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Adaptive Neural Network Decentralized
Backstepping Output-Feedback Control for

Nonlinear Large-Scale Systems with Time Delays
Shao Cheng Tong, Yong Ming Li, and Hua-Guang Zhang

Abstract— In this paper, two adaptive neural network (NN)
decentralized output feedback control approaches are proposed
for a class of uncertain nonlinear large-scale systems with immea-
surable states and unknown time delays. Using NNs to approx-
imate the unknown nonlinear functions, an NN state observer
is designed to estimate the immeasurable states. By combining
the adaptive backstepping technique with decentralized control
design principle, an adaptive NN decentralized output feedback
control approach is developed. In order to overcome the problem
of “explosion of complexity” inherent in the proposed control
approach, the dynamic surface control (DSC) technique is intro-
duced into the first adaptive NN decentralized control scheme,
and a simplified adaptive NN decentralized output feedback DSC
approach is developed. It is proved that the two proposed control
approaches can guarantee that all the signals of the closed-loop
system are semi-globally uniformly ultimately bounded, and the
observer errors and the tracking errors converge to a small
neighborhood of the origin. Simulation results are provided to
show the effectiveness of the proposed approaches.

Index Terms— Adaptive decentralized control, backstepping
technique, neural network, nonlinear large-scale systems, stability
analysis, state observer.

I. INTRODUCTION

IN THE past decades, there has been increased interest in the
development theories and decentralized control for large-

scale systems. Decentralized control issues naturally arise
from controlling many complex systems found in the power
industry, aerospace and chemical engineering applications,
telecommunication network, and so on. The main characteris-
tics of decentralized control are that they can alleviate the
computational burden associated with a centralized control
and enhance the robustness and reliability against interacting
operation failures. Earlier works on adaptive decentralized
control were mainly focused on large-scale linear systems
or nonlinear systems with the matching condition [1]–[5].
Since backstepping technique was proposed [6], many adaptive
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decentralized backstepping control schemes have been devel-
oped for large-scale nonlinear systems without satisfying the
matching condition. Decentralized adaptive backstepping state
feedback control schemes were proposed by [7] and [8] for
a class of large-scale nonlinear systems. By designing state
observers and state estimation filters, several adaptive decen-
tralized output feedback control approaches were developed
in [9]–[11] for large-scale nonlinear systems with only output
measurements. However, these approaches require that the
controlled nonlinear dynamics models be known exactly or the
unknown nonlinear functions can be linearly parameterized.
If this information is not available a priori, these adaptive
backstepping controllers cannot be applied.

In the recent years, approximation-based adaptive decen-
tralized control approaches have been developed to uncertain
nonlinear large-scale systems via neural networks (NNs) or
fuzzy logic systems approximators, (see [12]–[17]). Although
these approaches do not require nonlinear dynamics models
to be known exactly or the unknown nonlinear functions
to be linearly parameterized and still can achieve a good
control performances, they are applied only to a relatively
simple class of nonlinear systems. A major restriction in the
aforementioned schemes is that the nonlinear uncertainties and
interconnections must satisfy the strict matching condition.
Therefore, global stabilization for the large-scale nonlinear
systems with mismatched uncertainties is not possible using
these schemes.

With the development of adaptive NN (fuzzy) control and
the backstepping technique, many adaptive NN and fuzzy
backstepping control approaches have been investigated for
uncertain nonlinear systems without satisfying the matching
condition (see [18]–[22] for single-input–single-output (SISO)
nonlinear systems, [23]–[25] for multiple-input and multiple-
output (MIMO) nonlinear systems, and [26] for nonlinear
large-scale systems). Adaptive NN or fuzzy backstepping
control in general provides a systematic methodology to solve
tracking or regulation control problems of unknown nonlinear
systems, where NNs or FLSs are used to approximate un-
known nonlinear functions. Typically, adaptive NN or fuzzy
controllers are constructed recursively in the framework of
backstepping design technique. The main features of these
adaptive approaches are: 1) they can deal with those nonlinear
systems without satisfying the matching conditions, and 2)
they do not require the unknown nonlinear functions being
linearly parameterized.
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Although the adaptive NN or fuzzy backstepping control has
become one of the most popular design approaches to a large
class of nonlinear systems, the existing adaptive backstepping
control methods suffer from two major limitations. The first
is that the proposed adaptive control approaches are based
on an assumption that the states of the systems are measured
directly. As noted in [9]–[11], in practice, state variables are
often immeasurable for many nonlinear systems. In such cases,
observer-based control schemes should be applied. The second
limitation is the so-called the problem of “explosion of com-
plexity” with the existing adaptive NN and fuzzy backstep-
ping controllers, which is caused by repeated differentiations
of certain nonlinear functions such as virtual controls, and
thus inevitably leads to a complicated algorithm with heavy
computation burden [27]–[29]. To solve the first limitation,
recently the authors in [30]–[32] have proposed observer-
based adaptive NN and fuzzy backstepping output feedback
controllers for SISO or MIMO nonlinear systems. The authors
of [33] and [34] have developed adaptive fuzzy decentralized
output feedback controllers by using k-filters for a class of the
uncertain large-scale systems. Although the above-mentioned
approaches can solve the problem of the states unmeasured,
the explosion of complexity is inherent in them. To overcome
the problem of the explosion of complexity, an adaptive NN
backstepping control approach was first proposed by [35] for
a class of SISO uncertain nonlinear systems based on the so-
called dynamic surface control (DSC) technique. Since then,
several adaptive NN and fuzzy backstepping DSC control
schemes have been developed. For example, [36] and [37]
propose adaptive NN backstepping DSC controllers for a class
of SISO uncertain nonlinear systems without and with a dead
zone, respectively. In [38], adaptive NN backstepping DSC
control of nonlinear systems with periodic disturbances is dealt
with, whereas [39] presents a robust adaptive fuzzy tracking
control for a class of uncertain MIMO nonlinear systems,
and [40] and [41] propose the adaptive NN decentralized
backstepping DSC designs for a class of nonlinear large-
scale systems. Despite these efforts using the DSC technique,
the aforementioned adaptive NN or fuzzy backstepping DSC
methods still require that the states of the controlled systems
be available for measurements.

In this paper, two observer-based adaptive NN decentralized
backstepping control approaches are proposed for a class of
nonlinear large-scale systems with immeasurable states and
unknown time delays. Using NNs to approximate the unknown
nonlinear functions, an NN state observer is designed to
estimate the immeasurable states. Combining the backstepping
technique, DSC technique, and decentralized design principle,
two adaptive decentralized backstepping control approaches
are developed. It is proved that both these control approaches
can guarantee that all the signals of the closed-loop system
are semi-globally uniformly ultimately bounded (SUUB), and
the observer errors and the tracking errors converge to a small
neighborhood of the origin. Compared to the existing results,
the main contributions of this paper are as follows: 1) by
designing an NN state observer, the proposed NN decentral-
ized control methods do not require that all the states are
available for measurements, which is assumed in the existing

adaptive NN decentralized backstepping controllers [26], [40],
[41]; 2) the proposed second NN decentralized control method
can overcome the explosion of complexity inherent in the
NN and fuzzy decentralized backstepping controllers [26],
[30]–[34]; and 3) the proposed decentralized control schemes
can solve the problem of nonlinear large-scale systems with
time delays.

II. PROBLEM FORMULATION AND SOME PRELIMINARIES

A. System Description

Consider a class of large-scale nonlinear systems that is
composed of N subsystems interconnected by their outputs.
The i th subsystem �i , (i = 1, . . . , N) is given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi,1 = xi,2 + fi,1(y1, . . . , yN )
+ hi,1(y1(t − τi,1,1(t)), . . . ,

yN (t − τi,1,N (t))) + �i,1(y1, . . . , yN )
ẋi,2 = xi,3 + fi,2(y1, . . . , yN )

+ hi,2(y1(t − τi,2,1(t)), . . . ,
yN (t − τi,2,N (t))) + �i,2(y1, . . . , yN )
...

