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	is paper proposes an adaptive neural network (NN) control approach for a direct-current (DC) systemwith full state constraints.
To guarantee that state constraints always remain in the asymmetric time-varying constraint regions, the asymmetric time-varying
Barrier Lyapunov Function (BLF) is employed to structure an adaptive NN controller. As we all know that the constant constraint is
only a special case of the time-varying constraint, hence, the proposed control method is more general for dealing with constraint
problem as compared with the existing works onDC systems. As far as we know, this system is the 
rst studied situations with time-
varying constraints. Using Lyapunov analysis, all signals in the closed-loop system are proved to be bounded and the constraints
are not violated. In this paper, the e�ectiveness of the control method is demonstrated by simulation results.

1. Introduction

Due to the requirements of practice and the development of
theory, the controller design of uncertain system has become
a new research direction and attracted more and more
scholars’ attention. 	e uncertainty of the actual engineering
system has been studied in many works [1–4]. 	e neural
networks [5] and fuzzy logic systems [6] have become the
two main tools which can e�ectively deal with the unknown
functions in the systems. In [7, 8], these are studies of some
actual engineering systems with uncertain parameters. In
[9, 10], the NN is used to approximate several randompertur-
bations and unknown functions. In [11–16], several nonlinear
system solutions are studied based on neural networks and
fuzzy logic systems. In [17], adaptive control schemes based
on neural networks were proposed for nonlinear systems
with unknown functions. Based on neural networks and
fuzzy logic systems, the signi
cant studies proposed the
novel adaptive tracking control methods for nonlinear SISO
systems in [18–20] and MIMO systems in [21–23]. However,

it is worth noting that the constraint problem is worth noting
in the above approaches, which lead to the inaccuracy or
oscillations of the engineering systems and even cause control
systems instability.

In fact, there are constraints inmost physical systemswith
various forms, for example, physical stoppages, saturation,
performance, and safety speci
cations, such as restricted
robot manipulation system [24], application to chemical
process [25], networked surveillance robots systems [26],
and nonuniform gantry crane [27]. In recent years, the
barrier Lyapunov functions become the main tools to solve
the constrained problem which was proposed for the 
rst
time in [28]. Based on BLF, some adaptive control methods
were presented for nonlinear systems with output constant
constraint in [29, 30] and state constant constraint in [31–
34]. As we known, the constant constraint is the special
case of the time-varying constraint. Subsequently, the authors
in [35, 36] proposed some adaptive control approaches to
address the stability problem of nonlinear systems with time-
varying constraints.
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Motor is the most important electromechanical energy
conversion device, which has been widely used in the
industrial and agricultural production, transportation,
aerospace, and so on. In particular, the motor system with
unknown uncertainties has attracted the attention of many
scholars, and the control problem of the motor system
becomes more and more important. In [37, 38], the authors
proposed two adaptive control methods for systems with
unknown functions. 	e authors in [39, 40] presented an
adaptive control with time-varying output constraints for
DC motor systems. According to the above descriptions,
the urgent problem is how to address the stability
problem of the DC motor system with time-varying state
constraints.

	is paper presents an adaptive NN tracking control
method for DC motor systems with time-varying state
constraints. As far as we know, there is no work dealing with
such DC motor systems in the literature at present stage.
	e contributions of this paper are summarized as follows.(1) 	e time-varying state constraints are 
rst considered
in the DC motor systems; comparing with the existing
on DC motor systems, the proposed control method is
more general and extensive in the engineering 
eld. (2) To
guarantee that the state constraints always remain in the
time-varying constrained sets, the asymmetric time-varying
BLF is utilized. (3) A novel adaptive tracking controller
based on the neural networks and backstepping technique
is structured to guarantee that all signals in the closed-loop
system are bounded, the tracking errors converge to a small
neighborhood of zero and the time-varying state constraints
are not transitioned.

