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Abstract

We present an approach to adaptively utilize deep

neural networks in order to reduce the evaluation

time on new examples without loss of accuracy.

Rather than attempting to redesign or approxi-

mate existing networks, we propose two schemes

that adaptively utilize networks. We first pose an

adaptive network evaluation scheme, where we

learn a system to adaptively choose the compo-

nents of a deep network to be evaluated for each

example. By allowing examples correctly clas-

sified using early layers of the system to exit,

we avoid the computational time associated with

full evaluation of the network. We extend this to

learn a network selection system that adaptively

selects the network to be evaluated for each ex-

ample. We show that computational time can be

dramatically reduced by exploiting the fact that

many examples can be correctly classified using

relatively efficient networks and that complex,

computationally costly networks are only neces-

sary for a small fraction of examples. We pose

a global objective for learning an adaptive early

exit or network selection policy and solve it by

reducing the policy learning problem to a layer-

by-layer weighted binary classification problem.

Empirically, these approaches yield dramatic re-

ductions in computational cost, with up to a 2.8x

speedup on state-of-the-art networks from the

ImageNet image recognition challenge with min-

imal (< 1%) loss of top5 accuracy.

1. Introduction

Deep neural networks (DNNs) are among the most pow-

erful and versatile machine learning techniques, achieving

state-of-the-art accuracy in a variety of important applica-

tions, such as visual object recognition (He et al., 2016),
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speech recognition (Hinton et al., 2012), and machine

translation (Sutskever et al., 2014). However, the power

of DNNs comes at a considerable cost, namely, the com-

putational cost of applying them to new examples. This

cost, often called the test-time cost, has increased rapidly

for many tasks (see Fig. 1) with ever-growing demands

for improved performance in state-of-the-art systems. As

a point of fact, the Resnet152 (He et al., 2016) architec-

ture with 152 layers, realizes a substantial 4.4% accuracy

gain in top-5 performance over GoogLeNet (Szegedy et al.,

2015) on the large-scale ImageNet dataset (Russakovsky

et al., 2015) but is about 14X slower at test-time. The high

test-time cost of state-of-the-art DNNs means that they can

only be deployed on powerful computers, equipped with

massive GPU accelerators. As a result, technology com-

panies spend billions of dollars a year on expensive and

power-hungry computer hardware. Moreover, high test-

time cost prevents DNNs from being deployed on resource

constrained platforms, such as those found in Internet of

Things (IoT) devices, smart phones, and wearables. This

problem has given rise to a concentrated research effort to

reduce the test-time cost of DNNs. Most of the work on this

topic focuses on designing more efficient network topolo-

gies and on compressing pre-trained models using various

techniques (see related work below). We propose a differ-

ent approach, which leaves the original DNN intact and in-

stead changes the way in which we apply the DNN to new

Figure 1. Performance versus evaluation complexity of the DNN

architectures that won the ImageNet challenge over past several

years. The model evaluation times increase exponentially with

respect to the increase in accuracy.
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examples. We exploit the fact that natural data is typically a

mix of easy examples and difficult examples, and we posit

that the easy examples do not require the full power and

complexity of a massive DNN.

We pursue two concrete variants of this idea. First, we pro-

pose an adaptive early-exit strategy that allows easy exam-

ples to bypass some of the network’s layers. Before each

expensive neural network layer (e.g., convolutional layers),

we train a policy that determines whether the current ex-

ample should proceed to the next layer, or be diverted to a

simple classifier for immediate classification. Our second

approach, an adaptive network selection method, takes a set

of pre-trained DNNs, each with a different cost/accuracy

trade-off, and arranges them in a directed acyclic graph

(Trapeznikov & Saligrama, 2013; Wang et al., 2015), with

the the cheapest model first and the most expensive one

last. We then train an exit policy at each node in the

graph, which determines whether we should rely on the

current model’s predictions or predict the most beneficial

next branch to forward the example to. In this context we

pose a global objective for learning an adaptive early exit or

network selection policy and solve it by reducing the pol-

icy learning problem to a layer-by-layer weighted binary

classification problem.

