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Abstract

Pedestrian detection in a crowd is a very challenging is-

sue. This paper addresses this problem by a novel Non-

Maximum Suppression (NMS) algorithm to better refine the

bounding boxes given by detectors. The contributions are

threefold: (1) we propose adaptive-NMS, which applies a

dynamic suppression threshold to an instance, according to

the target density; (2) we design an efficient subnetwork to

learn density scores, which can be conveniently embedded

into both the single-stage and two-stage detectors; and (3)

we achieve state of the art results on the CityPersons and

CrowdHuman benchmarks.

1. Introduction

During the last two decades, pedestrian detection, as a

special branch of general object detection, has received con-

siderable attention. In the literature, many solutions have

been presented to handle such an issue, and similar as in

general object detection, the past several years have wit-

nessed its technical development from models relying on

hand-crafted features [4, 5, 11, 48] to deep learning net-

works [45, 46, 50, 44, 49]. Due to the capability of learning

discriminative features, Convolutional Neural Networks (C-

NN) based approaches dominate this area, and the results on

public benchmarks are significantly promoted.

In recent years, pedestrian detection is urgently required

in the real-world scenario where the density of people is

high, i.e., airports, train stations, shopping malls etc. De-

spite great progress achieved, detecting pedestrians in those

scenes still remains difficult, evidenced by significant per-

formance drops of state of the art methods. For example,

OR-CNN [49], a more recent work, reports a Miss Rate (M-

R) of 4.1% on the Caltech database [6], which does not con-

sider this challenge. Its MR degrades to 11.0% on CityPer-

sons [47], where 26.4% pedestrians are overlapped with an
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(a) original image (b) prediction before NMS

(c) NMS threshold =0.5 (d) NMS threshold =0.7

Figure 1. Illustration of greedy-NMS results of different thresh-

olds. The blue box shows the missing object, while the red ones

highlight false positives. The bounding boxes in (b) are generat-

ed using Faster R-CNN. In a crowd scene, a lower NMS thresh-

old may remove true positives (c) while a higher NMS threshold

may increase false positives (d). The threshold for visualization is

above 0.3.

Intersection over Union (IoU) above 0.3 and the average of

pairwise overlap between two human instances (larger than

0.5 IoU) is 0.32 per image. Therefore, it becomes a neces-

sity to work on pedestrian detection in a crowd. While one

may argue that this problem is the same as occlusion, they

are indeed different, as in a crowd scene, pedestrians whose

appearances are similar often occlude each other by a large

part, making it even more challenging.

This work focuses on this issue, and we start with the

analysis of deep learning based detectors. As we know, ex-

isting detectors either directly regress the default anchors

into detection boxes on the feature maps (single-stage de-

tectors, e.g., SSD [23], YOLO [30, 31], RetinaNet [21]),

or first generate category independent region proposals

and then refine them (two-stage detectors, e.g., Faster R-

CNN [32], R-FCN [19]). All the methods produce large

numbers of false positives near the ground truth, and the
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greedy Non-Maximum Suppression (NMS) is necessary to

screen out final detections by sharply reducing the false pos-

itives. In a crowded scenario, however, greedy-NMS en-

counters a problem. As shown in Fig. 1, even with a pow-

erful detector that can predict exactly the same bounding

boxes as the ground truth, the highly overlapped ones are

still suppressed by the post process of greedy-NMS with a

normal threshold of 0.5. It makes the current CNN based

detectors confront with a dilemma for the single threshold

of greedy-NMS: a lower threshold leads to missing highly

overlapped objects while a higher one brings in more false

positives.

To address this problem, [44] and [49] propose addition-

al penalties to produce more compact bounding boxes and

thus become less sensitive to the threshold of NMS. The

ideal solution for crowds under their pipelines with greedy-

NMS is to set a high threshold to preserve highly overlapped

objects and predict very compact (higher than the thresh-

old) detection boxes for all instances to reduce false posi-

tives. Unfortunately, this is not so easy, as the CNN based

detectors often assign correlated scores to the neighboring

regions around the object.

Recently, [1] proposes a soft version of NMS, which

decreases the associated detection scores according to an

increasing function of overlap instead of discarding them.