2. Problem Formulation and Preliminaries

Consider the dynamic system with the DC motor without
vibration mode as the following form:

�̇1 = �2��̇2 + ��̇1 + �� + � = �
	 = �1,

(1)

where�1(
) is themotor angular position;�2 stands formotor
angular velocity; � is a known inertia, � is an unmeasured
viscous friction, and �� is an unmeasured nonlinear friction;�(
) represents the unknown disturbance but bounded with‖�(
)‖ ≤ ��; 	 ∈ � is the system output; and � represents
the motor torque. In particular, output 	(
) is required as
follows:

��1 (
) < 	 (
) < ��1 (
) , ∀
 ≥ 0, (2)

where ��1 : �+ → � and ��1 : �+ → � such that ��1(
) > ��1(
),∀
 ∈ �+.
Remark 1. From (2), the states of DC systems are constrained
by the considered time-varying functions. In [35, 36], the
constraint problem is omitted, which is the main factor
of the oscillations of the engineering systems. 	e authors

in [39] addressed the stability problem of DC motor sys-
tems with constant constraint which is the special case of
the time-varying constraint. Comparing with the [40], the
authors only consider time-varying output constraint; the
proposed adaptive control method tries to stabilize the DC
motor systems with time-varying state constraints, which
cause the di�culty of controller design.

In this paper, the control objective is to design an
adaptive NN tracking controller � which adjusts the output
of DC motor systems 	 to track desired trajectory of the
reference signal 	�(
) in the range of time-varying constraint
functions. Meanwhile, all signals in the closed-loop systems
are bounded and the time-varying state constrains are not
violated.

Assumption 2 (see [35]). 	ere exist constants��� and��� , � =
0, 1, . . . , �, such that ��1(
) ≤ ��� , ��1(
) ≥ ��� , and |�(�)�1 (
)| ≤��� , |�(�)�1 (
)| ≤ ��� , ∀
 ≥ 0, � = 1, . . . , �.
Assumption 3 (see [32]). 	ere exist functions �0 : �+ → �+
and �0 : �+ → �+ satisfying �0(
) < ��1(
) and �0(
) >��1(
) ∀
 ≥ 0, and positive constants ��, � = 1, . . . , �, such
that the desired trajectory	�(
) and its time derivatives satisfy�0(
) ≤ 	�(
) ≤ �0(
) and |	(�)� (
)| ≤ ��, � = 1, . . . , �, ∀
 ≥ 0.

	e following lemma is represented for the establishment
of binding compensation and performance limits.

Lemma 4 (see [28]). Let � fl {� ∈ � : |�| < 1} ⊂ � and� fl �� × � ⊂ ��+1 be open sets. Take into account the system

�̇ = � (
, �) , (3)

where� fl [�, �]� ∈ N and� : �+×N → ��+1 in 
 is piecewise
continuous and in � is locally Lipschitz, united in 
, on �+ ×N.

Suppose that there are functions � : �� × �+ → �+
and �1 : � → �+. In their respective domains, they are
continuously di�erentiable and positive de
nite, such that

�1 (�) → ∞,     �    !→ 1
"1 (‖�‖) ≤ � (�, 
) ≤ "2 (‖�‖) , (4)

where "1 and "2 are class �∞ functions. Let �(�) := �1(�) +#(�, 
), and $(0) ∈ �. If the inequality is established:

�̇ = %�%� � ≤ 0 (5)

in � ∈ �, �(
) ∈ � ∀
 ∈ [0, ∞).
Lemma 5 (see [35]). For all |�| < 1 and positive integer &, the
inequality log 1/(1 − �2
) < �2
/(1 − �2
).
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Proof. For |�| < 1, the term �2
/(1 − �2
) can be rewritten as

�2
1 − �2
 = log (*�2�/(1−�2�))
≥ log[[1 + �2
1 − �2
 + ∞∑

�=2

(�2
/ (1 − �2
))��! ]]
≥ log(1 + �2
1 − �2
) = log

11 − �2
 .
(6)

	e proof is completed.

3. State Feedback Adaptive Controller Designs

	is paper presents an adaptive tracking controller based on
a backstepping technique with the asymmetric time-varying
BLF for the DC motor systems. 	e detailed designs process
is shown in this section.

Denote B1 = �1 − 	�, B2 = �2 − C1, where C1 is the virtual
controller which will be given later on.We consider the time-
varying asymmetric BLF:

�1 = D (B1)2& log
�2
1 (
)

�2
1 (
) − B12

+ 1 − D (B1)2& log

�2
�1 (
)
�2
�1 (
) − B12
 ,

(7)

where & is a positive integer.
	e time-varying barriers are chosen as

��1 (
) = 	� (
) − ��1 (
) (8)

�1 (
) = ��1 (
) − 	� (
) (9)

and D(⋅) is de
ned as

D (⋅) = {{{
1, if ⋅ > 0
0, if ⋅ ≤ 0. (10)

Based on Assumptions 2 and 3, there are positive con-

stants �1 , �1 , ��1 , and ��1 , such that

�1 ≤ �1 (
) ≤ �1 .
��1 ≤ ��1 (
) ≤ ��1 , ∀
 ≥ 0 (11)

	rough the change of error coordinates,

��� = B���� ,
�� = B����� = D (B�) �� + (1 − D (B�)) ��� , � = 1, 2.