We demonstrate the merits of our techniques on the Im-

ageNet object recognition task, using a number of popu-

lar pretrained DNNs. The early exit technique speeds up

the average test-time evaluation of GoogLeNet (Szegedy

et al., 2015), and Resnet50 (He et al., 2016) by 20-30%

within reasonable accuracy margins. The network cas-

cade achieves 2.8x speed-up compared to pure Resnet50

model at 1% top-5 accuracy loss and 1.9x speed-up with no

change in model accuracy. We also show that our method

can approximate a oracle policy that can see true errors suf-

fered for each instance.

In addition to reducing the average test-time cost of DNNs,

it is worth noting that our techniques are compatible with

the common design of large systems of mobile devices,

such as smart phone networks or smart surveillance-camera

networks. These systems typically include a large number

of resource-constrained edge devices that are connected to

a central and resource-rich cloud. One of the main chal-

lenges involved in designing these systems is determining

whether the machine-learned models will run in the devices

or in the cloud. Offloading all of the work to the cloud

can be problematic due to network latency, limited cloud

ingress bandwidth, cloud availability and reliability issues,

and privacy concerns. Our approach can be used to design

such a system, by deploying a small inaccurate model and

an exit policy on each device and a large accurate model in

the cloud. Easy examples would be handled by the devices,

while difficult ones would be forwarded to the cloud. Our

approach naturally generalizes to a fog computing topology

(where resource constrained edge devices are connected to

a more powerful local gateway computer, which in turn is

connected to a sequence of increasingly powerful comput-

ers along the path to the data-center). Such designs allow

our method to be used in memory constrained settings as

well due to offloading of complex models from the device.

2. Related Work

Past work on reducing evaluation time of deep neural net-

works has centered on reductions in precision and arith-

metic computational cost, design of efficient network struc-

ture, and compression or sparsification of networks to re-

duce the number of convolutions, neurons, and edges. The

approach proposed in this paper is complimentary. Our ap-

proach does not modify network structure or training and

can be applied in tandem with these approaches to further

reduce computational cost.

The early efforts to compress large DNNs used a large

teacher model to generate an endless stream of labeled ex-

amples for a smaller student model (Bucila et al., 2006;

Hinton et al., 2015). The wealth of labeled training data

generated by the teacher model allowed the small student

model to mimic its accuracy.

Reduced precision networks (Gong et al., 2014; Cour-

bariaux et al., 2015; Chen et al., 2015; Hubara et al., 2016a;

Wu et al., 2016; Rastegari et al., 2016; Hubara et al., 2016b)

have been extensively studied to reduce the memory foot-

print of networks and their test-time cost. Similarly, com-

putationally efficient network structures have also been

proposed to reduce the computational cost of deep net-

works by exploiting efficient operations to approximate

complex functions, such as the inception layers introduced

in GoogLeNet (Szegedy et al., 2015).

Network sparsification techniques attempt to identify and

prune away redundant parts of a large neural networks. A

common approach is to remove unnecessary nodes/edges

from the network(Liu et al., 2015; Iandola et al., 2016; Wen

et al., 2016). In convolutional neural networks, the ex-

pensive convolution layers can be approximated (Bagher-

inezhad et al., 2016) and redundant computation can be

avoided (Figurnov et al., 2016b).