There also exist some works [15, 14] that build an extra

module or network to learn the NMS function from da-

ta. They show a better performance than greedy-NMS in

general object detection. In contrast, in a crowded scenari-

o, the NMS function has to process a much larger set of

highly-overlapped boxes and a considerable part of them

are true positives. While similar softer heuristics or learn-

ing methods may also be applied, they are inefficient as

soft-NMS still blindly penalizes highly overlapped boxes.

Furthermore, the similarity of CNN based appearance fea-

tures blurs the boundaries between highly overlapped true

positives and duplicates. [34] presents a quadratic uncon-

strained binary optimization solution to replace the greedy

NMS in pedestrian detection, but it also sets a hard thresh-

old to suppress all highly-overlapped detection boxes like

greedy-NMS. [18] extends the optimization model with in-

dividualness scores, which relies on discriminative CNN

features.

In this paper, we propose a new NMS algorithm named

adaptive-NMS that acts as a more effective alternative to

deal with pedestrian detection in a crowd. Intuitively, a

high NMS threshold keeps more crowded instances while

a low NMS threshold wipes out more false positives. The

adaptive-NMS thus applies a dynamic suppression strategy,

where the threshold rises as instances gather and occlude

each other and decays when instances appear separately. To

this end, we design an auxiliary and learnable sub-network

to predict the adaptive NMS threshold for each instance.

Experiments are conducted on the CityPersons [47] and

CrowdHuman [36] databases, and our adaptive-NMS de-

livers promising improvements for both the two-stage and

single-stage detectors on crowded pedestrian detection, in-

dicating its effectiveness. Additionally, we reach state of

the art performance, i.e. 10.8% MR−2 on CityPersons and

49.73% MR−2 on CrowdHuman.

2. Related Work

Generic object detection. The traditional approaches to

object detection are based on sliding window or region pro-

posal classification using hand-crafted features. In the era of

deep learning, R-CNN [10], builds the two-stage framework

by combining the straightforward strategy of box proposal

generation like SS [42] and a CNN based classifier on these

region candidates and displays a breathtaking improvement.

Its descendants (e.g., Fast R-CNN [9], Faster R-CNN [32])

update the two-stage framework and achieve dominant per-

formance. In contrast to the two-stage approaches, another

alternative is single-stage framework based (e.g., SSD [23],

YOLO [30, 31]), which skips the proposal generation step

and directly predicts bounding boxes and class probabilities

on deep CNN features, aiming to accelerate detection.

Pedestrian detection. Traditional pedestrian detectors,

such as ACF [4], LDCF [11] and Checkerboards [48], ex-

tend the Viola and Jones paradigm [43] to exploit various

filters on Integral Channel Features (ICF) [5] with the slid-

ing window strategy.

Afterward, coupled with the prevalence of deep learning

techniques, CNN-based models rapidly dominate this field.

In [45], hand-crafted features are replaced with deep neural

network features before being fed into a boosted decision

forest. [2] performs detection at multiple layers to match

objects of different scales, and adopts an upsampling op-

eration to handle small instances. [26] presents a jointly

learning framework with extra features to further improve

performance. [24] explores the potential of single-stage de-

tectors on pedestrian detection by stacking multi-step pre-

diction for asymptotic localization.

For the occlusion issue, many efforts have been made in

the past years. A common framework [28, 40, 51, 7, 27, 52]

for occlusion handling is to learn a series of part detec-

tors and integrate the results to localize occluded pedestri-

ans. More recently, several works [46, 50, 38, 44, 49] fo-

cus on a more challenging issue of detecting pedestrian in a

crowd. [47] and [36] propose two pedestrian datasets (i.e.,

CityPersons and CrowdHuman) to better evaluate detectors

in crowd scenarios. [50] employs an attention mechanism

across channels to represent various occlusion patterns. [38]

operates somatic topological line localization to reduce am-

biguity. [44] introduces a bounding box regression loss to

not only push each proposal to reach its designated target,

but also keep it away from other surrounding objects. Sim-
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ilarly, [49] designs an aggregation penalty to enforce the

proposals locate closely and compactly to the ground-truth

objects. These two works [44, 49] ameliorate detectors to

produce more compact proposals and thus become less sen-

sitive to the threshold of NMS in crowded scenes. Another

interesting attempt [39] uses a recurrent LSTM to sequen-

tially generate detections without NMS, but this detection

pipeline suffers from scale variations.