(12)

According to (12), (7) can be rewritten as

�1 = 12& log
11 − �2
1 . (13)

Remark 6. According to (10), we know that when B1 > 0, we
obtain D(B1) = 1, �1 = �1 , and �1 = (1/2&) log(1/(1 − �2
1 )) =(1/2&) log(1/(1 − �2
1 )). When B1 < 0, we obtain D(B1) = 0,�1 = ��1 , and�1 = (1/2&) log(1/(1−�2
�1 )) = (1/2&) log(1/(1−�2
1 )). From the above, we can get (13) based on (12).

Obviously, under the premise of |�| < 1, �1 is de
nite
continuously di�erentiable. 	e time derivative of �1 is

�̇1 = D (B1) �2
−11�1 (1 − �2
1 ) (B2 + C1 − ̇	� − B1 �̇1�1 )
+ (1 − D (B1)) �2
−1�1��1 (1 − �2
�1 ) (B2 + C1 − ̇	� − B1 �̇�1��1 ) .

(14)

Choose the virtual controller C1 as
C1 = − (M1 + M1 (
)) B1 + ̇	� − 2& − 12& B1. (15)

	e time-varying gain is given as

M� (
) = √(�̇����� )
2 + (�̇��� )

2 + O�, (16)

where O� and M�, � = 1, 2 are any positive constants. Make sure

that the time derivative �1 is bounded, when �̇�1 and �̇1 are
both zero. Substituting (15) and (16) into (14) and noting that

M� + D (B�) �̇��� + (1 − D (B�)) �̇����� ≥ 0 (17)

we obtain

�̇1 = ( D (B1) �2
−11�1 (1 − �2
1 ) + (1 − D (B1)) �2
−1�1��1 (1 − �2
�1 ) ) B2
− B1(M1 (
) D (B1) �2
1(1 − �2
1 ) + M1 (
) (1 − D (B1)) �2
�1(1 − �2
�1 )
+ �̇1�1

D (B1) �2
1(1 − �2
1 ) + �̇�1��1
(1 − D (B1)) �2
�1(1 − �2
�1 ) )

− M1B1(D (B1) �2
1(1 − �2
1 ) + (1 − D (B1)) �2
�1(1 − �2
�1 ) ) − 2& − 12&
⋅ R1B2
1 ,

(18)
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where

R1 = D (B1)�2
1 − B2
1 + 1 − D (B1)�2
�1 − B2
1 . (19)

A�er 
nishing it, we get

�̇1 = ( D (B1)(�2
1 − B2
1 ) + (1 − D (B1))(�2
�1 − B2
1 ) ) B2
−11 B2
− �2
1(1 − �2
1 ) (�̇1�1 D (B1) + �̇�1��1 (1 − D (B1))
+ M1 (
)) − M1�2
1(1 − �2
1 ) − 2& − 12& R1B2
1 .

(20)

Based on (12), we obtain

�̇1 ≤ − M1�12
1 − �12
 + R1B12
−1B2 − 2& − 12& R1B2
1 . (21)

Using Young’s inequality, the following inequality holds:

R1B2
−11 B2 ≤ R1 (2& − 12& B2
1 + 12&B2
2 ) . (22)

Substituting (22) into (21), �̇1 can be further rewritten as

�̇1 ≤ − M1�12
1 − �12
 + 12&R1B22
. (23)

	e Barrier Lyapunov Function �2 is given as

�2 = �1 + D (B2)2& log
�2
2 (
)

�2
2 (
) − B22

+ 1 − D (B2)2& log

�2
�2 (
)
�2
�2 (
) − B22
 .

(24)

	en, di�erentiating of �2 with respect to time is given by

�̇2 = �̇1 + D (B2) �2
−12�2 (1 − �2
2 ) (Ḃ2 − B2 �̇2�2 )
+ (1 − D (B2)) �2
−1�2��2 (1 − �2
�2 ) (Ḃ2 − B2 �̇�2��2 ) .