ẋi,ni −1 = xi,ni + fi,ni −1(y1, . . . , yN )
+ hi,ni −1(y1(t − τi,ni −1,1(t)), . . . ,

yN (t − τi,ni −1,N (t)))
+ �i,ni −1(y1, . . . , yN )

ẋi,ni = ui + fi,ni (y1, . . . , yN )
+ hi,ni (y1(t − τi,ni ,1(t)), . . . ,

yN (t − τi,ni ,N (t))) + �i,ni (y1, . . . , yN )
yi = xi,1

(1)

where xi = [xi,1, . . . , xi,ni ]T ∈ Rni , ui ∈ R and yi ∈ R
are the state, control input and the output of the i th sub-
system, respectively. fi, j (·) and �i, j (·) (1 ≤ i ≤ N , 1 ≤
j ≤ ni ) are unknown smooth functions representing the
nonlinearities in the i th subsystem and the interconnection
effects between the i th subsystem and other subsystems.
hi, j (y1(t − τi, j,1(t)), . . . , yN (t − τi, j,N (t))) is an unknown
smooth nonlinear function, and τi, j,k(t) is an unknown time
delay satisfying τ̇i, j,k(t) ≤ τ ∗ ≤ 1 (1 ≤ i ≤ N , 1 ≤ j ≤ ni ,
1 ≤ k ≤ N). In this paper, it is assumed that only output yi is
available for measurement. Without loss of generality, denote
τi, j,k(t) = τi, j (t).

Remark 1: It can be used to describe many state space
models of practical nonlinear systems with time delays such
that interconnected recycled storage tanks, interconnected
wind tunnels and interconnected cold-rolling mills, and robotic
systems with transmission delays [29]. In particular, most of
the telemanipulation systems include interconnected delays
in their state equations. On the other hand, if no time-delay
terms are included in (1), i.e., hi, j (.) = 0, then (1) becomes
the interconnected nonlinear strict-feedback systems studied
widely, see [7], [9], [10], [33], and [34].

Throughout this paper, the following assumptions are made
on (1).

Assumption 1: Nonlinear function �i, j (·) satisfies∥
∥�i, j (·)

∥
∥ ≤ ∑pi, j

k=1

∑N
l=1 qk

i, j,l‖yl‖k , where qk
i, j,l is an

unknown constant and p = max{pi, j |1 ≤ i ≤ N, 1 ≤ j ≤ ni }
is a known integer.
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Remark 2: Note that �i, j (·) may be nonlinearly parameter-
ized in the unknown parameters, provided that Assumption 1
is satisfied. Also, the quantity p = max{pi, j |1 ≤ i ≤ N, 1 ≤
j ≤ ni } needs to be known. The Assumption 1 is common in
existing literature dealing with the similar problems, see [2],
[3], [7], and [9].

Assumption 2: Nonlinear function hi, j (·) satisfies the fol-
lowing inequality:

∣
∣hi, j (y1(t), . . . yN (t)

∣
∣2

≤ zi,1(t)H̄i, j (zi,1(t)) + h̄i, j (yi,r (t)) + �i, j

where H̄i, j (·) is a known function, h̄i, j (·) is a bounded
function with h̄i, j (0) = 0, and �i, j is a positive scalar and
zi,1(t) = yi,1(t) − yi,r (t).

Remark 3: The effects of the nonlinear time-delay functions
hi, j (.) from other subsystems to a local subsystem are bounded
by functions of the output of this subsystem. With this
condition, it is possible to design local controller to stabilize
the interconnected systems with the time delays [30], the same
or similar assumptions can be found in existing literature, (see
[31], [32], [42]).

B. RBF Neural Networks

In this paper, the following radial basis function (RBF) NN
is used to approximate the continuous function h(X): Rq → R

hnn(X) = W T ϕ(X) (2)

where the input vector X ∈ D ⊂ Rq , weight vector W =
[W1, . . . , Wl ]T ∈ Rl , the NN node number l > 1, and
ϕ(X) = [

ϕ1(X) . . . ϕl(X)
]T
, with ϕi (X) being chosen

as the commonly used Gaussian functions, which have the
form

ϕi (X) = exp

[
−(X − μi )

T (X − μi )

η2

]

, i = 1, 2, . . . , l

where μi = [μi1, . . . , μiq ]T is the center of the receptive field
and η is the width of the Gaussian function.

Let
h(X) = W∗T ϕ(X) + ε(X) ∀X ∈ D (3)

where W∗ is an ideal contant weight, and ε(X) is the approxi-
mation error. It is assumed that W∗ is bounded and defined as

W∗ = arg min
W∈	

{

sup
X∈D

∣
∣
∣h(X) − W T ϕ(X)

∣
∣
∣

}

. (4)

The control design presented in this paper employs RBF NNs
to approximate the nonlinear function fi, j (·) in (1); assume
that

fi, j (y1, . . . , yN ) = W∗T
i, j ϕi, j (y1, . . . , yN ) + εi, j (y1, . . . , yN )

(5)
where W∗

i, j is the ideal constant weight, and εi, j (·)
is the approximation error. It is usually assumed that∣
∣εi, j (·)

∣
∣ ≤ εi, j,0, where εi, j,0 is a known constant.

Assumption 3:
∥
∥
i, j

∥
∥ =

∥
∥
∥W∗T

i, j ϕi, j (ȳ) − W∗T
i, j ϕi, j (ȳr )

∥
∥
∥ ≤

∑N
k=1 si, j,k

∥
∥yk − yk,r

∥
∥, where si, j,k is an unknown constant,

ȳ = (y1, . . . , yN ), and ȳr = (y1,r , . . . , yN,r ).

Remark 4: As far as the Gaussian function si (X) =
exp[−(X − μi )

T (X − μi )/η
2
i ] is concerned, it satisfies the

global Lipschitz condition [33], i.e., Assumption 3 is true.
By substituting (5) into (1), the system (1) can be presented

in the following form:
⎧
⎪⎪⎨

⎪⎪⎩

ẋi = Ai xi + Ki yi +
ni∑

j=1
Bi, j W∗T

i, j ϕi, j (ȳr )

+Bi,ni ui + hi + �i + 
i + εi

yi = CT
i xi

(6)

where Ai =
⎡

⎣

−ki,1

... Ini −1

−ki,ni ··· 0

⎤

⎦, hi = [hi,1, . . . , hi,N ]T ,

Ki = [ki,1, . . . , ki,ni ]T , �i = [�i,1, . . . ,�i,ni ]T ,

i = [
i,1, . . . ,
i,ni ]T , εi = [εi,1, . . . , εi,ni ]T , Bi, j =
[0, . . . , 0, 1
︸ ︷︷ ︸

j

, 0, . . . , 0]T and Ci = [1, 0, . . . , 0]T , and vector

Ki is chosen such that Ai is a strict Hurwitz matrix. Thus,
given a Qi = QT

i > 0, there exists a Pi = PT
i > 0 such that

AT
i Pi + Pi Ai = −Qi . (7)

Since the state variables are not available, a local state observer
for the i th subsystem is designed as

⎧
⎪⎪⎨

⎪⎪⎩

˙̂xi = Ai x̂i + Ki yi

+
ni∑

j=1
Bi, j W T

i, j ϕi, j (ȳr ) + Bi,ni ui

ŷi = CT
i x̂i .

(8)

Let ei = xi − x̂i be observer error, then from (6) and (8), one
can obtain the observer errors equation

ėi = Ai ei +
ni∑

j=1

Bi, j

[
W∗T

i, j ϕi, j (ȳr ) − W T
i, j ϕi, j (ȳr )

]

+ hi + �i + 
i + εi

= Ai ei + δi + hi + �i + 
i + εi (9)

where δi = [δi,1, . . . , δi, j , . . . , δi,ni ]T and δi, j =
W∗T

i, j ϕi, j (ȳr ) − W T
i, j ϕi, j (ȳr ).