Non-Maximum Suppression. NMS is a widely used

post process algorithm in computer vision. It is an essential

component of many detection methods, such as edge detec-

tion [33], feature point detection [25] and object detection

[32, 20, 21]. Moreover, despite significant progress in gen-

eral object detection by deep learning, the hand-crafted and

greedy NMS is still the most effective method for this task.

Recently, soft-NMS [1] and learning NMS [14] are pro-

posed to improve NMS results. Instead of discarding all the

surrounding proposals with the scores below the threshold,

soft-NMS lowers the detection scores of neighbors by an

increasing function of their overlap with the higher scored

bounding box. It is conceptually satisfying, but still treats

all highly-overlapped boxes as false positives. [14] attempts

to learn a deep neural network to perform the NMS function

using only boxes and their scores as input, but the network

is specifically designed and very complex. [15] proposes

an object relation module to learn the NMS function as an

end-to-end general object detector. [41] and [17] replace

the classification scores of proposals used in the NMS pro-

cess with learned localization confidences to guide NMS to

preserve more accurately localized bounding boxes. These

methods prove effective in general object detection, but as

we state, pedestrian detection in a crowd has its own chal-

lenge. Therefore, different from them, we propose to learn

the density around each ground truth object as its own sup-

pression threshold, sharing some similarity with the crowd

density map estimation in the people counting task [16, 29].

It reduces the requirement for instance-discriminative CNN

features, which is the major issue in the crowd scene.

To address pedestrian detection in a crowd, [34] propos-

es a quadratic unconstrained binary optimization solution

to suppress detection boxes, which uses detection scores

as a unary potential and overlaps between detections as a

pairwise potential to produce final results. But it still ap-

plies a hard threshold to blindly suppress detection boxes

as greedy-NMS does. [18] adopts the determinantal point

process based optimal model with additional individualness

scores to discriminate different pedestrians. However, as

detectors pay less attention to intra-class differences, the C-

NN features for crowded individuals tend to be less discrim-

inative, and its optimization procedure also consumes more

time. As a result, how to robustly process detection pro-

posals in crowded scenarios is still one of the most critical

issues for pedestrian detection.

Greedy-NMS

Adaptive-NMS

Figure 2. The pseudo code in red is replaced by that in green in

adaptive-NMS, which adaptively suppresses the detections by s-

caling their NMS threshold according to their densities.

3. Method

3.1. Greedy­NMS Revisit

In pedestrian detection, the commonly used detection e-

valuation metric is log-average Miss Rate on False Positive

Per Image (FPPI) in [10−2, 100] (denoted as MR or MR−2

following [6]), where the overlap criterion for a true posi-

tive is usually 0.5. MR is a good indicator for the detectors

applied in the real-world applications since it shows the a-

bility of the detector for balancing recall and precision. As

shown in Fig. 2, starting with a set of detection boxes B with

corresponding scores S , greedy-NMS firstly selects the one

M with the maximum score and moves it from set B to

the set of final detections F . It then removes any box in B
and its score in S that has an overlap with M higher than a

manually set threshold Nt. This process is repeated for the

remaining B set.

Applying greedy NMS with a low threshold Nt like 0.5

may increase the miss-rate, especially in crowd scenes. The

reason lies in there may be many pairs of crowded objects

which have higher overlaps than this suppressing threshold

Nt. Within these pairs, when the proposal with the max-

imum score M is selected, all the surrounding detection
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Figure 3. Density prediction framework for both the two-stage and one-stage detectors. We add the density prediction subnet on the top

of RPN for two-stage detectors, taking the objectness predictions, bounding box predictions and conv features as input. For one-stage

detectors, the subnet is deployed behind the final detection network in a similar way.

boxes that have overlaps greater than Nt are suppressed, in-

cluding the nearby detections that actually locate the other

ground truth instances. In this case, true positives may be

removed after the NMS processing with a low Nt, increas-

ing the miss rate.