More recently, researchers have designed spatially adap-

tive networks (Figurnov et al., 2016a; Bengio et al., 2015)

where nodes in a layer are selectively activated. Others

have developed cascade approaches (Leroux et al., 2017;

Odena et al., 2017) that allow early exits based on confi-

dence feedback. Our approach can be seen as an instance

of conditional computation, where we seek computational

gains through layer-by-layer and network-level early ex-

its. However, we propose a general framework which opti-
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Figure 2. (Left) An example network selection system topology for networks Alexnet(A), GoogLeNet(G) and Resnet(R). Green γ blocks

denote the selection policy. The policy evaluates Alexnet, receives confidence feedback and decides to jump directly to Resnet or send

the sample to GoogLeNet->Resnet cascade. (Right) An example early exit system topology (based on Alexnet). The policy chooses one

of the multiple exits available to it at each stage for feedback. If the sample is easy enough, the system sends it down to exit, otherwise

it sends the sample to the next layer.

mizes a novel system risk that includes computational costs

as well as accuracy. Our method does not require within

layer modifications and works with directed acyclic graphs

that allow multiple model evaluation paths.

Our techniques for adaptive DNNs borrow ideas from the

related sensor selection problem (Xu et al., 2013; Kus-

ner et al., 2014; Wang et al., 2014; 2015; Trapeznikov &

Saligrama, 2013; Nan et al., 2016; Wang & Saligrama,

2012). The goal of sensor selection is to adaptively choose

sensor measurements or features for each example.

3. Adaptive Early Exit Networks

Our first approach to reducing the test-time cost of deep

neural networks is an early exit strategy. We first frame a

global objective function and reduce policy training for op-

timizing the system-wide risk to a layer-by-layer weighted

binary classification (WBC). We denote a labeled exam-

ple as (x, y) ∈ R
d × {1, . . . ,L}, where d is the dimen-

sion of the data and {1, . . . ,L} is the set of classes rep-

resented in the data. We define the distribution generating

the examples as X × Y . For a predicted label ŷ, we de-

note the loss L(ŷ, y). In this paper, we focus on the task

of classification and, for exposition, focus on the indicator

loss L(ŷ, y) = 1ŷ=y , in this section. In practice we upper

bound the indicator functions with logistic loss for compu-

tational efficiency.

As a running DNN example, we consider the AlexNet ar-

chitecture (Krizhevsky et al., 2012), which is composed of

5 convolutional layers followed 3 fully connected layers.

During evaluation of the network, computing each convo-

lutional layer takes more than 3 times longer than comput-

ing a fully connected layer, so we consider a system that

allows an example to exit the network after each of the first

4 convolutional layers. Let ŷ(x) denote the label predicted

by the network for example x and assume that computing

this prediction takes a constant time of T . Moreover, let

σk(x) denote the output of the kth convolutional layer for

example x and let tk denote the time it takes to compute

this value (from the time that x is fed to the input layer).

Finally, let ŷk(x) be the predicted label if we exit after the

kth layer.

After computing the kth convolutional layer, we introduce a

decision function γk that determines whether the example

should exit the network with a label of ŷk(x) or proceed

to the next layer for further evaluation. The input to this

decision function is the output of the corresponding convo-

lutional layer σk(x), and the value of γk(σk(x)) is either

−1 (indicating an early exit) or 1. This architecture is de-

picted on the right-hand side of Fig. 2.

Globally, our goal is to minimize the evaluation time of the

network such that the error rate of the adaptive system is no

more than some user-chosen value B greater than the full

network:

min
γ1,...,γ4

Ex∼X [Tγ1,...,γ4
(x)] . (1)

s.t. E(x,y)∼X×Y

[

(L(ŷγ1, ..., γ4(x), y)− L(ŷ(x), y))+
]

≤ B

Here, Tγ1,...,γ4
(x) is the prediction time for example x for

the adaptive system, ŷγ1, ..., γ4(x) is the label predicted by

the adaptive system for example x. In practice, the time

required to predict a label and the excess loss introduced

by the adaptive system can be recursively defined. As in

(Wang et al., 2015) we can reduce the early exit policy

training for minimizing the global risk to a WBC problem.

The key idea is that, for each input, a policy must identify

whether or not the future reward (expected future accuracy

minus comp. loss) outweighs the current-stage accuracy.

