
Adaptive Neuro-Fuzzy Intrusion Detection Systems

Sampada Chavan, Khusbu Shah, Neha Dave and Sanghamitra Mukherjee

Institute of Technology for Women, SNDT University, India

 Ajith Abraham

Department of Computer Science, Oklahoma State University, USA

Sugata Sanyal

School of Tech. and Computer Science, Tata Institute of Fundamental Research, India

Abstract

The Intrusion Detection System architecture commonly

used in commercial and research systems have a number

of problems that limit their configurability, scalability or

efficiency. In this paper, two machine-learning
paradigms, Artificial Neural Networks and Fuzzy

Inference System, are used to design an Intrusion
Detection System. SNORT is used to perform real time

traffic analysis and packet logging on IP network during

the training phase of the system. Then a signature pattern
database is constructed using protocol analysis and

Neuro-Fuzzy learning method. Using 1998 DARPA

Intrusion Detection Evaluation Data and TCP dump raw
data, the experiments are deployed and discussed.

1. Introduction

Knowledge is the first line of defense against any security

threat. Forewarned is to be forearmed. Advances in

networking and the continued spread of the Internet are

adding to the ranks of malicious hackers as well as

facilitating information flow [13]. But, security and

intrusion detection procedures are also growing in

sophistication [6][15]. An Intrusion Detection System

(IDS) is a computer program that attempts to perform ID

by either misuse or anomaly detection, or a combination

of techniques.

2. Proposed System Architecture

We divide the work-system to contain the following

distinct parts as depicted in Figure 1:

LAN: A connection of nodes using an Ethernet topology,

a trusted network.

Figure 1. Architecture of the proposed framework

Host/ server: For any internal network

Internet: The gateway to the external world.

Proxy Server: In an enterprise that uses the Internet, a

proxy server is a server that acts as an intermediary

between a workstation user and the Internet so that the

enterprise can ensure security, administrative control, and

caching service.

IDS: Compared to the IDS models available in the

literature [11][12], the proposed IDS could learn new

types of attacks continuously without erasing the

previously trained knowledge. Based on the available new

data, IDS could update the knowledge base using simple

if-then fuzzy rules. For the smooth running of the system,

the following software components should be present.

2.1. Proxy server

The proxy server is a kind of a service that examines what

application or service a packet is meant for and if that

particular service is available, only then is the packet

allowed to pass through. Thus there is no direct

connection between the untrusted and trusted system [14].

 First, the proxy server acts as an intermediary, helping

users on a private network get information from the

Proxy

Server

Main Server

LAN

IDS

Internet

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

Internet, while ensuring that network security is

maintained. Second, a proxy server may store frequently

requested information in a local disk cache, rapidly

delivering it to multiple users without having to go back

to the Internet to get it [14].

 Proxy servers perform network address translation,

mapping all of a network's internal IP addresses to a

single safe IP address.

2.2. Intrusion Detection System

The network based intrusion detection system consists of

3 subsystems. The input subsystem include, snort IDS as

packet sniffer and signature database, the processing

subsystem makes use of misuse and anomaly based

detection techniques in combination with neural networks

to make it adaptive. The output subsystem uses various

reporting mechanisms.

2.2.1. SNORT

By using snort we can access the data that is essential as

inputs to the algorithm for its training phase. Snort is used

only during the training phase of the algorithm. SNORT is

a libpcap-based sniffer and logger [3]. It is a cross-

platform, lightweight intrusion detection tool that can be

deployed to monitor small TCP/IP networks and detect a

wide variety of suspicious network traffic as well as

outright attacks. It can provide administrators with

enough data to make informed decisions on the proper

course of action in the face of suspicious activity. The

detection engine is programmed using a simple language

that describes per packet tests and actions. The major

feature that SNORT has is packet payload inspection.

SNORT decodes the application layer of a packet and can

be given rules to collect traffic that has specific data

contained within its application layer.

2.2.2. Signature Database and Protocol Analysis

For achieving the purpose we also consider another

reference base that we build on our own. This base would

consist of signature patterns, which try to incorporate

cures to the vulnerabilities present in snort. A network

IDS signature is a pattern that we want to look for in

traffic. We review some examples and some of the

methods that can be used to identify signatures.

Connection attempt from a reserved IP address is

identified by checking the source address field in an

IP header and packets with an illegal TCP flag

combination. This can be found by comparing the

flags set in a TCP header against known good or

bad flag combinations (email containing a

particular virus).

 The IDS can compare the subject of each email to the

subject associated with the virus-laden email, or it

can look for an attachment with a particular name.

 Denial of service attack on a POP3 server caused by

issuing the same command thousands of times. One

signature for this attack would be to keep track of

how many times the command is issued and to alert

when that number exceeds a certain threshold.