Assumption 4: There exists a known constant δi, j,0 > 0,
such that

∣
∣δi, j

∣
∣ ≤ δi, j,0.

Remark 5: The Assumption on δi, j is reasonable. Notice
that

δi, j =
(

W∗
i, j − Wi, j

)T
ϕi, j (ȳr ). (10)

As noted in many references (see [18], [19], [22]) the ideal
constant weight W∗

i, j is bounded, the adjusted weight Wi, j ∈
	i, j , with 	i, j is a bounded compact set, and ϕi, j (ȳr ) is a
bounded radial function. Therefore, by (10), one can assume
that δi, j is bounded by a known constant δi, j,0.

Consider the following Lyapunov candidate for the error
system (9):

V0 =
N∑

i=1

(
Vi,0 + V̄i,0

)
(11)

with Vi,0 = eT
i Pi ei and V̄i,0 = eτi /(1 − τ ∗)

‖Pi‖2e−ri t ∑N
j=1

∫ t
t−τi, j (t)

eri s zi,1(s)(H̄i, j (zi,1(s)))ds, where
ri is a design constant, and τi ≥ max{τi,1(t), . . . , τi,ni (t)}.
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The time derivative of V0 along (9) is

V̇0 =
N∑

i=1

{
eT

i

(
Pi Ai + AT

i Pi

)
ei + 2eT

i Pi
(
hi + �i

+
i + δ′
i

) + ˙̄V i,0

}

≤
N∑

i=1

{
− eT

i Qi ei + 2eT
i Pi

(
hi + �i + 
i

+ δ′
i

) + ˙̄V i,0

}
(12)

where δ′
i = [δi,1 + εi,1, . . . , δi,ni + εi,ni ]T . By Young’s in-

equality aT b ≤ 1/2λaT a + λ/2bT b, (λ > 0), one has

2eT
i Piδ

′
i ≤ eT

i ei + ‖Pi‖2
∥
∥δ′

i
∥
∥2 ≤ eT

i ei + δ
′2
i0‖Pi‖2 (13)

where δ
′2
i0 = {[∑ni

j=1 ε2
i, j,0]1/2 + [∑ni

j=1 δ2
i, j,0]1/2}2.

Using the Cauchy–Schwartz inequality (
∑p

k=1 akbk)
2 ≤

(
∑p

k=1 a2
k )(

∑p
k=1 b2

k), Young’s inequality, and Assumptions
1–3, the following inequalities are obtained:

2
N∑

i=1

eT
i Pi�i ≤

N∑

i=1

eT
i ei +

N∑

i=1

‖Pi‖2‖�i‖2

≤
N∑

i=1

eT
i ei +

N∑

i=1

p∑

k=1

22kqi,k

(∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)
(14)

2
N∑

i=1

eT
i Pi
i ≤

N∑

i=1

eT
i ei +

N∑

i=1

N∑

k=1

Li,k
∥
∥yk − yk,r

∥
∥2 (15)

where qi,k = pN
∑N

l=1 ‖Pl‖2 ∑nl
j=1 (qk

l, j,i )
2

and Li,k =
N‖Pi‖2 ∑ni

j=1 s2
i, j,k

2eT
i Pi hi ≤ eT

i ei + ‖Pi‖2|hi |2

≤ eT
i ei +

N∑

j=1

d∗
i, j

+ ‖Pi‖2
N∑

j=1

zi,1(t − τi, j (t))H̄i, j (zi,1(t − τi, j (t))) (16)

where d∗
i, j is a constant satisfying d∗

i, j > ‖Pi‖2(h̄i, j (yi,r (t −
τi, j (t))) + �i, j ).

It is noticed that

˙̄V i,0 = −ri
eτi

(1 − τ ∗)
‖Pi‖2

× e−ri t
N∑

j=1

∫ t

t−τi, j (t)
eri s zi,1(s)(H̄i, j (zi,1(s)))ds

+ eτi

(1 − τ ∗)
‖Pi‖2e−ri t

N∑

j=1

[eri t zi,1(t)(H̄i, j (zi,1(t)))

− eri (t−τi, j (t))zi,1(t − τi, j (t))

× (H̄i, j (zi,1(t − τi, j (t))))(1 − τ̇i, j (t))]

≤ −ri V̄i,0 + eτi

(1 − τ ∗)
‖Pi‖2

N∑

j=1

zi,1(t)(H̄i, j (zi,1(t)))

− ‖Pi‖2
N∑

j=1

zi,1(t − τi, j (t))(H̄i, j (zi,1(t − τi, j (t)))).
(17)

Substituting (13)–(17) into (12), one has

V̇0 ≤ −
N∑

i=1

{
eT

i (Qi − 4I )ei + ‖Pi‖2δ
′2
i0

+
p∑

k=1

22kqi,k

(∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)

+
N∑

k=1

Li,k
∥
∥yk − yk,r

∥
∥2+

N∑

j=1

d∗
i, j − ri V̄i,0

+ eτi

(1 − τ ∗)
‖Pi‖2

N∑

j=1

zi,1(H̄i, j (zi,1))
}
. (18)

Remark 6: It can be seen from (18) that the state observer
(8) cannot guarantee the convergences of the observer errors,
and thus it is necessary to design a suitable controller to
achieve this objective, which will be discussed in the next
section.

III. DECENTRALIZED CONTROL DESIGN AND

STABILITY ANALYSIS

In this section, an adaptive NN decentralized controller and
parameter adaptive laws are to be developed in the framework
of the backstepping technique, so that all the signals in the
closed-loop system are SUUB and the tracking errors zi,1 =
yi − yi,r and observer error vectors ei are as small as desired.

The ni -step adaptive NN decentralized output feedback
backstepping design is based on the change of coordinates

zi,1 = yi − yi,r (19)

zi, j = x̂i, j − αi, j−1, j = 2, . . . , ni (20)

where αi, j−1 is an intermediate control, and ui (t) is designated
in the last step. The detailed design procedures will be given
based on the above change of coordinates.

Step i, 1: The time derivative of zi,1 along (1) is

żi,1 = ẏi − ẏi,r

= x̂i,2 + W T
i,1ϕi,1(ȳr ) + W̃ T

i,1ϕi,1(ȳr ) + hi,1

+ �i,1(ȳ) − ẏi,r + 
i,1 + εi,1 + ei,2 (21)

where W̃i, j = W∗
i, j − Wi, j is the weight error vector.

Consider the Lyapunov function candidate
∑N

i=1 Vi,1 as

N∑

i=1

Vi,1 =
N∑

i=1

{
Vi,0 + 1

2
z2

i,1 + 1

2
W̃ T

i,1�
−1
i,1 W̃i,1

+ 1

2γi,1
β̃2

i + 1

2γi,2
π̃2

i + V̄i,1

}
(22)

with V̄i,1 = eτi /(2(1 − τ ∗))e−ri t
∫ t

t−τi,1(t) eri s zi,1(s)

(H̄i,1(zi,1(s)))ds; where �i,1 = �T
i,1 > 0; γi,1 and γi,2
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are the design constants. β̃i = βi − β̂i and π̃i = πi − π̂i .
β̂i and π̂i are the estimates of βi and πi , respectively.
In this paper, βi = ∑N

k=1 (Lk,i + ni (N/2)s2
k,1,i ) and

πi = max1≤k≤p{qi,k + ni q1,i,k} are only used for the
purpose of stability analysis.