Also, a high Nt like 0.7 may increase false positives as

many neighboring proposals that are overlapped often have

correlated scores. Although more highly overlapped true

positives can be kept, the increase in false positives may

be more serious because the number of objects is typically

smaller than the number of proposals generated by a detec-

tor. Therefore, using a high NMS threshold is not a good

choice either.

To address this issue, the soft version of the greedy-NMS

algorithm, i.e. soft-NMS [1], writes the suppressing step as

a re-scoring function:

si =

{

si, iou(M, bi) < Nt

sif(iou(M, bi)), iou(M, bi) ≥ Nt

,

where f(iou(M, bi)) is an overlap based weighting func-

tion to change the classification score si of a box bi which

has a high overlap with M. According to this formula-

tion, in greedy-NMS, f(iou(M, bi)) ≡ 0, which mean-

s that bi should be directly removed. In soft-NMS, either

f(iou(M, bi)) = (1 − iou(M, bi)) or f(iou(M, bi)) =

e−
iou(M,bi)

2

σ decays the scores of detections as an increas-

ing function of overlap with M. With the soft penalty, if

bi contains another object not covered by M, it does not

lead to a miss at a lower detection threshold. However, as

an increasing function, it still assigns a greater penalty to

the highly overlapped boxes, which approximately equals

to that in greedy-NMS.

Actually, both the design of greedy-NMS and soft-NMS

follows the same hypothesis: the detection boxes with high-

er overlaps with M should have a higher likelihood of being

false positives. This hypothesis has no problem when it is

used in general object detection, as occlusions in a crowd

rarely happen. However, this assumption does not hold

in the crowded scenario, where human instances are high-

ly overlapped with each other and should not be treated as

false positives. Therefore, to adapt to pedestrian detectors

in crowd scenes, NMS should take the following conditions

into account,

• For detection boxes which are far away from M, they

have a smaller likelihood of being false positives and

they should thus be retained.

• For highly overlapped neighboring detections, the sup-

pression strategy depends on not only the overlaps with

M but also whether M locates in the crowded region.

If M locates at the crowded region, its highly over-

lapped neighboring proposals are very likely to be true

positives and should be assigned a lighter penalty or p-

reserved. But for the instance in the sparse region, the

penalty should be higher to prune false positives.

3.2. Adaptive­NMS

According to the above analysis, increasing the NMS

threshold to preserve neighboring detections with high over-
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laps when the object is in a crowded region seems to be

a promising solution to NMS in crowd scenes. It is also

clear that the highly-overlapped proposals in the sparse re-

gion should be removed, as they are more likely to be false

positives.

To quantitatively design the pruning strategy, we first de-

fine the object density as follows,

di := max
bj∈G,i 6=j

iou(bi, bj),

where the density of the object i is defined as the max

bounding box IoU with other objects in the ground truth

set G. The density of objects indicates the level of crowd

occlusion.

With this definition, we propose to update the pruning

step with the following strategy,

NM := max(Nt, dM),

si =

{

si, iou(M, bi) < NM

sif(iou(M, bi)), iou(M, bi) ≥ NM

,

where NM denotes the adaptive NMS threshold for M,

and dM is the density of the object M covers. We note

three properties of this suppression strategy. (1) When

the neighboring boxes which are far away from M (i.e.,

iou(M, bi) < Nt), they are retained the same as the origi-

nal NMS does. (2) If M locates in the crowded region (i.e.,

dM > Nt), the density of M is used as the adaptive NMS

threshold. Hence, the neighboring proposals are preserved,

as they probably locate other objects around M. (3) For the

objects in a sparse region (i.e., dM ≤ Nt), the NMS thresh-

old NM equals to Nt. Then, the pruning step is equivalent

to the original NMS, where very close boxes are suppressed

as false positives.

The adaptive-NMS algorithm is formally described in

Fig. 2. As we only replace the fixed threshold Nt with the

adaptive ones, the computational complexity for adaptive-

NMS is the same as traditional greedy-NMS and soft-NMS.

The only extra cost for adaptive-NMS is an N -element list

that stores the predicted density for each proposal, which

is negligible for today’s hardware configuration. Hence the

adaptive-NMS does not affect the running time of current

detectors much, keeping the efficiency as that of greedy-

NMS and soft-NMS.