 File access attack on an FTP server by issuing file

and directory commands to it without first logging

in. A state-tracking signature could be developed

which would monitor FTP traffic for a successful

login and would alert if certain commands were

issued before the user had authenticated properly

[4].

 Because we’ve identified four potential signature

elements, we have many different options for developing

a header-based signature, because a signature could

include any one or more of these characteristics.

However, a signature based on all four suspicious

characteristics may be too specific. Although it would

provide much more precise information about the source

of the activity, it would also be far less efficient than a

signature that only checks one header value. Signature

development is always a tradeoff between efficiency and

accuracy. In many cases, simpler signatures are more

prone to false positives than more complex signatures,

because simpler signatures are much more general. But

more complex signatures may be more prone to false

negatives than simpler signatures [4].

 An intrusion detection signature set is much more

valuable if it can detect not only known attacks, but also

future and unknown attacks. Even though the

characteristics of the traffic are changing, we can still

identify it as anomalous through the use of more general

signatures. For this we focus on our strategy of using

protocol analysis to look for more general signatures and

beyond that we look for developing a self-learning IDS

using AI paradigms.

 The term “protocol analysis” means that the IDS

sensor understands how various protocols work and

closely analyze the traffic of those protocols to look for

suspicious or abnormal activity [2]. Protocol analysis

techniques observe all traffic involving a particular

protocol and validate it, alerting when the traffic does not

meet expectations. Several header values can be used to

create network IDS signatures. Some of the most

commonly used header-related signature elements are [4]:

IP addresses (particularly reserved, non-routable, and

broadcast addresses)

Port numbers that should not be in use (well-known

ports for particular protocols and Trojans)

Unusual packet fragmentation

Particular TCP flag combinations

ICMP types/codes that should not normally be seen

By focusing on anomalies within the traffic, rather

than simply looking for the signatures of particular

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

exploits, protocol analysis-based signatures are much

more difficult for attackers to evade through changes to

exploits’ code or IDS obfuscation techniques.

2.2.3. Machine Learning Paradigms

Various nonlinear systems have been proposed for

retrieving desired or stored patterns. The results can be

either computed in one epoch or updated iteratively based

on the retrieving dynamics equations. Our approach is to

develop adaptive machine learning algorithms to develop

IDS. A salient feature of Artificial Neural Networks

(ANN) is their learning ability. They learn by adaptively

updating the synaptic weights that characterize the

strength of the connections. The weights are updated

according to the information extracted from new training

patterns.

A Fuzzy Inference System (FIS) can utilize human

expertise by storing its essential components in rule base

and database, and perform fuzzy reasoning to infer the

overall output value. The derivation of if-then rules and

corresponding membership functions depends heavily on

the a priori knowledge about the system under

consideration. However there is no systematic way to

transform experiences of knowledge of human experts to

the knowledge base of a FIS. There is also a need for

adaptability or some learning algorithms to produce

outputs within the required error rate.

To a large extent, the drawbacks pertaining to these

two approaches seem complementary. Therefore it is

natural to consider building an integrated system

combining the concepts of FIS and ANN modeling [1].

Evolving Fuzzy Neural Network (EFuNN) implements a

Mamdani type FIS [9] and all nodes are created during

learning [7]. The nodes representing membership

functions (MF) can be modified during learning. Each

input variable is represented here by a group of spatially

arranged neurons to represent a fuzzy quantization of this

variable. Different membership functions can be attached

to these neurons (triangular, Gaussian, etc.). New neurons

can evolve in this layer if, for a given input vector, the

corresponding variable value does not belong to any of

the existing MF to a degree greater than a membership

threshold. A new fuzzy input neuron, or an input neuron,

can be created during the adaptation phase of an EFuNN.

Technical details of the learning algorithm are given in

[7].

3. Proposed System Implementation

3.1. Phase 1: Training the algorithms

For any machine learning based algorithm we require a

good training dataset to get the optimal solution. We

train by giving a huge set of inputs (which may or may

not be attacks) and the corresponding outputs raised in

each case. We make use of snort to get access to the data,

which is essential to be fed as inputs during the training

phase. With the huge database of attacks that the ANN

and FIS accumulate during the training phase we expect

it to be capable of identifying attacks based on its

developed knowledge base in future. But our aim is to

provide a system that nears the characteristics of an ideal

IDS i.e. minimising the number of false alarms.

3.2. Phase 2: The Execution

For achieving the above purpose we consider another

reference base that we build on our own. This base

consists of signature patterns that would help encounter

vulnerabilities present in snort. Our inputs will be the

parameters retrieved from the tcp dump. We would look

for match patterns from what the machine learning

algorithms have learnt and acquired in the database along

with the signature database. In this case we would be

able to specifically determine whether an attempt is an

attack or a normal packet. In the process we are reducing

the number of false positives and false negatives. Also

we can add signatures corresponding to the new

vulnerabilities and enhance the database.