The time derivative of
∑N

i=1 Vi,1 along (18), (20), and
(21) is

N∑

i=1

V̇i,1 = V̇0 +
N∑

i=1

{
zi,1 żi,1 − W̃ T

i,1�
−1
i,1 Ẇi,1

1

γi,1
β̃i

˙̂
βi − 1

γi,2
π̃i

˙̂πi + ˙̄V i,1

}

≤ V̇0 +
N∑

i=1

{
zi,1[zi,2 + αi,1 + W T

i,1ϕi,1(ȳr )

+ W̃ T
i,1ϕi,1(ȳr ) − ẏi,r ] + ∣

∣zi,1�i,1(ȳ)
∣
∣ + ∣

∣zi,1hi,1
∣
∣

+ ∣
∣zi,1
i,1

∣
∣+ ∣

∣zi,1εi,1
∣
∣+ ∣

∣zi,1ei,2
∣
∣ − W̃ T

i,1�
−1
i,1 Ẇi,1

− 1

γi,1
β̃i

˙̂
βi − 1

γi,2
π̃i

˙̂πi + ˙̄V i,1

}
. (23)

Using Young’s inequality, Cauchy–Schwartz inequality, and
Assumptions 1–3, one can obtain

∣
∣zi,1ei,2

∣
∣ ≤ 1

4
eT

i ei + z2
i,1 (24)

N∑

i=1

∣
∣zi,1�i,1 ≤ (ȳ)

∣
∣ ≤

N∑

i=1

z2
i,1

+
N∑

i=1

p∑

k=1

22kq1,i,k

(∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)
(25)

N∑

i=1

∣
∣zi,1
i,1

∣
∣ ≤

N∑

i=1

z2
i,1 +

N∑

i=1

N∑

k=1

N

2
s2

i,1,k z2
k,1 (26)

∣
∣zi,1hi,1

∣
∣ ≤ 1

2
z2

i,1

+ 1

2
zi,1(t − τi,1(t))H̄i,1(zi,1(t − τi,1(t))) + d̄i,1 (27)

where q1,i,k = N p
∑N

l=1 (qk
l,1,i )

2
and d̄i,1 = 1/(2‖Pi‖2)d∗

i,1.
Similar to the procedures in (17), one has

˙̄V i,1 ≤ −ri V̄i,1 + eτi

2(1 − τ ∗)
zi,1(t)(H̄i,1(zi,1(t)))

− 1

2
zi,1(t − τi,1(t))(H̄i,1(zi,1(t − τi,1(t)))). (28)

Using inequality
∣
∣zi,1εi,1,0

∣
∣ − zi,1εi,1,0 tanh(zi,1εi,1,0/ς) ≤

0.2785ς = ς ′, (∀ς > 0) and from (18), (24)–(28), can be

rewritten as
N∑

i=1

V̇i,1 ≤ −
N∑

i=1

{

eT
i (Qi − 5I )ei + δ′2

i0‖Pi‖2

+
p∑

k=1

22k(qi,k + q1,i,k)(
∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)

+
N∑

k=1

(Li,k + N

2
s2

i,1,k)z
2
k,1 +

N∑

j=1

d∗
i, j − ri V̄i,0

+zi,1

[1

2
zi,1 + zi,2 + αi,1 + β̂i zi,1

+π̂i

p∑

k=1

22kz2k
i,1 + εi,1,0 tanh

(
zi,1εi,1,0

ς

)

+W T
i,1ϕi,1(ȳr ) − ẏi,r

+ eτi

(1 − τ ∗)
‖Pi‖2

N∑

j=1

(H̄i, j (zi,1))

+ eτi

2(1 − τ ∗)
(H̄i,1(zi,1))

]
+ 3z2

i,1 + ∣
∣zi,1εi,1,0

∣
∣

−zi,1εi,1,0 tanh

(
zi,1εi,1,0

ς

)

+W̃ T
i,1(zi,1ϕi,1(ȳr ) − �−1

i,1 Ẇi,1) + β̃i

(

z2
i,1 − 1

γi,1

˙̂βi

)

+π̃i

( p∑

k=1

22kz2k
i,1 − 1

γi,2

˙̂πi

)

−βi z
2
i,1 − πi

p∑

k=1

22kz2k
i,1 + d̄i,1 − ri V̄i,1

}

. (29)

Design intermediate control function αi,1 and the adaptation
functions Wi,1 , β̂i , and π̂i as

αi,1 = −1

2
zi,1 − (ci,1 + 3)zi,1 − β̂i zi,1

− π̂i

p∑

k=1

22kz2k−1
i,1 − W T

i,1ϕi,1(ȳr ) + ẏi,r

− εi,1,0 tanh

(
zi,1εi,1,0

ς

)

− eτi

(1 − τ ∗)
‖Pi‖2

N∑

j=1

(H̄i, j (zi,1))

− ni eτi

2(1 − τ ∗)
(H̄i,1(zi,1(t))) (30)

Ẇi,1 = �i,1
(
zi,1ϕi,1 (ȳr ) − σi,1Wi,1

)
(31)

˙̂βi = γi,1

(
z2

i,1 − σi,2β̂i

)
(32)

˙̂πi = γi,2

( p∑

k=1

22kz2k
i,1 − σi,3π̂i

)

. (33)
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Substituting (30)–(33) into (29) results in

N∑

i=1

V̇i,1 ≤ −
N∑

i=1

{

eT
i (Qi − 5I )ei + δ′

i0
2‖Pi‖2

+
p∑

k=1

22k(qi,k + q1,i,k)(
∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)

+
N∑

k=1

(
Li,k + N

2
s2

i,1,k

)
z2

k,1 + zi,1zi,2

− ci,1z2
i,1 − (ni − 1)eτi

2(1 − τ ∗)
(H̄i,1(zi,1))zi,1

+ ς ′ + σi,1W̃ T
i,1Wi,1 + σi,2β̃i β̂i + σi,3π̃i π̂i

− βi z
2
i,1 − πi

p∑

k=1

22kz2k
i,1 +

N∑

j=1

d∗
i, j + d̄i,1

− ri V̄i,0 − ri V̄i,1

}

. (34)

Step i, j ( j = 2, . . . , ni − 1): Differentiating zi, j along (8)
and (20) yields

żi, j = ˙̂xi, j − α̇i, j−1

= x̂i, j+1 − ki, j x̂i,1 + ki, j yi + Hi, j

− ∂αi, j−1

∂ yi

[
W̃ T

i,1ϕi,1(ȳr ) + hi,1

+ �i,1(ȳ) + 
i,1 + εi,1 + ei,2
]

(35)

where

Hi, j = W T
i, j ϕi, j (ȳr ) − ∂αi, j−1

∂Wi, j−1
Ẇi, j−1 − ∂αi, j−1

∂β̂i

˙̂
βi

− ∂αi, j−1

∂π̂i

˙̂π i − ∂αi, j−1

∂ ȳr

˙̄yr − ∂αi, j−1

∂ yi

[
x̂i,2

+ W T
i,1ϕi,1(ȳr )

]
−

j∑

k=2

∂αi, j−1

∂ x̂i,k−1

˙̂xi,k−1.

Consider the following Lyapunov function candidate as

N∑

i=1
Vi, j =

N∑

i=1
Vi, j−1 +

N∑

i=1

(
1
2 z2

i, j + 1
2 W̃ T

i, j �
−1
i, j W̃i, j + V̄i,1

)

(36)
where �i, j = �T

i, j > 0.

The time derivative of
∑N

i=1 Vi, j is

N∑

i=1
V̇i, j =

N∑

i=1
V̇i, j−1 +

N∑

i=1

(
zi, j żi, j − W̃ T

i, j �
−1
i, j Ẇi, j + ˙̄Vi,1

)
.