To this end, we first focus on the problem of learning

the decision function γ4, which determines if an example

should exit after the fourth convolutional layer or whether

it will be classified using the entire network. The time it

takes to predict the label of example x depends on this de-
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cision and can be written as

T4 (x, γ4) =

{

T + τ(γ4) if γ4(σ4(x)) = 1

t4 + τ(γ4) otherwise
, (2)

where τ(γ4) is the computational time required to evaluate

the function γ4. Our goal is to learn a system that trades-off

the evaluation time and the induced error:

argmin
γ4∈Γ

Ex∼X [T4(x, γ4)] + λE(x,y)∼X×Y

[

(

L (ŷ4(x), y)

− L (ŷ(x), y)

)

+

1γ4(σ4(x))=−1

]

(3)

where (·)+ is the function(z)+ = max(z, 0) and λ ∈ R
+

is a trade-off parameter that balances between evaluation

time and error. Note that the function T4 (x, γ4) can be

expressed as a sum of indicator functions:

T4 (x, γ4) = (T + τ(γ4))1γ4(σ4(x))=1

+ (t4 + τ(γ4))1γ4(σ4(x))=−1

=T1γ4(σ4(x))=1 + t41γ4(σ4(x))=−1 + τ4(γ4)

Substituting for T4(x, γ4) allows us to reduce the problem

to an importance weighted binary learning problem:

argmin
γ4∈Γ

E(x,y)∼X×Y

[

C4(x, y)1γ4(σ4(x)) 6=β4(x)

]

+ τ(γ4)

(4)

where β4(x) and C4(x, y) are the optimal decision and cost

at stage 4 for the example (x, y) defined:

β4(x) =















−1 if T >
(

t4 + λ
(

L (ŷ4(x), y)

−L (ŷ(x), y)
)

+

)

1 otherwise

and

C4(x, y) =
∣

∣T − t4 − λ (L (ŷ4(x), y)− L (ŷ(x), y))+
∣

∣ .

Note that the regularization term, τ(γ4), is important to

choose the optimal functional form for the function γ4
as well as a natural mechanism to define the structure of

the early exit system. Rather than limiting the family of

function Γ to a single functional form such as a linear

function or a specific network architecture, we assume the

family of functions Γ is the union of multiple functional

families, notably including the constant decision functions

γ4(x) = 1, ∀x ∈ |X |. Although this constant function

does not allow for adaptive network evaluation at the spe-

cific location, it additionally does not introduce any com-

putational overhead, that is, τ(γ4) = 0. By including this

constant function in Γ, we guarantee that our technique can

only decrease the test-time cost.

Empirically, we find that the most effective policies oper-

ate on classifier confidences such as classification entropy.

Specifically, we consider the family of functions Γ as the

union of three functional families, the aforementioned con-

stant functions, linear classifier on confidence features gen-

erated from linear classifiers applied to σ4(x), and linear

classifier on confidence features generated from deep clas-

sifiers applied to σ4(x).

Rather than optimizing jointly over all three networks, we

leverage the fact that the optimal solution to Eqn. (4) can be

found by optimizing over each of the three families of func-

tions independently. For each family of functions, the pol-

icy evaluation time τ(γ4) is constant, and therefore solving

(4) over a single family of functions is equivalent to solv-

ing an unregularized learning problem. We exploit this by

solving the three unregularized learning problems and tak-

ing the minimum over the three solutions.

In order to learn the sequence of decision functions, we

consider a bottom-up training scheme, as previously pro-

posed in sensor selection (Wang et al., 2015). In this

scheme, we learn the deepest (in time) early exit block first,

then fix the outputs. Fixing the outputs of this trained func-

tion, we then train the early exit function immediately pre-

ceding the deepest early exit function (γ3 in Fig. 2).

For a general early exit system, we recursively define

the future time, Tk(x, γk), and the future predicted label,

ỹk(x, γk), as

Tk(x, γk) =



















T + τ(γk) if γk(σk(x)) = 1, k = K

Tk+1(x, γk if γk(σk(x)) = 1, k < K

+1) + τ(γk)

tk + τ(γk) otherwise

and

ỹk(x, γk) =







































ŷ(x) if k = K + 1

ŷ(x) if k = K

and γk(σk(x)) = 1

ỹk+1(x, γk+1) if k < K

and γk(σk(x)) = −1

ŷk(x) otherwise

.

