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Abstract. Measuring the diffusion properties of crossing fibers is very
challenging due to the high number of model parameters involved and the
intrinsically low SNR of Diffusion Weighted MR Images. Noise filtering
aims at suppressing the noise while pertaining the data distribution.
We propose an adaptive version of the Linear Minimum Mean Square
Error (LMMSE) estimator to achieve this. Our filter applies an adaptive
filtering kernel that is based on a space-variant estimate of the noise
level and a weight consisting of the product of a Gaussian kernel and the
diffusion similarity with respect to the central voxel. The experiments
show that the data distribution after filtering is still Rician and that the
diffusivity values are estimated with a higher precision while pertaining
an equal accuracy. We demonstrate on brain data that our adaptive
approach performs better than the initial LMMSE estimator.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is hampered by a
low signal to noise ratio (SNR) for high values for the diffusion weighting pa-
rameter b. As a consequence, diffusion model parameters may be estimated with
low precision. An incorrect representation of the noise properties, particularly
assuming a Gaussian instead of a Rician noise distribution in the DWIs, may
render a biased signal model [I]. Noise filtering aims to increase the accuracy and
precision of the estimated diffusivity. A sufficiently high spatial resolution per-
mits the identification of locally homogeneous tissue regions in which averaging
reduces the noise, but pertains the signal.

In previous work, the Linear Minimum Mean Square Error (LMMSE) estima-
tor [2] was proposed to reduce Rician distorted MR data, including DW-MRI.
In DW-MRI data, anisotropic smoothing was applied to reduce noise [3]. An es-
timate of the noise level was obtained by extending the single tensor description
with a Rician noise distribution and estimating the noise level by a Maximum
Likelihood (ML) framework [4J5]. Rician noise reduction by spatial regularization
[6/7] was used to limit the bias in estimates of a single tensor model. Alterna-
tively, sequential anisotropic multichannel Wiener filtering allows the correction
of the bias in the diffusivity estimates due to the Rician distribution of Diffusion
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Weighted Images (DWIs) [8]. By modeling a Markov Random tensor Field, a
joint optimization of the likelihood and a prior could be performed [9]. These
methods have in common that they are applied to a single tensor model.

To date, relatively little attention is paid to filtering noise in fiber crossings.
Crossing fiber orientations were more precisely reconstructed after filtering [S].
Estimating diffusion properties independently per crossing fiber bundle involves
more model parameters and hence is inherently more susceptible to noise [10].

We propose a method for noise suppression in fiber crossings, which is also
valid in voxels with a single fiber configuration. The technique is inspired by
the LMMSE estimator introduced by Aja-Fernandez [2], but it contains two
important improvements. First, the original Aja-Fernandez approach used an
isotropic, uniform kernel, which mixes neighbouring tissues around transitions.
We use an adaptive Gaussian kernel by only including voxels whose single tensors
are similarly shaped. Consequently, the bias induced by the mixing is reduced.
Second, the Aja-Fernandez filtering approach uses a global estimate of the noise
level o, while the noise level is known to be smoothly varying due to parallel
imaging [5]. We perform an ML estimation of o per voxel by fitting a constrained
dual tensor model.

The distribution of the data after LMMSE-filtering should be known in order
to allow accurate parameter estimation. In our experiments we will emperically
show that our model, assuming a Rician distribution, still adequately describes
the data. It is then demonstrated that the variance in the estimated diffusion
parameters is decreased while the bias remains low. Finally, we will compare our
adaptive noise suppression scheme with the original Aja-Fernandez approach on
brain data.

2 Method

Linear Minimum Mean Square Estimation (LMMSE)-filtering [2] has been pro-
posed to reduce noise in Rician distributed MRI data. This closed-form solution
considers the DWIs as realizations of stochastic processes. The local signal vari-
ance is reduced, steered by the estimated noise level. The estimate of the squared
signal A2 equals

402 ((M?) — o?)

A2 = (M?) —20° + (1— 1) — (A2

Jor ). w
in which M represents the measured signal and (-) the estimator of a sample’s ex-
pectation value.The LMMSE-filter is applied in 3-D to each DWI independently.
The variance of the noise, 02, was originally assumed constant in the entire field
of view and estimated as the mode of the locally estimated signal variances.
The expectation value of the sample is approximated by a weighted sum in a
local neighbourhood 7, (I) = Eldp Zpsn dpIp. Initially, uniform weighting, i.e.
d, = 1V¥p, was proposed.
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In the following Section 2] we will introduce an ML approach involving a
dual tensor model for improved estimation of the noise level o. Section will
discuss an adaptive filtering kernel which is valid at fiber crossings.