(37)

From (35) and (37), one has

N∑

i=1

V̇i, j ≤
N∑

i=1

V̇i, j−1 +
N∑

i=1

(zi, j (x̂i, j+1 − ki, j x̂i,1

+ ki, j yi + Hi, j − ∂αi, j−1

∂ yi
[hi,1 + �i,1(ȳ) + 
i,1

+ εi,1 + ei,2]) +
∣
∣
∣
∣zi, j

∂αi, j−1

∂ yi
W̃ T

i,1ϕi,1(ȳr )

∣
∣
∣
∣

− W̃ T
i, j �

−1
i, j Ẇi, j + ˙̄V i,1)

≤
N∑

i=1

V̇i, j−1 +
N∑

i=1

(zi, j (x̂i, j+1 − ki, j x̂i,1 + ki, j yi

+ Hi, j − ∂αi, j−1

∂ yi
[hi,1 + �i,1(ȳ) + 
i,1 + εi,1

+ ei,2]) +
∣
∣
∣
∣zi, j

∂αi, j−1

∂ yi
δi,1

∣
∣
∣
∣

− W̃ T
i, j �

−1
i, j Ẇi, j + ˙̄V i,1). (38)

Using Young’s inequality, Cauchy–Schwartz inequality, and
Assumptions 1–3, we have the following inequalities:

zi, j
∂αi, j−1

∂ yi
εi,1 ≤ 1

2
ε2

i,1,0 + 1

2

(
∂αi, j−1

∂ yi

)2

z2
i, j (39)

zi, j
∂αi, j−1

∂ yi
ei,2 ≤ 1

2
eT

i ei + 1

2

(
∂αi, j−1

∂ yi

)2

z2
i, j (40)

∣
∣
∣
∣zi, j

∂αi, j−1

∂ yi
δi,1

∣
∣
∣
∣ ≤ 1

2
δ2

i,1,0 + 1

2

(
∂αi, j−1

∂ yi

)2

z2
i, j (41)

N∑

i=1

zi, j
∂αi, j−1

∂ yi
�i,1(ȳ) ≤

N∑

i=1

(
∂αi, j−1

∂ yi

)2

z2
i, j

+
N∑

i=1

p∑

k=1

22kq1,i,k

(∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)
(42)

N∑

i=1

zi, j
∂αi, j−1

∂ yi

i,1

≤
N∑

i=1

(
∂αi, j−1

∂ yi

)2

z2
i, j +

N∑

i=1

N∑

k=1

N

2
s2

i,1,k z2
k,1 (43)

∣
∣
∣
∣zi, j

∂αi, j−1

∂ yi
hi,1

∣
∣
∣
∣ ≤ 1

2
z2

i, j

(
∂αi, j−1

∂ yi

)2

+ 1

2
zi,1(t − τi,1(t))H̄i,1(zi,1(t − τi,1(t))) + d̄i,1. (44)
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Substituting (35), (39)–(44) into (38) results in

N∑

i=1

V̇i, j ≤ −
N∑

i=1

{eT
i (Qi − (4 + j)I )ei

+ ‖Pi‖2δ′
i0

2 +
p∑

k=1

22k(qi,k + jq1,i,k)

×
(∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)

+
N∑

k=1

(Li,k + j
N

2
s2

i,1,k)z
2
k,1 + zi, j−1zi, j + j − 1

2
δ2

i,1,0

+ j − 1

2
ε2

i,1,0 +
N∑

j=1

d∗
i, j + j d̄i,1 − ri V̄i,0 − jri V̄i,1

−
j−1∑

k=1

ci,k z2
i,k − (ni − j)eτi

2(1 − τ ∗)
(H̄i,1(zi,1))zi,1

+ ( j − 1)ς ′ +
j−1∑

k=1

σi,k W̃ T
i,k Wi,k + σi,2β̃i β̂i

+ σi,3π̃i π̂i − βi z
2
i,1 − πi

p∑

k=1

22kz2k
i,1

+ zi, j [zi, j+1 + αi, j − ki, j x̂i,1 + ki, j yi + Hi, j

+ 4(
∂αi, j−1

∂ yi
)2zi, j ] − W̃ T

i, j �
−1
i,2 Ẇi, j }. (45)

Design the intermediate control function αi, j and the adapta-
tion function Wi, j as

αi, j = −ci, j zi, j − zi, j−1 + ki, j x̂i,1 − ki, j yi − Hi, j

− 4
(∂αi,1

∂ yi

)2
zi, j − δi, j,0 tanh

(δi, j,0zi, j

ς

)
(46)

Ẇi, j = �i, j (zi, j ϕi, j (ȳr ) − σi, j Wi, j ). (47)

Substituting (46) and (47) into (45) results in

N∑

i=1

V̇i, j ≤ −
N∑

i=1

{
eT

i (Qi − (4 + j)I )ei

+ ‖Pi‖2δ′
i0

2 +
p∑

k=1

22k(qi,k + jq1,i,k)

×
(∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)
+

N∑

k=1

(
Li,k + j

N

2
s2

i,1,k

)
z2

k,1

−
j∑

k=1

ci,k z2
i,k + jς ′ +

j∑

k=1

σi,k W̃ T
i,k Wi,k

+ σi,2β̃i β̂i + σi,3π̃i π̂i − βi z
2
i,1 − πi

p∑

k=1

22kz2k
i,1

+ zi, j zi, j+1 + j − 1

2
δ2

i,1,0 + j − 1

2
ε2

i,1,0

+
N∑

j=1

d∗
i, j + j d̄i,1 − ri V̄i,0 − jri V̄i,1

− (ni − j)eτi

2(1 − τ ∗)
(H̄i,1(zi,1))zi,1

}
. (48)

Step i, ni : In the final design step, the actual control input ui

will appear. Consider the overall Lyapunov function candidate
as

V =
N∑

i=1

Vi,ni =
N∑

i=1

Vi,ni −1

+
N∑

i=1

(1

2
z2

i,ni
+ 1

2
W̃ T

i,ni
�−1

i,ni
W̃i,ni + V̄i,1

)
. (49)

Similar to the procedures in Step i, j , one can obtain

V̇ ≤ −
N∑

i=1

{

eT
i Q̄i ei + ‖Pi‖2

∥
∥δ′

i0
∥
∥2

+
p∑

k=1

22k(qi,k + ni q1,i,k)(
∥
∥yi,r

∥
∥2k + ∥

∥zi,1
∥
∥2k

)

+
N∑

k=1

(
Li,k + j

N

2
s2

i,1,k

)
z2

k,1 + zi,ni −1zi,ni

+δ2
i,1,0 + 1

2
ε2

i,1,0 +
N∑

j=1

d∗
i, j + ni d̄i,1 − ri V̄i,0

−niri V̄i,1 −
ni −1∑

k=1

ci,k z2
i,k + (ni − 1)ς ′

+
ni −1∑

k=1

σi,k W̃ T
i,k Wi,k + σi,2β̃i β̂i + σi,3π̃i π̂i

−βi z
2
i,1 − πi

p∑

k=1

22kz2k
i,1 + zi,ni

[ui − ki,ni x̂i,1

+ki,ni yi + Hi,ni + 4

(
∂αi,ni −1

∂ yi

)2

zi,ni
]

−W̃ T
i,ni

�−1
i,2 Ẇi,ni

}

(50)

where Q̄i = Qi − (4 + ni )I ) > 0.
At the end of the recursive procedure, the last stabilizing

function αni = ui and adaptation function Wni are chosen as

ui = − ci,ni zi,ni − zi,ni −1 + ki,ni x̂i,1

− ki,ni yi − Hi,ni − 4
(∂αi,1

∂ yi

)2
zi,ni

− δi,ni ,0 tanh
( δi,ni ,0zi,ni

ς

)
(51)

Ẇi,ni = �i,ni (zi,ni ϕi,ni (ȳr ) − σi,ni Wi,ni ) (52)
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where

Hi,ni = W T
i,ni

ϕi,ni (ȳr ) − ∂αi,ni −1

∂Wi,ni −1
Ẇi,ni −1 − ∂αi,ni −1

∂β̂i

˙̂
βi

− ∂αi,ni −1

∂π̂i

˙̂π i − ∂αi,ni −1

∂ ȳr

˙̄yr − ∂αi,ni −1

∂ yi
[x̂i,2

+ W T
i,1ϕi,1(ȳr )] −

ni∑

k=2

∂αi,ni −1

∂ x̂i,k−1

˙̂xi,k−1 .