Using these definitions, we can generalize Eqn. (4). For a

system with K early exit functions, the kth early exit func-

tion can be trained by solving the supervised learning prob-

lem:

argmin
γk∈Γ

E(x,y)∼X×Y

[

Ck(x, y)1γk(x) 6=βk(σk(x))

]

+ τ(γk),

(5)

where optimal decision and cost βk(x) and Ck(x, y) can be
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defined:

βk(x) =































−1 if k < K and Tk+1(x, γk+1) ≥ tk+

λ (L (ŷk(x), y)− L (ỹk+1(x), y))+
−1 if k = K and T ≥ tk+

λ (L (ŷk(x), y)− L (ỹk+1(x), y))+
1 otherwise

Ck(x, y) =































∣

∣

∣
Tk+1(x, γk+1)− tk if k < K

−λ
(

L (ŷk(x), y)− L (ỹk+1(x), y)
)

+

∣

∣

∣

∣

∣

∣
T − tk otherwise

−λ (L (ŷk(x), y)− L (ŷ(x), y))+

∣

∣

∣

.

Eqn. (5) allows for efficient training of an early exit sys-

tem by sequentially training early exit decision functions

from the bottom of the network upwards. Furthermore, by

including constant functions in the family of functions Γ
and training early exit functions in all potential stages of

the system, the early exit architecture can also naturally be

discovered. Finally, in the case of single option at each

exit, the layer-wise learning scheme is equivalent to jointly

optimizing all the exits with respect to full system risk.

4. Network Selection

As shown in Fig. 1, the computational time has grown

dramatically with respect to classification performance.

Rather than attempting to reduce the complexity of the

state-of-the-art networks, we instead leverage this non-

linear growth by extending the early exiting strategy to

the regime of network selection. Conceptually, we seek

to exploit the fact that many examples are correctly clas-

sified by relatively efficient networks such as alexnet and

googlenet, whereas only a small fraction of examples are

correctly classified by computationally expensive networks

such as resnet 152 and incorrectly classified by googlenet

and alexnet.

As an example, assume we have three pre-trained networks,

N1, N2, and N3. For an example x, denote the predictions

for the networks as N1(x), N2(x), and N3(x). Addition-

ally, denote the evaluation times for each of the networks

as τ(N1), τ(N2), and τ(N3).

As in Fig. 2, the adaptive system composed of two deci-

sion functions that determine which network is evaluated

for each example. First, κ1 : |X | → {N1, N2, N3} is ap-

plied after evaluation of N1 to determine if the classifica-

tion decision from N1 should be returned or if network N2

or network N3 should be evaluated for the example. For

examples that are evaluated on N2, κ2 : |X | → {N2, N3}
determines if the classification decision from N2 should be

returned or if network N3 should be evaluated.

Our goal is to learn the functions κ1 and κ2 that minimize

the average evaluation time subject to a constraint on the

average loss induced by adaptive network selection. As in

the adaptive early exit case, we first learn κ2 to trade-off

between the average evaluation time and induced error:

min
κ2∈Γ

Ex∼X

[

τ(N3)1κ2(x)=N3

]

+ τ(κ2)

+ λE(x,y)∼X×Y

[

(

L (N2(x), y)

− L (N3(x), y)
)

+
1κ2(x)=N2

]

, (6)

where λ ∈ R
+ is a trade-off parameter. As in the adap-

tive network usage case, this problem can be posed as an

importance weighted supervised learning problem:

min
κ2∈Γ

E(x,y)∼X×Y

[

W2(x, y)1κ2(x) 6=θ2(x)

]

+ τ(κ2), (7)

where θ2(x) and W2(x, y) are the cost and optimal decision

at stage 4 for the example/label pair (x, y) defined:

θ2(x) =

{

N2 if τ(N3) > λ (L (N3(x), y)− L (N2(x), y))+
N3 otherwise

and

W2(x, y) =
∣

∣

∣
τ(N3)− λ (L (N2(x), y)− L (N3(x), y))+

∣

∣

∣
.