2.1 Maximum Likelihood Noise Level Estimation

DW-MRI records the magnitude of the complex MR signal. The real and imag-
inary channels of the complex MR image are assumed to be independently af-
fected by Gaussian noise, such that the DWIs are Rician distributed. Hence, the
probability density function of a measured signal S, ; > 0 is given by

Sm,‘ Sgn, + Sg, Sm, ‘Sg"

Here Sg,; denotes the true underlying value given the parameter vector 6, o the
standard deviation of the noise, and Iy the zeroth order modified Bessel function
of the first kind. Now the log likelihood function In L(0, 0|Sy,) becomes

Si.j T 555(0)

902 +1In Io(

)
3)
where the DWIs are assumed independent, such that the joint probability density
function of the signal profile Sy, in a voxel is given by the product of the marginal
distributions for the measured signal S,, ; in each of the N, diffusion weighted
directions gj. ML estimation of the parameters @ is obtained by maximizing the
log likelihood function: 6,7, = arg {maxg (InL)}.

We propose to estimate the noise level in a dual tensor model to avoid a bias
in the estimated diffusivity of crossing fibers. We assert a model for the diffusion
weighted signal Sg ; consisting of two tensors and an isotropic compartment:

Ny
InL(0,0[Sm) = —2In(0)+ > _(In(Sm.;) — Sm,ySZ,g(O)
g
j=1

Se,; = So{ Z fiexp (—b;g;" Digj) + fiso exp (—b;jDiso) }, (4)
i=1,2

where Sy is the signal measured without diffusion weighting and f. the volume
fractions, with fo = 1 — fi — fiso. We choose Djso = 3.0- 102 mm?s~! as an
isotropic diffusion constant (to approximate diffusion values reported in CSF),
because f;s, and D4, are dependent. The signal is measured with a diffusion
weighting b; in gradient direction gj. The diffusion tensors are spectrally decom-
posed, D; = R;E;R;, with E; = diag ()‘H il )xu_) being the eigenvalue matrix
with axial and planar diffusion values (assuming axially symmetric tensors). The
two rotation matrices R; are parametrized using Euler angles.

The estimation is done per voxel in two steps, by optimizing the log-likelihood
function (Eq. Bl). First,o is estimated in which we constrain the E; to be equal
while pertaining constant f . and Djs,, to reduce the number of parameters and
hence the variance in the estimated o. Second, all parameters are estimated,
with the estimated o substituted in Eq. 3l
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2.2 Adaptive Filtering

Instead of a uniform filter we propose a filter d,, that adapts its shape automat-
ically to the local structure (p indexes the filter components). The filter coeffi-
cients are the product of an isotropic Gaussian kernel G,|;, defined at the central
pixel k having a width og, and a normalized weighting based on the single ten-
sor similarity at position p (D, ,) compared to the tensor in the central pixel
k(D ). We represent the six unique single tensor components by a vector D;.
The filter d), yields

T
Ds,pDS’k

d, =
" Dspl - 1Dk

“Gyk(oa), (5)

in which || is the vector norm. Note that in a region of crossing fibers, the DWIs
are filtered within the plane of the crossing, spanned by an oblate single tensor.
We chose a Gaussian kernel width o = 4mm, coarsely corresponding to the
uniform filtering neighbourhood of sizel x 1cm? in [2].

The adaptive filter was implemented in Matlab (The MathWorks, Natick,
MA) and is illustrated in figure [[[(a) in which the filter kernel is overlaid in red
over an image containing the corpus callosum (CC). The original approach in-
volved an isotropic kernel, due to which the filtering mixes white matter and
cerebrospinal fluid (left image). The adaptation to the local structure (such as
n [I1]) of the corpus callosum reduces this effect (right). In crossings, the kernel
gets an oblate shape (bottom).
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Fig. 1. (a) The original isotropic Aja-Fernandez kernel (left) and the proposed adaptive
kernel (right) are shown in red (and manually outlined in white), in the genu of the
CC (top) and crossing of CC and CST (bottom). (b) Original and filtered profile of a
simulated measurement.
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3 Experiments

3.1 Brain Data Acquisition

Diffusion Weighted Image acquisition of 20 axial slices (mid-brain) of a healthy
volunteer was performed on a Philips Intera 3.0 Tesla MRI scanner by means of
a spin echo EPI-sequence, on an eight-channel head coil with SENSE reconstruc-
tion. An imaging matrix of 112 x 110 was used, from which 128 x 128 sized slices
were reconstructed, with a voxel size of 1.7 x 1.7 x 2.2 mm?. The diffusion weight-
ing was along 92 three-fold tessellated icosahedric gradient directions, with two
b-values: b = [1.0 3.0] - 103 mm~2s. Per b-value, one non-diffusion weighted im-
age Sy was acquired. 20 axial slices were acquired, resulting in a total scanning
time of 30 minutes. The deformations induced by eddy currents were corrected
with an affine registration in the phase encoding direction [12]. In addition, a
rigid registration of the Sp-images and coregistration of the DWIs corrected for
patient head motion (up to 2 voxels).

3.2 Filtered Data Distribution

The distribution of the data after filtering must be known to accurately esti-
mate the model parameters. Since it was stated that the distribution of the data
after filtering may no longer be Rician distributed [2], we emperically studied
two potential effects on the distribution. First, the mixing of Rician distributed
data might induce a multivariate Rician distribution. Second, the Rician distri-
bution might converge to a Gaussian due to the lower noise level and as result
of averaging noisy realizations, in accordance to the Central Limit Theorem.
Clearly, if the post-filtering distribution is multivariate Rician distributed, the
ML estimation with the given Rician noise model is no longer valid.

