints with variable stiffness

effect. The norm of chosen RBFNN weights is shown in

Motor
Gear 

Ratio
Link

Fig. 7. Baxter robot profile: Baxter robot has 7 joints with each arm and
each joint is constructed as an elastic actuator.

Fig. 12. The trajectories of estimate of disturbance D are

presented in Fig. 13. The experiment results show that the

trajectory errors tend to the zeros, such that the theoretical

performance of the control law as described in 3.1 is verified.

For the comparison, we also conduct the model based control.

The control parameters chosen are the same as the above

experiment. Fig. 14 and 15 show the tracking performance.

Figs. 16 shows the tracking errors. From the Figs, we see

clearly that the control performance is not satisfactory at all,
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the main reason is that it is hardly to obtain perfect and com-

plete information about the robotic system. For example, we

may not know F(x) exactly, and the model based controller

are dependent on the exact values of F(x). Therefore, the

performance model based would lead to be worse. The good

performance can be achieved using the “adaptive” mechanism,

and the experimental results demonstrate the effectiveness of

the proposed adaptive neural network control.

V. CONCLUSIONS

In this paper, we have designed a novel adaptive neural

network control based on the nonlinear disturbance observer

to handle viarable stiffness of a uncertain robotic systems. By

employing the Lyapunov’s direct method, the boundness of

the closed loop system has been established. Both simulation

and experiment results presented have also shown that the

proposed controllers are with satisfactory performance. More

importantly, the effect caused by viarable stiffness is shown

to be suppressed with our controller.
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