Once κ2 has been trained according to Eqn. (7), the

training times for examples that pass through N2 and are

routed by κ2 can be defined Tκ2
(x) = τ(N2) + τ(κ2) +

τ(N3)1κ2(x)=N3
. As in the adaptive early exit case, we

train and fix the last decision function, κ2, then train the

earlier function, κ1. As before, we seek to trade-off be-

tween evaluation time and error:

min
κ1∈Γ

Ex∼X

[

τ(N3)1κ1(x)=N3
+ τ(N2)1κ1=N2

]

+ τ(κ1)+

λE(x,y)∼X×Y

[

(L (N2(x), y)− L (N3(x), y))+ 1κ1(x)=N2

+ (L (N1(x), y)− L (N3(x), y))+ 1κ1(x)=N1

]

(8)

This can be reduced to a cost sensitive learning problem:

min
κ1∈Γ

E(x,y)∼X×Y

[

R3(x, y)1κ1(x)=N3
+R2(x, y)1κ1(x)=N2

+R1(x, y)1κ1(x)=N1

]

+ τ(κ1), (9)

where the costs are defined:

R1(x, y) = (L(N1(x), y)− L(N3(x), y))+

R2(x, y) = (L(N2(x), y)− L(N3(x), y))+ + τ(N2)

R3(x, y) = τ(N3).
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Algorithm 1 Adaptive Network Learning Pseudocode

Input: Data: (xi, yi)
n
i=1,

Models S , routes, E, model costs τ(.)),
while ∃ untrained π do

(1) Choose the deepest policy decision j, s.t. all down-

stream policies are trained

for example i ∈ {1, . . . , n} do

(2) Construct the weight vector ~wi of costs per ac-

tion from Eqn. (7).

end for

(3) πj ←Learn clf.((x1, ~w1), . . . , (xn, ~wn))
(4) Evaluate πj and update route costs to model j:

C(xi, yi, sn, sj)← ~w
j
i (πj(xi)) + C(xi, yi, sn, sj)

end while

(5) Prune models the policy does not route any example

to from the collection

Output: Policy functions, π1, . . . , πK

5. Experimental Section

We evaluate our method on the Imagenet 2012 classifica-

tion dataset (Russakovsky et al., 2015) which has 1000

object classes. We train using the 1.28 million training

images and evaluate the system using 50k validation im-

ages. We use the pre-trained models from Caffe Model

Zoo for Alexnet, GoogLeNet and Resnet50 (Krizhevsky

et al., 2012; Szegedy et al., 2015; He et al., 2016). For pre-

processing we follow the same routines proposed for these

networks and verify the final network performances within

a small margin (< 0.1%). Note that it is common to use

ensembles of networks and multiple crops to achieve max-

imum performance. These methods add minimal gain in

accuracy while increasing the system cost dramatically. As

the speedup margin increases, it becomes trivial for the pol-

icy to show significant speedups within the same accuracy

tolerance. We believe such speedups are not useful in prac-

tice and focus on single crop with single model case.

Temporal measurements: We measure network times using

the built-in tool in the Caffe library on a server that utilizes

a Nvidia Titan X Pascal with CuDNN 5. Since our focus

is on the computational cost of the networks, we ignore the

data loading and preprocessing times. The reported times

are actual measurements including the policy overhead.

Policy form and meta-features: In addition to the outputs

of the convolutional layers of earlier networks, we augment

the feature space with the entropy of prediction probabili-

ties. We relax the indicators in equations (5) and (9) learn

linear logistic regression model on these features for our

policy. We experimented with pooled internal representa-

tions, but in practice, inclusion of the entropy feature with

a simple linear policy significantly outperforms more com-

plex policy functions that exclude the entropy feature.