(25)

From the de
nition of the tracking error B2 = �2 − C1, it
is easy to obtain Ḃ2 = �̇2 − Ċ1, and the derivative of the virtual
controller is given as

Ċ1 = %C1%�1 �2 + 1∑
�=0

%C1%U1 U(�+1)1 , (26)

where U1 = [	�, ��1 , �1]�.

According to (26), (25) can be rewritten as

�̇2
= (�̇2 − Ċ1) (1 − D (B2)��2

�2
−1�21 − �2
�2 + D (B2)�2
�2
−121 − �2
2 )

− B2 �̇2�2
D (B2)�2

�2
−121 − �2
2
− B2 �̇�2��2

1 − D (B2)��2
�2
−1�21 − �2
�2 + �̇1.

(27)

Based on (23), we get

�̇2 ≤ − M1�12
1 − �12
 + 12&R1B22
 + (�̇2 − Ċ1) �2
2B2 (1 − �2
2 )
− B2 �̇2�2

D (B2)�2
�2
−121 − �2
2

− B2 �̇�2��2
1 − D (B2)��2

�2
−1�21 − �2
�2 .
(28)

Substituting (26) into the above formula, we obtain

�̇2 = − M1�12
1 − �12

+ �2
2B2 (1 − �2
2 ) (�−1 (−��̇1 − �� + �) − Ċ1)
− D (B2)�2

�2
−121 − �2
2 (B2 �̇2�2 )
− 1 − D (B2)��2

�2
−1�21 − �2
�2 (B2 �̇�2��2 ) − �−1�2
2B2 (1 − �2
2 )�
+ 12&R1B22
.

(29)

Using Young’s inequality and noting ‖�(
)‖ ≤ ��, we
obtain

− �−1�2
2B2 (1 − �2
2 )� ≤ 12V1 ( �−1�2
2B2 (1 − �2
2 ))2 + 12V1�2�, (30)

where V1 is a positive constant.



Complexity 5

Based on (30), (29) can be rewritten as

�̇2 = − M1�12
1 − �12
 + 12&R1B22
 + �2
2B2 (1 − �2
2 )
× (�−1 (−��̇1 − �� + �) − Ċ1) + D (B2)�2

�2
−121 − �2
2
× (−B2 �̇2�2 ) + 1 − D (B2)��2

�2
−1�21 − �2
�2 (−B2 �̇�2��2 )
+ 12V1 ( �−1�2
2B2 (1 − �2
2 ))2 + 12V1�2�.

(31)

For convenience, we de
ne

W (�) = �−1 (�� + ��̇1) + Ċ1. (32)

In fact, since the parameters of� and�� are not available,W is unknown in practice. In order to solve the uncertainty of
this parameter, we designed NN, as shown below to estimate

W (�) = X∗�Y (�) + $ (�) , (33)

where � = [��1 , ��2 ]� ∈ Ω� ⊂ �3, and similar to [28], we
assume that the approximate error $(�) satis
es |$(�)| ≤ $∗
with the constant $∗ > 0.

Substituting (33), (31) can be rewritten as

�̇2 ≤ − M1�2
11 − �2
1 + 12&R1B22
 + �−1�2
2 X̃�Y (�)B2 (1 − �2
2 )
− �−1�2
2B2 (1 − �2
2 )$ (�) + 12V1 ( �−1�2
2B2 (1 − �2
2 ))2

+ 12V1�2� + M2 �2
21 − �2
2 + �−1�2
2B2 (1 − �2
2 )�.
(34)

According to Young’s inequality, we can easily obtain

− �−1�2
2 $ (�)B2 (1 − �2
2 ) ≤ 12V2 ( �−1�2
2B2 (1 − �2
2 ))2 + 12V2$∗2, (35)

where V2 is a positive constant.
Based on (35), (34) can be rewritten as

�̇2 ≤ − M1�2
11 − �2
1 + 12&R1B22
 + �−1�2
2 X̃�Y (�)B2 (1 − �2
2 )
+ 12V2 ( �−1�2
2B2 (1 − �2
2 ))2 + 12V2$∗2 + M2 �2
21 − �2
2

+ 12V1 ( �−1�2
2B2 (1 − �2
2 ))2 + 12V1�2�
+ �−1�2
2B2 (1 − �2
2 )�.