Figure 2. Multi-class attack learning framework

3.3. Neural Network Based Learning

One subnet is designated for each class of attack (Figure

2). The linear discriminant functions for the subnets are

denoted as (x,wi), for i = 1, ..., L. The discriminant

function provides the score for each subnet (or each

class). A procedure is then used to select the subnet (or

class) with the winning score. The output is usually a

symbol labeling the winner of the subnets.

The following mutual training scheme is used [3][5].

If the desired outputs match the network produced output,

then the network will be left alone until a future training

pattern is presented. If the net mismatch, then the weights

will be updated by reinforcement and anti-reinforcement

learning rules. Suppose that S = { x(1) , … , x(M) } is a set

of given training patterns, with each element z(m) RN

belonging to one of the L classes { i , I = 1 , … , L };

and that the discriminant functions are (x,wi) = wT
i z

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

for i = 1, ..., L. Suppose that the mth pattern x(m) presented

is known to belong to class i ; and that the winning

class for the pattern is denoted by an integer j, that is, for

all l j ,

wT
j > wT

l z

1.When j=i, then the pattern z(m) is already correctly

classified, so no update will be needed.

2.When j i,that is, z(m) is still misclassified, then the

following update will be performed:

Reinforcement Learning: w(m+1)
i = w(m)

i + z(m)

Anti-reinforcement Learning: w(m+1)
j = w(m)

j - z(m)

The other weights remain unchanged:

w(m+1)
l = w(m)

l for all l i and l j.

4 Experiment Setup and Results

To simulate the presented ideas, we used the 1998

DARPA Intrusion Detection Evaluation program data

provided by MIT Lincoln Labs [10]. The TCP dump raw

data was processed into connection records, which are

about five million connection records. The data set

contains 24 attack types. The attacks fall into four main

categories as follows.

1. Denial of Service (DOS): Attacker makes some

computing or memory resources too busy or too full

to handle legitimate requests, or denies legitimate

users access to a machine.

2. Remote to User (R2L): Attacker who does not have

an account on a remote machine sends packets to that

machine over a network and exploits some

vulnerability to gain local access as a user of that

machine.

3. User to Root (U2R): Attacker starts out with access

to a normal user account on the system and is able to

exploit vulnerability to gain root access to the system.

4. Probing: Attacker scans a network of computers to

gather information or find known vulnerabilities. An

attacker with a map of machines and services that

available on a network can use this information to

look for exploits.

The original data contains 744 MB data with

4,940,000 records. The data set has 41 attributes for each

connection record plus one class label. Some features are

derived features, which are useful in distinguishing

normal connection from attacks. Some features examine

only the connections in the past two seconds that have the

same destination host as the current connection, and

calculate statistics related to protocol behavior, service,

etc. These are called same host features. Same host and

same service features are together called time-based

traffic features of the connection level records. Our initial

research was to reduce the number of variables. Using all

the 41 variables could result in a big IDS model, which

could be an overhead for online detection. We generated a

decision tree to determine the variable importance.

Variable importance for a particular predictor (attack) is

the sum across all nodes in the tree of the improvement

scores that the predictor has when it acts as a primary or

surrogate (but not competitor) splitter. Example: for node

n if the predictor appears as the primary splitter then it has

a contribution X towards importance. If instead the

predictor appears as the nth surrogate instead of primary

predictor the contribution becomes Xnp , where p is the

surrogate improvement weight (could beset anywhere

between 0 and 1). The main purpose of IDS model is to

classify the data set into one of the four attack types or

normal. The data set for our experiments contained 11982

records, which are randomly generated from the master

data set [8]. This data set has five different classes,

random generation of data include the number of data

from each class proportional to its size, except that the

smallest class is completely included. This data set is

again divided into training data with 5092 records and

testing with 6890 records. All IDS models are trained and

tested with the same set of data. The experiment setup

consists of two stages: Network training and performance

evaluation. All the training data were scaled to (0-1). The

decision tree approach helped us to reduce the number of

variables to 13, 14, 15, 17, and 16 respectively for

Normal, DOS, U2L, U2R and Probes.

EFuNN training

We used 4 (MF) membership functions for all the input

variables and the following evolving parameters for

detection all the classes of attacks: sensitivity threshold

Sthr=0.95 and error threshold Errthr=0.05. During

training, we developed 89, 115, 123, 134 and 129 rule

nodes for Normal, DOS, U2L, U2R and Probes.

ANN training

We used a network with 80 hidden neurons and the

number input neurons corresponding to the input

variables and 1 output neuron. Initial weights, learning

rate and momentum used were 0.3, 0.1 and 0.1,

respectively. The training was terminated after 4500

epochs.