Note that adaptive-NMS works well with both greedy-

NMS and soft-NMS. For fair comparison with soft-NMS,

we adopt the original re-scoring function in greedy-NMS

by default if not specified.

Once we know the density of the object, the adaptive-

NMS flexibly preserves its neighbors and prunes the false

positives. But we actually skip a major issue that is how to

predict the density of each object, which is described in the

next section.

3.3. Density Prediction

We treat density prediction as a regression task, where

the target density value is calculated following its definition

and the training loss is the Smooth-L1 loss.

A natural way for this regression is to add a parallel head

layer at the top of the network just like classification and

localization. However, the features used for detection on-

ly contain the information of the object itself, e.g., appear-

ance, semantic feature and position. For density prediction,

it is very difficult to estimate the density using the individ-

ual object information since it needs more clues about the

surrounding objects.

To counter this, we design an extra subnet of three convo-

lutional layers, as shown in Fig. 3, to predict the density of

each proposal. We note that this subnet is compatible with

both the two-stage and one-stage detectors. For two-stage

detectors, we construct the density subnet behind RPN. We

first apply a 1× 1 conv layer to reduce the dimension of the

convolutional feature maps, and we then concatenate the re-

duced feature maps as well as the objectness and bounding

boxes predicted by RPN as the input of the density subnet.

Moreover, we apply a large kernel (5 × 5) at the final conv

layer of the density subnet to take the surrounding infor-

mation into account. For one-stage detectors, the density

subnet is deployed behind the final detection network in a

similar way.

4. Experiments

To validate the proposed adaptive-NMS method, we con-

duct several experiments on two crowd pedestrian datasets:

CityPersons [47] and CrowdHuman [36].

4.1. CityPersons

Dataset and Evaluation Metrics. The CityPersons [47]

dataset is a new pedestrian detection dataset which is built

on top of the semantic segmentation dataset CityScapes [3].

It records street views across 18 different cities in Germany

with various weather conditions. The dataset includes 5,

000 images (2, 975 for training, 500 for validation and 1,

525 for testing) with ∼ 35, 000 labeled persons plus ∼ 13,

000 ignored region annotations. Both bounding box anno-

tations of full bodies and visible parts are provided. More-

over, there are approximately 7 pedestrians in average per

image, with 0.32 pairwise crowd instances (density higher

than 0.5).

Following the evaluation protocol in CityPersons, al-

l of our models on this dataset are trained on the reason-

able training set and evaluated on the reasonable validation

set. The log MR averaged over FPPI range of [10−2, 100]
(MR−2) is used to evaluate the detection performance (low-

er is better).
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Detector. To demonstrate the effectiveness of adaptive-

NMS, we conduct two types of baseline detectors.

For two-stage detectors, we generally follow the adapt-

ed Faster R-CNN framework [47] and use the pre-trained

VGG-16 [37] as the backbone. We also keep the same an-

chor sizes and ratios as in [47]. To improve the detection

performance of small pedestrians, we adopt a common trick

to use dilated convolution and the final feature map is 1/8
of the input size.

For one-stage detectors, we modify RFB Net [22]

and also use the VGG-16 [37] pre-trained on ILSVRC

CLSLOC [35] as the backbone network. Besides, we fol-

low the extension strategy in [22] to up-sample the conv7 fc

feature maps and concat it with the conv4 3 to improve the

detection accuracy of pedestrians of small scales.

For fair comparison, we train the two base detectors with

the density sub-network together. All the parameters in the

new convolutional layers are randomly initialized with the

MSRA method [12]. We optimize both two detectors us-

ing Stochastic Gradient Descent (SGD) with 0.9 momentum

and 0.0005 weight decay. For adapted Faster-RCNN, we

train it on 4 Titan X GPUs with the mini-batch of 1 image

per GPU. The learning rate starts at 10−3 for the first 20k it-

erations, and decays to 10−4 for another 10k iterations. For

RFB Net, we set the batch size at 8 on 4 Titian X GPUs.

We also follow its “warm-up” strategy [22] that gradually

ramps up the learning rate from 10−6 to 2× 10−3, and then

divide the learning rate by 10 at 120 and 180 epochs with

totally 200 epochs in training.