(36)

	e actual controller is given as

� = − 12&�R1B2 (�2
2 − B2
2 ) − �−1�2
22V1B2 (1 − �2
2 )
− �−1�2
22V2B2 (1 − �2
2 ) + �B2X̂�Y (�)
− �B2 (M2 + M2) .

(37)

Substituting (37), we obtain

�̇2 ≤ − M1�2
11 − �2
1 − M2 �2
2(1 − �2
2 ) + 12V1�2�
+ �2
21 − �2
2 X̃�Y (�) + 12V2$∗2.

(38)

Design the Lyapunov function candidate �3:
�3 = �2 + 12X̃�Γ−1X̃, (39)

where Γ = Γ−1 > 0 is a constant matrix and X̃ = X̂ − X∗.
	e time derivative of �3 is

�̇3 = �̇2 + X̃�Γ−1 ̇̂X. (40)

Based on (38), we obtain

�̇3 ≤ − M1�2
11 − �2
1 − M2 �2
2(1 − �2
2 ) + 12V1�2� + 12V2$∗2

+ X̃�Γ−1 ̇̂X + �2
21 − �2
2 X̃�Y (�) .
(41)

	e adaptive law is given as follows:

̇̂X = Γ (− �2
21 − �2
2 Y (�) − `X̂) , (42)

where ` is a positive constant.
Substituting (42) into (41), we get

�̇3 = − M1�2
11 − �2
1 − M2 �2
2(1 − �2
2 ) + 12V1�2� + 12V2$∗2
− X̃�` (X̃ + X∗) .

(43)
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Using Young’s inequality,

�̇3 ≤ − M1�2
11 − �2
1 − M2 �2
2(1 − �2
2 ) + 12V1�2� + 12V2$∗2
− 2̀ (aaaaaX̃aaaaa2 − aaaaX∗aaaa2) .

(44)

A�er 
nishing it, we get

�̇3 ≤ −M1log 11 − �12
 − 2̀ aaaaaX̃aaaaa2 + 2̀ aaaaX∗aaaa2
− M2log 11 − �22
 + 12V1�2� + 12V2$∗2.

(45)

	en, the above inequality can be rewritten as

�̇3 ≤ −b�3 + c, (46)

where

b = min {2M1, 2M2, `Γ−1} .
c = 12V1�2� + 12V2$∗2 + 2̀ aaaaX∗aaaa2 (47)

�eorem 7. Consider the unknown DC motor control system
(1), based on the assumptions of Assumptions 2 and 3,
Lemma 4, actual controller (37), and the adaptive law (42).
	e following properties guaranteed that the tracking error
singles will remain in a compact neighborhood of zero, that is,
lim�→∞|	(
) − 	�(
)| = 0, all signals of the closed-loop system
are bounded, and all state constraints are never violated.

Proof. With both sides of (46) multiplied by *��, we obtain
��
 (�3*��) ≤ c*��. (48)

Integrating (48) over [0, 
], we have
0 ≤ �3 (
) ≤ �3 (0) *−�� + cb . (49)

Based on (7), (24), and (39), we can obtain

�3 = 12 log �2
1 (
)
�2
1 (
) − B2
1 + 12 log �2
2 (
)

�2
2 (
) − B2
2
+ 12X̃�Γ−1X̃.

(50)

	en, we have

12 log
�2
1 (
)

�2
1 (
) − B2
1 ≤ �3� (
) ≤ �3� (0) , (51)

where

�3� (0) = 12 log
�2
1 (0)

�2
1 (0) − B2
1
+ 14"max (Γ−1) aaaaaX̂ (0) − X∗aaaaa + c2b .

(52)

	erefore, we know that

( B1� (
))2
 ≤ 1 − *−2�3�(0). (53)

Based on the above inequality, the following inequality is
obtained:     B1 (
)    ≤ g1 (
) , (54)

where

g1 (
) = �1 (
) 2�√1 − *−2�3�(0). (55)

Similar to the derivation of B1, we can obtain the conclu-
sion that     B2 (
)    ≤ g2 (
) , (56)

where

g2 (
) = �2 (
) 2�√1 − *−2�3�(0). (57)

From Assumption 2, we can be known that |�1(0)| <��1(0), and from the de
nition of ��1(
), we have |B1(
)| <�1(
). In fact, from �1 = B1 + 	� and �2 = B2 + C1, we obtain    �1 (
)    < �1 (
) + 	� (
) . (58)

Based on the above inequality, we know |	(
)| ≤ ��1(
),∀
 ≥ 0. 	erefore, the output signals are bounded.
Obviously, we can clearly obtain that the virtual controllerC1 is bounded in (15). Based on B2 = �2 − C1 and (56), �2 is

bounded. In addition, from (37) and (42), we know the actual
controller � and the adaptive law X̂ are bounded. 	erefore,
all the closed-loop system signals are bounded.

	e proof is completed.