5.1. Network Selection

Baselines: Our full system, depicted in Figure 2, starts with

Alexnet. Following the evaluation of Alexnet, the system

determines for each example either to return the prediction,

route the example to GoogLeNet, or route the example to

Resnet50. For examples that are routed to GoogLeNet, the

system either returns the prediction output by GoogLeNet

or routes the example to Resnet50. As baselines, we com-

pare against a uniform policy and a myopic policy which

learns a single threshold based on model confidence. We

also report performance from different system topologies.

To provide a bound on the achievable performance, we

show the performance of a soft oracle. The soft oracle

has access to classification labels and sends each example

to the fastest model that correctly classifies the example.

Since having access to the labels is too strong, we made

the oracle softer by adding two constraints. First, it follows

the same network topology, also it can not make decisions

without observing the model feedback first, getting hit by

the same overhead. Second, it can only exit at a cheaper

model if all latter models agree on the true label. This sec-

ond constraint is added due to the fact that our goal is not

to improve the prediction performance of the system but

to reduce the computational time, and therefore we prevent

the oracle from “correcting” mistakes made by the most

complex networks.

We sweep the cost trade-off parameter in the range 0.0 to

0.1 to achieve different budget points. Note that due to

weights in our cost formulation, even when the pseudo la-

bels are identical, policy behavior can differ. Conceptually,

the weights balance the importance of the samples that gain

in classification loss in future stages versus samples that

gain in computational savings by exiting early stages.

The results are demonstrated in Figure 3. We see that both

full tree and a->g->r50 cascade achieve significant (2.8x)

speedup over using Resnet50 while maintaining its accu-

racy within 1%. The classifier feedback for the policy has

a dramatic impact on its performance. Although, Alexnet

introduces much less overhead compared to GoogLeNet

(≈0.2 vs ≈0.7), the a->r50 policy performs significantly

worse in lower budget regions. Our full tree policy learns to

choose the best order for all budget regions. Furthermore,

the policy matches the soft oracle performance in both the

high and low budget regions.

Note that GoogLeNet is a very well positioned at 0.7ms

per image budget, probably due to its efficiency oriented

architectural design with inception blocks (Szegedy et al.,

2015). For low budget regions, the overhead of the pol-

icy is a detriment, as even when it can learn to send al-
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Figure 3. Performance of network selection policy on Imagenet (Left: top-5 error Right: top-1 error). Our full adaptive system (denoted

with blue dots) significantly outperforms any individual network for almost all budget regions and is close to the performance of the

oracle. The performances are reported on the validation set of ImageNet dataset.

Figure 4. (Left) Different network selection topologies that we considered. Arrows denote possible jumps allowed to the policy. A, G

and R denote Alexnet, GoogLeNet and Resnet50, respectively. (Right) Statistics for proportion of total time spent on different networks

and proportion of samples that exit at each network. Top row is sampled at 2.0ms and bottom row is sampled at 2.8ms system evaluation

most half the samples to Alexnet instead of GoogLeNet

with marginal loss in accuracy, the extra 0.23ms Alexnet

overhead brings the balance point, ≈ 0.65ms, very close

to using only GoogLeNet at 0.7ms. The ratio between net-

work evaluation times is a significant factor for our system.

Fortunately, as mentioned before, for many applications the

ratio of different models can be very high (cloud computing

upload times, resnet versus Alexnet difference etc.).

We further analyzed the network usage and runtime pro-

portion statistics for samples at different budget regions.

Fig. 4 demonstrates the results at three different budget

levels. Full tree policy avoids using GoogLeNet altogether

for high budget regions. This is the expected behavior since

the a->r50 policy performs just as well in those regions and

using GoogLeNet in the decision adds too much overhead.