By the completing squares

W̃ T
i,k Wi,k ≤ W̃ T

i,k (W∗
i,k − W̃i,k )

≤ −1

2
W̃ T

i,k W̃i,k + 1

2
W∗T

i,k W∗
i,k (53)

β̃i β̂i ≤ −1

2
β̃2

i + 1

2
β2

i (54)

π̃i π̂i ≤ −1

2
π̃2

i + 1

2
π2

i . (55)

Substituting (51)–(55) into (50), one obtains

V̇ ≤ −CV + D (56)

where C = min{C1, . . . , Cni }, with Ci = {min(λmin(Qi −(4+
ni )I )), 2ci,k , 2σi,1/λmax(�i,1), 2γi,1σi,2, 2γi,2σi,3, ri }

D =
N∑

i=1

‖Pi‖2δ′
i0

2 +
p∑

k=1

22k(qi,k + ni q1,i,k)(max
∥
∥yi,r

∥
∥2k

)

+ niς
′ + 1

2

ni∑

k=1

σi,k W∗T
i,k W∗

i,k + 1

2
σi,2β

2
i + 1

2
σi,3π

2
i

+
N∑

j=1

d∗
i, j + ni d̄i,1 + ni − 1

2
δ2

i,1,0 + ni − 1

2
ε2

i,1,0}

and max
∥
∥yi,r

∥
∥2k = max∀t∈(0,∞)

∥
∥yi,r

∥
∥2k .

By (56), and using the same arguments as in [20], [22], [25],
[29], and [41], it can be proved that for each j = 1, . . . , ni ,
all the signals in the closed-loop system are SUUB. Moreover,
the tracking errors zi,1 = yi − yi,r and observer error vector
ei , i = 1, . . . , N , can be made arbitrarily small by adjusting
the design parameters appropriately.

The above design procedures and stable analysis are sum-
marized in the following theorem:

Theorem 1: For the nonlinear large-scale system (1), under
Assumptions 1–4, the decentralized controller (50) with the
state observer (8), the intermediate control (30), (46) and
parameter laws (31)–(33), (47), and (52) can guarantee that all
the signals in the closed-loop system is SUUB. Moreover, the
tracking errors and the observer errors can be made arbitrarily
small by adjusting the design parameters appropriately.

IV. SIMPLIFIED DECENTRALIZED DSC DESIGN AND

STABILITY ANALYSIS

In the previous section, an observer-based adaptive NN de-
centralized output feedback control approach was developed.
It was proved that the proposed approach can guarantee the
stability of the closed-loop system. However, to observe the
stabilizing functions αi, j in (46) and the control ui in (51),

one can find that an obvious drawback with this approach is
that αi, j and ui contain many derivatives about the variables,
which is the so-called the problem of explosion of complexity
in [35]–[39]. In order to overcome the problem of explosion
of complexity, this section will incorporate the DSC technique
proposed in [35] and [36] into the above adaptive NN de-
centralized control design scheme, and develop a simplified
observer-based adaptive NN decentralized DSC approach.

Before starting the adaptive NN control design, the follow-
ing assumption on reference signal yi,r (t) is given.

Assumption 5 ([35], [40]): The reference signal yi,r (t) is
a sufficiently smooth function of t , yi,r , ẏi,r and ÿi,r are
bounded, i.e., there exists a positive constant Bi0 such that

�i0 := {(yi,r , ẏi,r , ÿi,r ) : y2
i,r + ẏ2

i,r + ÿ2
i,r ≤ Bi0}.

The ni -step adaptive NN output feedback backstepping
design is based on the following change of coordinates

zi,1 = yi,1 − yi,r (57)

zi, j = x̂i, j − ξi, j , i = 1, . . . , N, j = 2, . . . , ni (58)

χi, j = ξi, j − αi, j−1, i = 1, . . . , N, j = 2, . . . , ni (59)

where zi, j is called the error surface, ξi, j is a variable, which
is obtained through a first-order filter on intermediate function
αi, j−1, and χi, j is called the output error of the first-order
filter.

Step i, 1: The time derivative of zi,1 along (1) is

żi,1 = x̂i,2 + W T
i, j ϕi, j (ȳr ) + W̃ T

i, j ϕi, j (ȳr )

+ hi,1 + �i,1(ȳ) − ẏi,r + 
i,1 + εi,1 + ei,2. (60)

Consider the Lyapunov function candidate
∑N

i=1 Vi,1 as

N∑

i=1

Vi,1 =
N∑

i=1

{
Vi,0 + 1

2
z2

i,1 + 1

2
W̃ T

i,1�
−1
i,1 W̃i,1

+ 1

2γi,1
β̃2

i + 1

2γi,2
π̃2

i + V̄i,1
}

(61)

where βi = ∑N
k=1 (Lk,i + (N/2)s2

k,1,i ) and πi =
max1≤k≤p{qi,k + q1,i,k}.

The intermediate control function αi,1 and the adaptation
functions Wi,1, β̂i and π̂i are chosen as

αi,1 = −1

2
zi,1 − (ci,1 + 3)zi,1 − β̂i zi,1

− π̂i

p∑

k=1

22kz2k−1
i,1 − W T

i,1ϕi,1(ȳr ) + ẏi,r

−εi,1,0 tanh

(
zi,1εi,1,0

ς

)

− eτi

(1 − τ ∗)
‖Pi‖2

N∑

j=1

(H̄i, j (zi,1))

− eτi

2(1 − τ ∗)
(H̄i,1(zi,1)) (62)

Ẇi,1 = �i,1(zi,1ϕi,1(ȳr ) − σi,1Wi,1) (63)

˙̂
βi = γi,1(z

2
i,1 − σi,2β̂i ) (64)
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˙̂πi = γi,2

( p∑

k=1

22kz2k
i,1 − σi,3π̂i

)

(65)

where Wi,1(0) = 0, β̂i (0) = 0 and π̂i (0) = 0.
Similar to the procedures in Step i ,1 in the above design

approach, one can obtain

N∑

i=1

V̇i,1 ≤ −
N∑

i=1

{
eT

i (Qi − 5I )ei + δ′2
i0‖Pi‖2

+
p∑

k=1

22k(qi,k + q1,i,k)
∥
∥yi,r

∥
∥2k

+ zi,1zi,2 − ci,1z2
i,1 + ς ′ + σi,1W̃ T

i,1Wi,1

+ σi,2β̃i β̂i + σi,3π̃i π̂i − βi z
2
i,1

+
N∑

j=1

d∗
i, j + d̄i,1 − ri V̄i,0 − ri V̄i,1

}
. (66)

Step i, j ( j = 2, . . . , ni − 1): From (58) and (59), the time
derivative of zi, j is

żi, j = ˙̂xi, j − ξ̇i, j

= x̂i, j+1 − ki, j x̂i,1 + ki, j yi

+ W T
i, j ϕi, j (ȳr ) − ξ̇i, j

= zi, j+1 + χi, j+1 + αi, j − ki, j x̂i,1

+ ki, j yi + W T
i, j ϕi, j (ȳr ) − ξ̇i, j . (67)

Consider the following Lyapunov function candidate

N∑

i=1

Vi, j =
N∑

i=1

Vi, j−1

+
N∑

i=1

(1

2
z2

i, j + 1

2
χ2

i, j + 1

2
W̃ T

i, j �
−1
i, j W̃i, j

)
. (68)

The time derivative of
∑N

i=1 Vi, j along (67) is

N∑

i=1

V̇i, j =
N∑

i=1

V̇i, j−1 +
N∑

i=1

(zi, j (zi, j+1 + χi, j+1

− ki, j x̂i,1 + ki, j yi + αi, j + W T
i, j ϕi, j (ȳr )

− ġi, j ) + χi, j χ̇i, j − W̃ T
i, j �

−1
i, j Ẇi, j ). (69)

Choose the intermediate control function αi, j and the adapta-
tion function Wi, j as

αi, j = −ci, j zi, j − zi, j−1 + ki, j x̂i,1

− ki, j yi − W T
i, j ϕi, j (ȳr )

− δi, j,0 tanh(
δi, j,0zi, j

ς
) + ξ̇i, j (70)