Remark 8. In the above analysis, it is apparent that the
boundedness of B1 lies on the design parameters V1, V2, `,��, $∗, X∗, M1, M2, and Γ−1. If we 
x ` > 0, it is clear
that decreasing V� might result in small c and increasing M�
might result in large b; thus, it will help to reduce c/b. 	is
represents that the tracking errors can be made arbitrarily
small by selecting the design parameters appropriately.

4. Simulation Results

To illustrate the validity of the proposed adaptive NN control
method, a simulation example is provided. Speci
cally, the
following the DC motor system is described by

��̇2 + ��̇1 + �� + � = �, (59)

where the inertia is � = 0.018 kg⋅m2, � denotes an unmea-
sured viscous friction with � = sin(
) + 1.82, �� is an
unmeasured nonlinear friction with �� = 0.987, and � is
the external interference with � = 0.05 sin 
. 	e desired
reference signal is given as 	� = 0.4 cos 
 − 0.2. 	e virtual
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Figure 1:	e trajectories of output �1 and the reference signal 	�(
).
controller, the actual controller, and the adaptation law are
chosen as follows:

C1 = − (M1 + M1 (
)) B1 + ̇	� − 2& − 12& B1
� = − 12&�R1B2 (�2
2 − B2
2 ) − � (M2 + M2) B2

− �−1�2
22V1B2 (1 − �2
2 ) − �−1�2
22V2B2 (1 − �2
2 )
+ �B2X̂�Y (�)

̇̂X = Γ (− �2
21 − �2
2 Y (�) − `X̂) .

(60)

	e angular position and the angular velocity of motor
systems are bounded by ��1 < �1 < ��2 and ��3 < �2 < ��4
with ��1 = 0.5 + 0.2 cos(
), ��2 = −1 + 0.4 cos(
), ��3 =−1.4 + 0.4 cos(
), and ��4 = 0.6 + 0.2 cos(
). 	e NN X�Y(B)
contains 20 nodes and the centers R�, � = 1, . . . , 20.	e design
parameters of the proposed control method are chosen asΓ = 2.5n, & = 2, O1 = 4, O2 = 4, M1 = 2, M2 = 2, o = 1,
and �� = 0.987 and the initial condition of the system state is

chosen as �1(0) = 0.35, �2(0) = −0.95, and X̂(0) = 0.
For the DC motor system, using a method of controlling

the program can be obtained by the simulation results shown
in Figures 1–5. Figures 1 and 2 show the output trajectory.
Figure 1 shows the output and the reference signal tracking
e�ect; the 
gure shows that the two curves almost coincide;
that is to say, the tracking error converges to zero. Figure 3
shows the tracking error trajectory of B1(
) initially from
the boundaries �1(
) and −��1(
) repulsion, but eventually
converging to zero. Figure 4 shows a bounded and adaptive
law of locus. According to Figure 4, we can see that the track

10 15 20 25 30 35 40 45 500 5

2
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−1.5

−1
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Figure 2: Trajectory of state �2.
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0.1

z1

z 2

Figure 3: Phase portrait of B1 and B2.

adaptation law is bounded.	us, we can conclude that a good
tracking performance can make all the signals in the closed-
loop system bounded. From Figure 5, it can be observed that
the control input is bounded by a bounded back and forth
reciprocate.

5. Conclusion

In this paper, we propose an adaptive tracking control
method for a DC system with full state constraints. 	e
asymmetric time-varying BLF is employed to guarantee that
the states always remain in the time-varying constrained
sets. In the asymmetric system, neural networks and a
backstepping technique are used to construct an adaptive
control and adaptation laws to ensure that all signals in the
closed-loop system are bounded and the state constraints are
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Figure 4: 	e trajectory of ‖X̂‖.
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Figure 5: 	e trajectory of input �.

not transitioned. 	e performances of the adaptive control
method based asymmetric time-varying BLF are veri
ed by
a simulation example.
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