Ablation Study on Adaptive-NMS. We first ignore the

predicted densities and apply greedy-NMS and soft-NMS

on detection results with various parameters. We search the

NMS threshold Nt in greedy-NMS and soft-NMS with the

“linear” method to report the best results at Nt = 0.5. We

also try several normalizing parameters σ in soft-NMS us-

ing the “Gaussian” method, but they all increase the miss

rate by about 1%. We thus only report the “linear” results

for clear presentation in the rest of the paper. We also report

the total recall and Average Precision (AP) on the Reason-

able set for more reference.

As shown in Table 1, using the traditional greedy-NMS,

the adapted Faster R-CNN detector achieves 14.5% MR−2

on the validation set, which is slightly better than the re-

ported result (15.4% MR−2) in [47]. The RFB Net detector

achieves 13.9% MR−2, which is slightly better than the cur-

rent single-shot detectors [38] in CityPersons.

The soft-NMS with the “linear” method slightly reduces

the MR−2 by 0.3% (i.e., 14.2% MR−2 vs. 14.5% MR−2)

for Faster R-CNN detector. For RFB Net, soft-NMS does

not work well. Combining adaptive-NMS with soft-NMS

also has minor or even negative improvements on metric

MR−2. The reason is that the low-score detections soft-

NMS keeps could be out of the right-hand boundary of FPPI

Method Backbone
Reasonable

MR−2 Recall AP

Faster RCNN [47] (two-stage) VGG-16 15.4 - -

TLL [38] (one-stage) ResNet-50 14.4 - -

greedy soft adaptive

Faster

R-CNN

X VGG-16 14.5 95.6 93.8

X VGG-16 14.2 98.3 94.9

X VGG-16 12.9 97.7 95.3

X X VGG-16 14.1 98.4 95.0

RFB Net

X VGG-16 13.9 95.6 94.3

X VGG-16 14.2 99.2 94.1

X VGG-16 12.7 97.4 95.0

X X VGG-16 14.3 99.2 94.1

Table 1. Ablation study for greedy-NMS, soft-NMS and adaptive-

NMS. We only report the best results of greedy-NMS and soft-

NMS with 0.5 NMS threshold for clear comparison.
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Figure 4. The MR−2 results in 5 groups with different levels of

crowd occlusions. Adaptive-NMS works much better on the high-

er density groups.

range [10−2, 100]. So MR−2 does not benefit from it.

With the proposed adaptive-NMS method, the MR−2 s-

core of the Faster R-CNN detector significantly drops to

12.9% with a 1.6% reduction, and that of the RFB Net de-

tector also reduces by 1.2% (i.e., 13.9% MR−2 vs. 12.7%

MR−2). These results indicate that adaptive-NMS keep-

s more true positives, and it is a more effective post-

processing algorithm for detecting pedestrians in crowded

scenarios.

Analysis. The average log MR and recall on the reason-

able validation set do not explain us clearly where adaptive-

NMS obtains significant gains in performance. We further

divide the pedestrians with at least 50 pixel height in the

validation set into 5 subsets according to their density (den-

sity ≤ 0.4, 0.4 < density ≤ 0.5, 0.5 < density ≤ 0.6, 0.6

< density ≤ 0.7, density > 0.7). For better demonstration,

we compare the results of Faster R-CNN with greedy-NMS,

soft-NMS (“linear”) as well as adaptive-NMS on these sub-

sets. From Fig. 4, we can infer that for sparse pedestrians

whose density is less than 0.4, all the three NMS algorithms

show similar performance. When the density increases, the

proposed adaptive-NMS significantly reduces the miss rate

compared with the two counterparts. This demonstrates that

adaptive-NMS performs better-post processing in the crowd

scene, keeping more highly-overlapped true positives.