At mid level budgets the policy distributes samples more

evenly. Note that the sum of the overheads is close to useful

runtime of cheaper networks in this region. This is possible

since the earlier networks are very lightweight.

5.2. Network Early Exits

To output a prediction following each convolutional layer,

we train a single layer linear classifier after a global average

pooling for each layer. We added global pooling to mini-

mize the policy overhead in earlier exits. For Resnet50 we

added an exit after output layers of 2a, 2c, 3a, 3d, 4a and 4f.

The dimensionality of the exit features after global average

pooling are 256, 256, 512, 512, 1024 and 1024 in the same

order as the layer names. For GoogLeNet we added the

exits after concatenated outputs of every inception layer.

Table 1 shows the early exit performance for different net-

works. The gains are more marginal compared to network

selection. Fig 5 shows the accuracy gains per evaluation

time for different layers. Interestingly, the accuracy gain

per time is more linear within the same architecture com-
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Network policy top-5 uniform top-5

GoogLeNet@1 9% 2%
GoogLeNet@2 22% 9%
GoogLeNet@5 33% 20%
Resnet50@1 8% 1%
Resnet50@2 18% 12%
Resnet50@5 22% 10%

Table 1. Early exit performances at different accuracy/budget

trade-offs for different networks. @x denotes x loss from full

model accuracy and reported numbers are percentage speed-ups.

pared to different network architectures. This explains why

the adaptive policy works better for network selection com-

pared to early exits.

Figure 5. The plots show the accuracy gains at different layers for

early exits for networks GoogLeNet (top) and Resnet50 (bottom).

5.3. Network Error Analysis

Fig. 6 shows the distributions over examples of the net-

works that correctly label the example. Notably, 50% and

77% of the examples are correctly classified by all net-

works for top 1 and top 5 error, respectively. Similarly,

18% and 5% of the examples are incorrectly classified by

all networks with respect to their top 1 and top 5 error, re-

spectively. These results verify our hypothesis that for a

large fraction of data, there is no need for costly networks.

In particular, for the 68% and 82% of data with no change

Figure 6. Analysis of top-1 and top-5 errors for different net-

works. Majority of the samples are easily classified by Alexnet,

and only a minority of them require deeper networks.

in top 1 and top 5 error, respectively, the use of any network

apart from Alexnet is unnecessary and only adds unneces-

sary computational time.

Additionally, it is worth noting the balance between exam-

ples incorrectly classified by all networks, 18% and 5% re-

spectively for top 1 and top 5 error, and the fraction of ex-

amples correctly classified by either GoogLeNet or Resnet

but not Alexnet, 25.1% and 15.1% for top 1 and top 5 er-

ror, respectively. This behavior supports our observation

that entropy of classification decisions is an important fea-

ture in making policy decisions, as examples likely to be

incorrectly classified by Alexnet are likely to be classified

correctly by a later network.

Note that our system is trained using the same data used to

train the networks. Generally, the resulting evaluation error

for each network on training data is significantly lower than

error that arises on test data, and therefore our system is bi-

ased towards sending examples to more complex networks

that generally show negligible training error. Practically,

this problem is alleviated through the use of validation data

to train the adaptive systems. In order to maintain the re-

ported performance of the network without expansion of

the training set, we instead utilize the same data for train-

ing both networks and adaptive systems, however we note

that performance of our adaptive systems is generally better

when trained on data excluded from the network training.

6. Conclusion

We proposed two different schemes to adaptively trade off

model accuracy with model evaluation time for deep neural

networks. We demonstrated that significant gains in com-

putational time is possible through our novel policy with

negligible loss in accuracy on ImageNet image recogni-

tion dataset. We posed a global objective for learning an

adaptive early exit or network selection policy and solved

it by reducing the policy learning problem to a layer-by-

layer weighted binary classification problem. We believe

that adaptivity is very important in the age of growing data

for models with high variance in computational time and

quality. We also showed that our method approximates an

Oracle based policy that has benefit of access to true error

for each instance from all the networks.
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