Ẇi, j = �i, j (zi, j ϕi, j (ȳr ) − σi, j Wi, j ) (71)

where Wi, j (0) = 0.
To avoid repeatedly differentiating αi, j in the traditional

backstepping design, which leads to the so-called explosion
of complexity, in the sequel, one can introduce a new state

variable ξi, j+1 and let αi, j pass through a first-order filter with
the constant λi, j+1 to obtain ξi, j+1

λi, j+1 ξ̇i, j+1 + ξi, j+1 = αi, j , ξi, j+1(0) = αi, j (0). (72)

By the definition of χi, j+1 = ξi, j+1 − αi, j , it yields ξ̇i, j+1 =
−χi, j+1/λi, j+1 and

χ̇i, j+1 = −χi, j+1

λi, j+1
+ Bi, j+1(zi,1, . . . , zi, j+1,

χi,2, . . . , χi, j+1, Wi,1, . . . , Wi, j , y1,r ,

ẏ1,r , ÿ1,r , . . . , yN,r , ẏN,r , ÿN,r ) (73)

where

Bi, j+1(·) = ci, j żi, j + żi, j−1 − ki, j
˙̂xi,1

+ ki, j ẏi + Ẇ T
i, j ϕi, j (ȳr ) + W T

i, j ∂ϕi, j (ȳr )

∂ ȳr

˙̄yr

+ dδi, j,0 tanh(
δi, j,0 zi, j

ς )

dzi, j
żi, j − χ̇i, j

λi, j
. (74)

From (70)–(74), one has
N∑

i=1

V̇i, j ≤ −
N∑

i=1

{eT
i (Qi − 4I )ei

+ ‖Pi‖2δ′2
i0 +

p∑

k=1

22k(qi,k + q1,i,k)
∥
∥yi,r

∥
∥2k

−
j∑

k=1

ci,k z2
i,k + jς ′ +

j∑

k=1

σi,k W̃ T
i,k Wi,k

+
j∑

l=1

zi,lχi,l+1 + σi,2β̃i β̂i + σi,3π̃i π̂i

+ zi, j zi, j+1 −
j−1∑

k=1

(χ2
i,k+1

λi,k+1
− Bi,k+1(·)χi,k+1

)

+
N∑

j=1

d∗
i, j + d̄i,1 − ri V̄i,0 − ri V̄i,1}. (75)

Step i, ni : In the final design step, the actual control input
ui will appear. The time derivative of zi,ni is

żi,ni = ˙̂xi,ni − ξ̇i,ni

= ui − ki,ni x̂i,1 + ki,ni yi

+ W T
i,ni

ϕi,ni (ȳr ) − ξ̇i,ni . (76)

Consider the following Lyapunov function candidate

V =
N∑

i=1

Vi,ni =
N∑

i=1

Vi,ni −1

+
N∑

i=1

(1

2
z2

i,ni
+ 1

2
χ2

i,ni
+ 1

2
W̃ T

i,ni
�−1

i,ni
W̃i,ni

)
. (77)

Take the control ui and the adaptation function Wi,ni as
follows:

ui = −ci,ni zi,ni − zi,ni −1 + ki,ni x̂i,1

− ki,ni yi − W T
i,ni

ϕi,ni (ȳr )

− δi,ni ,0 tanh
(δi,ni ,0zi,ni

ς

)
+ ξ̇i,ni (78)
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Fig. 1. z1,1 “solid line” and z2,1 “dash-dotted.”

Ẇi,ni = �i,ni (zi,ni ϕi,ni (ȳr ) − σi,ni Wi,ni ). (79)

From (77)–(79), using the similar procedures to Step i, j , one
has

V̇ ≤ −
N∑

i=1

{eT
i (Qi − 4I )ei + ‖Pi‖2δ′2

i0

+
p∑

k=1

22k(qi,k + q1,i,k)
∥
∥yi,r

∥
∥2k

−
ni∑

k=1

ci,k z2
i,k + niς

′ +
ni∑

k=1

σi,k W̃ T
i,k Wi,k

+
ni∑

l=1

zi,lχi,l+1 + σi,2β̃i β̂i + σi,3π̃i π̂i

−
ni −1∑

k=1

(χ2
i,k+1

λi,k+1
− Bi,k+1(·)χi,k+1

)
+

N∑

j=1

d∗
i, j

+ d̄i,1 − ri V̄i,0 − ri V̄i,1}. (80)

By using Young’s inequality, one has

∣
∣Bi,k+1χi,k+1

∣
∣ ≤ χ2

i,k+1 B2
i,k+1

2ϑi
+ 2ϑi (81)

where ϑi is a positive design constant.
Substituting (53)–(55) and (81) into (80) results in

V̇ ≤ −
N∑

i=1

{eT
i (Qi − 4I )ei −

ni∑

k=1

(ci,k − 1

2
)z2

i,k

− 1

2

ni∑

k=1

σi,k W̃ T
i,k W̃i,k − 1

2
σi,2β̃

2
i − 1

2
σi,3π̃

2
i

−
ni −1∑

k=1

( 1

λi,k+1
− B2

i,k+1

2ϑi
− 1

2

)
χ2

i,k+1

− ri V̄i,0 − ri V̄i,1} + D (82)
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Fig. 2. e1,1 “solid line” and e1,2 “dash-dotted.”

where

D =
N∑

i=1

{
‖Pi‖2δ′2

i0 +
p∑

k=1
22k(qi,k + q1,i,k)

×(max
∥
∥yi,r

∥
∥2k

) + niς
′ − 1

2

ni∑

k=1
σi,k W∗T

i,k W∗
i,k

+ 1
2σi,2β

2
i + 1

2σi,3π
2
i +

N∑

j=1
d∗

i, j + d̄i,1

}
.

Let Ai, j = {∑ j
k=1 (z2

i,k + W̃ T
i,k�

−1
i,k W̃i,k ) +∑ j−1

k=1 χ2
i,k+1

+(1/γi,1)β̃
2
i + (1/γi,2)π̃

2
i + 2eT

i Pi ei + 2V̄i,0 + 2V̄i,1 ≤ 2 pi
}
,

i = 1, . . . , N , j = 1, . . . , ni . Since Ai, j is a compact set and
Bi,k+1 is a continuous function, there exists a positive constant

Mi,k+1 such that
∣
∣
∣Bi,k+1

∣
∣
∣ ≤ Mi,k+1 on Ai, j ; therefore, one has

V̇ ≤ −
N∑

i=1

{eT
i (Qi − 4I )ei −

ni∑

k=1

(ci,k − 1

2
)z2

i,k

−1

2

ni∑

k=1

σi,k W̃ T
i,k W̃i,k − 1

2
σi,2β̃

2
i − 1

2
σi,3π̃

2
i

−
ni −1∑

k=1

(
1

λi,k+1
− M2

i,k+1

2ϑi
− 1

2
)χ2

i,k+1

−ri V̄i,0 − ri V̄i,1} + D. (83)

Choose the design parameters λi,k+1 and ci,k such
that ci,k − 1/2 > 0 and (1/λi,k+1) − (M2

i,k+1/2ϑi ) −
(1/2) > 0, respectively. Define C = min{C1, . . . , Cni },
where Ci = {min(λmin(Q) − 4), 2(ci,k −
1/2), 2σi,1/λmax(�i,1), (2(1/λi,k+1) − (M2

i,k+1/2ϑi ) −
(1/2)), 2γi,1σi,2, 2γi,2σi,3, ri }. From (83), one can obtain

V̇ ≤ −CV + D. (84)

Assumption 6: For a given p > 0, there exists V (0) ≤ p.
Remark 7: It should be pointed out that Assumption 6

means that all initial conditions on the closed-loop system are
bounded by the given parameter p, where p can increase or
decrease by choosing the initial conditions arbitrarily. That is,



TONG et al.: OUTPUT-FEEDBACK CONTROL FOR NONLINEAR LARGE-SCALE SYSTEMS 1083

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

seconds

Fig. 3. e2,1 “solid line” and e2,2 “dash-dotted.”
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Fig. 4. u1 “solid line” and u2 “dash-dotted.”

Assumption 6 is presented in terms of the concept of semi-
global stability (see [29], [36]–[37], [39]).