6464



Method Scale Backbone Reasonable Heavy Partial Bare

Adapted Faster RCNN [47]
×1 VGG-16 15.4 - - -

×1.3 VGG-16 12.8 - - -

Repulsion Loss [44]
×1 ResNet-50 13.2 56.9 16.8 7.6

×1.3 ResNet-50 11.6 55.3 14.8 7.0

OR-CNN [49]
×1 VGG-16 12.8 55.7 15.3 6.7

×1.3 VGG-16 11.0 51.3 13.7 5.9

AggLoss [49] Adaptive-NMS

Faster RCNN X ×1 VGG-16 12.9 56.4 14.4 7.0

X ×1 VGG-16 13.2 56.0 14.0 7.7

X X ×1 VGG-16 11.9 55.2 12.6 6.2

X ×1.3 VGG-16 11.4 55.6 11.9 6.2

X X ×1.3 VGG-16 10.8 54.0 11.4 6.2

RFB Net X ×1 VGG-16 12.7 51.9 11.7 7.6

X ×1 VGG-16 13.1 51.7 12.0 7.4

X X ×1 VGG-16 12.0 51.2 11.9 6.8

Table 2. Comparison of detection performance on the CityPersons validation set.
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Figure 5. Visual comparisons of the Faster R-CNN pedestrian pre-

diction results (green boxes) with greedy-NMS, soft-NMS and

adaptive-NMS. Blue boxes are missing objects, while red boxes

are false positives. The scores thresholded for visualization are

above 0.3.

In addition, we also show some visual results of the

Faster R-CNN detector with greedy-NMS, soft-NMS and

adaptive-NMS for comparison. As Fig. 5 shows, adaptive-

NMS keeps more crowded true positives and still removes

false positives in the sparse region at the same time.

Comparison to the State-of-the-art. As adaptive-NMS

only focuses on the post process of detectors, it convenient-

ly works with typical advanced pedestrian detectors. More-

over, as illustrated in Fig. 6, the minor punishment in the

crowd instances increases false positives if the proposals of

the ground-truth objects are not compact. Hence, to better

validate the effectiveness of adaptive-NMS, we follow [49]

to add the AggLoss term on the regression loss to enforce

the proposals locate closely and compactly to the ground-

𝑁ℳ = 0.73 𝑁ℳ = 0.81

Figure 6. Failure cases of adaptive-NMS with the 0.3 visual score

threshold. Red boxes are false positives. As the NMS threshold

(NM) increases for crowd instances, more false positives are also

preserved if the proposals are not compact.

truth, which is defined as

Lcom({ti}, {t
∗
i }) =

1

Ncom

∑Ncom

i=1
∆(t̃∗i −

1

|Φi|

∑

j∈Φi
tj),

where Ncom is the total number of ground truths associated

with more than one anchor, |Φi| is the number of anchors

associated with the i-th ground truth object, t̃∗i and ti are the

associated coordinates of the ground truth and proposals.

In Table 2, we follow the strategy in [44] and [49] to

divide the Reasonable subset (occlusion < 35%) in the val-

idation set into the Partial (10% < occlusion < 35 %) and

Bare (occlusion ≤ 10%) subsets. Meanwhile, we denote the

pedestrians with the occlusion ratio of more than 35% as

the Heavy set. With the ×1 scale of input images, adaptive-

NMS improves the baseline detectors to reach comparable

results with those of other counterpart pedestrian detectors

without any additional module. For Faster R-CNN, when

we add AggLoss [49] with adaptive-NMS, it achieves the

state-of-the-art results on the validation set of CityPersons

by reducing 0.9% MR−2 (i.e., 11.9% vs. 12.8% of [49]).

For RFB Net, adaptive-NMS with AggLoss also pushes the

performance to 12.0% MR−2.

We then enlarge the size of the input image as in [44,
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47, 49]. Due to the GPU memory issue, we do not train the

RFB Net detector with ×1.3 scale of input size. For Faster

R-CNN, it achieves the best performance of 10.8% MR−2.

In addition, we also evaluate the proposed Adaptive-NMS

method on the testing set of CityPersons and report the re-

sults in Table 3. With ×1.3 scale and AggLoss, the Faster

R-CNN detector achieves 11.79% MR−2, while Adaptive-

NMS further improves the result to 11.40% MR−2. It is

worth noting that other counterparts either employ a part

occlusion-aware pooling module [49] or a stronger back-

bone network [44] (i.e,, ResNet-50). As adaptive-NMS has

few constraints for the architecture of detectors, we believe

the performance of adaptive-NMS can be further improved

with these techniques.