Table 1 illustrates the comparative performance

(classification accuracy of the different attack types)

between EFuNN and ANN on the test dataset. While

EFuNN took few seconds to train the IDS models, ANN

took few minutes to converge. Except U2R, the

developed fuzzy inference system could detect with high

accuracy. The performance was degraded when we used

all the 41 variables, which also illustrates the importance

of input variable selection. Due to space restrictions, the

complete results are not provided in this paper.

An important advantage of the developed FIS based

IDS is its easy interpretability using simple if-then rules.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

These rules could be learned automatically from the data,

which makes EFuNN an ideal candidate for adaptive

learning. Using Protocol analysis, we can add signatures

corresponding to the new vulnerabilities and enhance the

database and keep on improving the IDS performance. It

will not only search for match patterns from what it has

learnt and acquired in the database but also with the

signature database which would in turn help in coming

up with an even better optimal result. We are thus

reducing the number of false positives and false

negatives. There is no direct connection between the un-

trusted system and the trusted system as the packets are

scrutinized by the IDS at the proxy server.

Classification Accuracy %
Type of attack

EFuNN ANN

Normal 99.56 99.57

Probe 99.88 94.62

DOS 98.99 98.97

U2R 65.00 59.00

R2L 97.26 97.02

Table 1. Performance comparison using reduced number

of input variables

EFuNN uses a hybrid learning technique (a mixture

of unsupervised and supervised learning) to fine-tune the

parameters of the FIS. As EFuNN adopts a single pass

training (1 epoch) it is more adaptable and easy for

further on-line training, which might be highly useful for

online detection and updating the knowledge base.

Another important feature of EFuNN is that the user has

the flexibility to construct the network (by selecting the

parameters).

5. Conclusions

 We have demonstrated the use of two machine-

learning paradigms for designing IDS. EFuNN performed

well compared to neural networks. Experiment results

also reveal the importance of input variable reduction. By

having less than 40% of the original number of input

variables, we are able to improve the performance and

development time.

The future of IDS lies in data correlation. The IDS of

tomorrow will produce results by examining input from

several different sources. The way to solve this challenge

lies in statistical analysis and predictive artificial

intelligence performed on strange data sets. Intrusion

Detection Systems face several daunting, but exciting

challenges in the future and are sure to remain one of our

best weapons in the arena of network security.

References

[1] Abraham A., Neuro-Fuzzy Systems: State-of-the-Art

Modelling Techniques, Lecture Notes in Computer

Science. Volume. 2084, Springer-Verlag Germany,

Jose Mira and Alberto Prieto (Eds.), pp. 269-276,

2001.

[2] Mukherjee B., Heberlein T.L. and Levitt K.N.,

Network intrusion detection. IEEE Network,

8(3): 26, 1994.

[3] Lau C., Neural Networks, Theoretical Foundations

and Analysis, IEEE Press, 1991

[4] Mark C. et al, Intrusion Signatures and Analysis,

SANS Giac, 2002 Reprint

[5] Fausett L., Fundamentals of Neural Networks,

Prentice Hall, 1994.

[6] Karen F.K., Network Intrusion Detection Signatures,

securityfocus.com, December 19, 2001

[7] Kasabov N., Evolving Fuzzy Neural Networks -

Algorithms, Applications and Biological Motivation,

in Yamakawa T and Matsumoto G (Eds),

Methodologies for the Conception, Design and

Application of Soft Computing, World Scientific,

pp. 271-274, 1998.

[8] KDD cup 99 Intrusion detection data set.

<http://kdd.ics.uci.edu/databases/kddcup99/kddcup.

data_10_percent.gz>

[9] Mamdani E.H. and Assilian S., An experiment in

Linguistic Synthesis with a Fuzzy Logic Controller,

International Journal of Man-Machine Studies, Vol.

7, No.1, pp. 1-13, 1975.

[10] MIT Lincoln Laboratory.

<http://www.ll.mit.edu/IST/ideval/>

[11] Mukkamala S., Sung A.H. and Abraham A.,

Distributed Multi-Intelligent Agent Framework for

Detection of Stealthy Probes, Design and

Application of Hybrid Intelligent Systems, Abraham

A., Köppen M. and Franke K. (Eds.), IOS Press,

Amsterdam, The Netherlands, pp. 116-125, 2003.

[12] Mukkamala S., Sung A.H. and Abraham A.,

Intrusion Detection Using Ensemble of Soft

Computing Paradigms, Intelligent Systems Design

and Applications, Abraham A., Köppen M. and

Franke K. (Eds.), Springer Verlag, Germany, pp.

239-248, 2003.

[13] IEEE Journal on Selected Areas in Communications

May 1989. Special issue on Secure

Communications.

[14] Jonathan A., Proxy servers, Network Magazine,

04/01/1999 < http://www.networkmagazine.com/>

[15] Brian C. et al, Snort 2.0 Intrusion Detection,

Paperback - February 2003

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