Theorem 2: Under Assumption 1–5 and suppose that Wi,1,
β̂i , π̂i , Wi, j and Wi,ni are adapted via adaptation laws
(63)–(65), (71), and (79). Then for any initial conditions
satisfying Assumption 6, there exist ci, j , ς , γi,1, γi,2, �i,1, σi,1,
σi,2, σi,3, λi, j , Qi and ki, j such that all signals of the closed-
loop system are SUUB. Moreover, the tracking errors and
the observer errors can be made arbitrarily small by choosing
appropriate design parameters.

V. SIMULATION STUDY

In this section, a simulation example is presented to show
the effectiveness of the proposed two adaptive NN decentral-
ized control approaches and make some necessary compar-
isons between these two control schemes.

Example([12], [33]): Consider the control systems of two
inverted pendulums connected by a spring. Each pendulum
may be positioned by a torque input ui applied by a ser-
vomotor at its base. It is assumed that θi and θ̇i are the
angular position and rate, θi is available to the i th controller
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Fig. 5. z1,1 “solid line” and z2,1 “dash-dotted.”
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Fig. 6. e1,1 “solid line” and e1,2 “dash-dotted.”

for i = 1, 2. Let θ1 = x1,1, θ2 = x2,1, θ̇1 = x1,2, and θ̇2 = x2,2,
then inverted pendulum equation can be described as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1,1 = x1,2 + f1,1(y1, y2) + h1,1 + �1,1(y1, y2)
ẋ1,2 = u1

J1
+ f1,2(y1, y2)

+ d1 + �1,2(y1, y2) + h1,2
y1 = x1,1

(85)

⎧
⎪⎪⎨

⎪⎪⎩

ẋ2,1 = x2,2 + f2,1(y1, y2) + h2,1 + �2,1(y1, y2)
ẋ2,2 = u2

J2
+ f2,2(y1, y2) + h2,2

+ d2 + �2,2(y1, y2)
y2 = x2,1

(86)

where f1,1 = 0, h1,1 = 0, �1,1 = 0, f1,2 =
((m1gr/J1) − (kr2/4J1)) sin(x1,1), d1 = (kr/2J1)(l − b),
�1,2 = (kr2/4J1) sin(x2,1), h1,2 = (x1,1(t − τ1,2(t)))/
(1 + x2

1,1(t − τ1,2(t))), f2,1 = 0, h2,1 = 0, �2,1 = 0,
�2,1 = 0, f2,2 = ((m2gr/J2) − (kr2/4J2)) sin(x2,1), h2,2 =
(x2,1(t − τ2,2(t)))/(1 + x2

2,1(t − τ2,2(t))), d2 = (kr/2J2)(l −
b), �2,2 = (kr2/4J2) sin(x1,1) and τ1,2 = τ2,2 = 0.5(1 +
sin(t)). τ1,2(t) and τ2,2(t) satisfy τ̇i,2(t) ≤ τ ∗ < 1, (i = 1, 2).

The parameters in (85) and (86) are chosen as m1 = 2 kg,
m2 = 2.5 kg, J1 = 5 kg, J2 = 6.25 kg, k = 100 N/m,
r = 0.5 m, l = 0.5 m, g = 9.81 m/s2, and b = 0.5 m.
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It is apparent that �i, j satisfies the condition of Assumption
1. By selecting the functions H̄1,2 = 2z1,1, H̄2,2 = 2z2,1,
h̄1,2 = 2sin2(t), h̄2,2 = 2sin2(t), �1,2 = 0 and �2,2 = 0,
Assumption 2 is satisfied.

Choose k1,1 = 1, k1,2 = 40, k2,1 = 2, k2,2 = 50,
Q1 = diag{8, 8}, and Q2 = diag{10, 10}. By solving Lypunov
equation (8), the symmetric positive matrices P1 and P2 are
obtained as

P1 =
[

164.0000 −4.0000
−4.0000 4.0000

]

, P2 =
[

125.2500 −5.0000
−5.000 2.7050

]

.

All basis functions are chosen as the Gaussian functions,
which contain 36 nodes with the centers μi, j,k evenly spaced
in [−1, 1] × [−1, 1] and the width ηi, j = 0.1.

Approach 1: Apply the first adaptive NN decentralized
control scheme to control the systems (85) and (86).

Choose design parameters in the controller and adaptive
laws: ε1,1,0 = 0.1, ε2,1,0 = 0.2, c1,1 = 5, c2,1 = 7, c1,2 = 10,
c2,2 = 6, δ1,2,0 = 0.2, δ2,2,0 = 0.3, σ1,1 = 0.1, σ2,1 = 0.2,
σ1,2 = 0.15, σ2,2 = 0.1, σ3,1 = 0.2, σ3,2 = 0.1, ς = 0.05,
γ1,1 = 1, γ1,2 = 10, γ2,1 = 12, γ2,2 = 14, �1,1 = diag{1, 1},
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Fig. 9. I1 in Approach 1 “solid line” and in Approach 2 “dash-dotted.”
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Fig. 10. I2 in Approach 1 “solid line” and in Approach 2 “dash-dotted.”

�2,1 = diag{2, 2}, �1,2 = diag{3, 3}, �2,2 = diag{2, 2},
τ 1 = 2, τ 2 = 2, τ ∗ = 0.6, p = 2.

The desired trajectories are given as y1,r = y2,r = sin(t),
and the initial conditions are chosen as x1,1(0) = 0.2,
x1,2(0) = 0.2. The others initial conditions are chosen as
zeros. The simulation results are shown by Figs. 1–8, where
Fig. 1 shows the trajectories of the tracking errors z1,1 and z2,1.
Figs. 2 and 3 show the trajectories of the observer errors e1,1,
e1,2, e2,1, and e2,2, respectively. Fig. 4 shows the trajectories
of the control inputs u1 and u2.

Approach 2: Apply the second adaptive NN decentralized
control scheme to control the systems (85) and (86). In the
simulation, choose parameters λ1,2 = λ2,2 = 0.008, and the
other parameters and the initial conditions are chosen as the
same as Approach 1. The simulation results are shown by
Figs. 5–8.

Figs.1–8 show that the proposed two adaptive NN de-
centralized control approaches can guarantee the stability of
the resulting closed-loop system. Meanwhile, by integrating
the tracking errors over the interval [0, 20], the values of
I1 = ∫ 20

0

∣
∣z1,1

∣
∣dt and I2 = ∫ 20

0

∣
∣z2,1

∣
∣dt are depicted by

Figs. 9 and 10, respectively. From Figs. 9 and 10, it is
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TABLE I

TIME COMPARISONS OF THE TWO APPROACHES

Simulation time Program execution time Program execution time
(s) of Approach 1 (s) of Approach 2 (s)

10 13.36 4.59
20 26.91 8.19
30 41.13 13.32

apparent that Approach 2 has better tracking performance than
Approach 1.

To further compare with the computation complexity be-
tween control Approach 1 and Approach 2, we set simulation
time 10, 20, and 30 s, and the corresponding program execu-
tion times are listed in Table I.

From Table I, we see that the program execution times
needed by Approach 2 is less that those needed by Ap-
proach 1. Therefore, it can be concluded that Approach 2
can overcome the computation burden inherent in the first
approach.

VI. CONCLUSION

In this paper, two observer-based adaptive NN decentralized
output feedback control approaches have been proposed for a
class of uncertain nonlinear large-scale systems with unknown
time delays and unmeasured states. The first one has been
designed based on the principle of the adaptive backstepping
technique, although it can solve the problem of the unmeasured
states and guarantee the stability of the close-loop system;
however, the problem of explosion of complexity is inher-
ent in the first control approach. The second one has been
designed by combining the adaptive backstepping technique
with the dynamic DSC technique, therefore, the second control
approach not only has the features of the first one, but also
overcomes the drawback existing in the first control approach.
Simulation results and simulation comparisons have confirmed
the effectiveness of the proposed approaches.
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