The filter’s effect on synthetic Rician distorted data was studied with the fol-
lowing procedure. Different FA-values for both tensors FA; =0.66 and FA; =0.75

were selected by constraining axial diffusivities A\;j = Ay = 1.4 - 10" mm?s~!

and planar diffusivities A1, = 0.4- 103 mm?s™! and A\;; = 0.3- 1073 mm?s~ .
Furthermore, we choose f; = 0.4 and fiz, = 0.15 with D;so = 3.0- 103 mm?s~!
while the opening angle between the long axis of both tensors was 25” rad = 72°.
The magnitudes of the DWI simulated with these parameters were replicated
on a 2D-grid. The signals on each grid point were independently distorted by
Rician distributed noise (SNR= i" = 1), such that a significant bias due to the
noise was introduced. The experiment was repeated 100 times. The aggregate
signal values before and after filtering using the proposed method are shown in
figure [[(b). It turns out that the filter removes the bias from the data.

In brain data, we focused on a set of highly attenuated DW-signal values, in
which a Rician distribution is expected. We included voxels with an anisotropic
diffusion profile, by thresholding on FA;0.5 and MD > 1.0 - 1073 mm?s~!. Per
voxel the DW-signal value S; was selected from the signal profile Sy, whose cor-
responding gradient direction gj was most closely aligned with the principal dif-

fusion direction of a single tensor fit vq, i.e. {S; € Sy arg;nax g;Vv1}. Histograms
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Fig. 2. Histograms of a set of higly attenuated DW-signals values, selected from brain
data (see text). A Gaussian (black line), Rician (red line) and bivariate (weighting
of two) Rician distributions (blue line) were fit to these points. The left image shows
original data, the right image shows filtered data.

before and after applying the proposed noise reduction filter were determined
to which uni- and bivariate Rician and Gaussian distributions were fitted: c.f.
figure 2l The Kolmogorov-Smirnov test revealed that the Gaussian distribution
significantly differed from the measured data, while both Rician distributions
comply with the measured data. After filtering, no significant differences were
found. This result shows that a univariate Rician is an appropriate noise model
prior to filtering. Figure 2 shows that the filtering changes the original noise
distribution to a Gaussian. An approximate Gaussian distribution also follows
from the Central Limit Theorem. The Rician also fits well due to the higher
signal level after filtering: for high SNR the Rician distribution approaches the
Gaussian distribution. Practically, a Rician distribution was always fit, since it
better generalizes to low signal levels.

3.3 Accurate and Precise Parameter Estimation

A Monte Carlo simulation was performed to assess the accuracy of the estimated
parameters after noise filtering in the presence of a varying anisotropy in the
neighbourhood (see figure B(a)). A 2D-grid of measurements at crossings was
simulated. By adjusting \;; the FA-values of both tensors were varied along the
horizontal and retained constant along the vertical axis (with a length of 500
voxels). Rician noise was added to all measurements such that the SNR=12. The
grid was noise filtered after which we estimated SNR=25 (6 = 4). Levenberg-
Marquardt optimization of the log likelihood function (Eq.[3) was used in the
parameter estimations.

Measurements were performed along the dashed line in figureBla). FigureB{(b)
shows distributions of the estimated parameters and the mean errors, both before
and after noise reduction. The distributions after filtering are narroweras a result
of the noise reduction. A significant bias is only observed in f;s,, the estimated
value is 13% lower than the modeled value. Simultaneously, the bias in the other
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Fig.3. (a) A 2D-grid of measurements at crossings was simulated. Generated and
estimated FA-values are given. Measurements were performed along the dashed line. (b)
Distributions of estimated parameters, prior to and after filtering. The true parameter
values are indicated by a black bar.

parameters is negligible. We conclude that noise filtering can be safely applied to
allow for accurate and precise estimation of diffusivity in crossing fibers.

3.4 Noise Reduction in Brain Data

The effect of our noise filtering applied to brain data is illustrated in figure [4l
It demonstrates that the proposed method employing a space-variant adaptive
kernel performs better than the original isotropic kernel. This is supported by a
shift towards a higher SNR. It should also be noted from the smoothly varying
SNR-field that the estimation of ¢ is stable. The average computation time for
filtering and tensor estimation per voxel on a notebook computer equals 0.09s
without filtering, and only 0.17s with the proposed method.

Fig. 4. Estimated SNR (°°) before filtering (left), after filtering with an isotropic
kernel (middle), and filtering with the proposed method (right)



174 M.W.A. Caan et al.

4 Discussion

An adaptive filter for suppressing noise in fiber crossings was proposed. The
impact on clinical applications of our method is in comparitive studies that aim
to assess white matter defects in crossings. Future work will be to estimate a non-
stationary noise-covariance for the different DWI directions [13]. The recently
proposed Diffusion Type Based similarity measure [14] may even further reduce
filtering to homogeneous tissue regions. A crossing fiber phantom whose diffusion
properties are accurately known will aid in validating our method.
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