Method Backbone Scale Reasonable

Adapted FasterRCNN [47] VGG-16 ×1.3 12.97

Repulsion Loss [44] ResNet-50 ×1.5 11.48

OR-CNN [49] VGG-16 ×1.3 11.32

FasterRCNN+AggLoss VGG-16 ×1.3 11.79

FasterRCNN+AggLoss+Adaptive-NMS VGG-16 ×1.3 11.40

Table 3. Comparison of detection performance on CityPersons

test.

4.2. CrowdHuman

Caltech [6] City [47] Crowd [36]

# person/img 0.32 6.47 22.64

# pair/img

iou>0.3 0.06 0.96 9.02

iou>0.5 0.02 0.32 2.40

iou>0.7 0.00 0.08 0.33

Table 4. Comparison in terms of the average number of persons

and pair-wise overlap between two instances on the three datasets.

Dataset and Evaluation Metrics. Recently, Crowd-

Human [36] has been released to specifically target to the

crowd issue in the human detection task. It collects 15,

000, 4, 370 and 5, 000 images from the Internet for train-

ing, validation and testing respectively. There are ∼ 340k
persons and ∼ 99k ignore region annotations in the training

set. Moreover, the CrowdHuman dataset is of much higher

crowdedness compared with all the previous ones (e.g., C-

ityPersons [47], KITTI [8] and Caltech [6]). As shown in

Table 4, it contains approximately 22.6 pedestrians in aver-

age per image as well as 2.4 pairwise crowd instances (den-

sity higher than 0.5).

We follow the evaluation metric used in CrowdHuman

[36], denoted as MR−2 as introduced in Section 4.1. All the

experiments are trained in the CrowdHuman training set and

evaluated in the validation set, and only the full body region

annotations are used for training and evaluation.

Detector. We also conduct two baseline detectors to e-

valuate the performance of adaptive-NMS.

For two-stage detectors, as Faster-RCNN [47] with the

VGG-16 backbone fails to reach a good baseline result in

our early experiments, we follow [36] to employ the Feature

Pyramid Network (FPN) [20] with a ResNet-50 [13] as the

new backbone network. We also use the same settings of

design parameters, such as [1.0,1.5,2.0,2.5,3.0] anchor ra-

tios and no clipping proposals. For one-stage detectors, we

use RFB Net with the same architecture as in Section 4.1.

As the images of CrowdHuman are collected from web-

sites with various sizes, we resize them so that the shorter

image side is 800 pixels for FPN. The input size of RFB Net

is set as 800 × 1200. The base learning rate is set to 0.02

and 0.002 for FPN and RFB Net respectively, and divided

by 10 at 150k and 450k for FPN, and 400k and 600k for

RFB Net. The SGD solver with 0.9 momentum is adopted

to optimize the networks on 4 Titian X GPUs with the mini-

batch of 2 images per GPU, while the weight decay is set at

0.0001 and 0.0005 for FPN and RFB Net respectively. For

fair comparison with [36], we do not use additional losses

such as AggLoss [49] or Repulsion Loss [44].

Evaluation Results. In Table 5, our baseline detectors

achieve comparable results as [36] does. When we replace

greedy-NMS with adaptive-NMS, the miss rate drops by

2.62% MR−2 and 2.19% MR−2 for FPN and RFB Net re-

spectively. It proves that the proposed adaptive-NMS algo-

rithm is effective and has a good potential for processing

detectors in crowd scenes.

greedy soft adaptive MR−2 Recall AP

FPN [36] X 50.42 90.24 84.95

FPN X 52.35 90.57 83.07

X 51.97 91.73 83.92

X 49.73 91.27 84.71

RetinaNet [36] X 63.33 93.80 80.83

RFB Net X 65.22 94.13 78.33

X 66.34 95.37 78.10

X 63.03 94.77 79.67

Table 5. Evaluation of full body detections on the CrowdHuman

validation set.

5. Conclusions

In this paper, we present a new adaptive-NMS method

to better refine the bounding boxes in crowded scenar-

ios. Adaptive-NMS applies a dynamic suppression strate-

gy, where an additionally learned sub-network is designed

to predict the threshold according to the density for each in-

stance. Experiments are conducted on the CityPersons [47]

and CrowdHuman [36] databases, and state of the art results

are reached, showing its effectiveness.
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