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ADAPTIVE NONCONFORMING CROUZEIX-RAVIART
FEM FOR EIGENVALUE PROBLEMS

CARSTEN CARSTENSEN, DIETMAR GALLISTL, AND MIRA SCHEDENSACK

ABSTRACT. The nonconforming approximation of eigenvalues is of high practi-
cal interest because it allows for guaranteed upper and lower eigenvalue bounds
and for a convenient computation via a consistent diagonal mass matrix in 2D.
The first main result is a comparison which states equivalence of the error of
the nonconforming eigenvalue approximation with its best-approximation er-
ror and its error in a conforming computation on the same mesh. The second
main result is optimality of an adaptive algorithm for the effective eigenvalue
computation for the Laplace operator with optimal convergence rates in terms
of the number of degrees of freedom relative to the concept of a nonlinear
approximation class. The analysis includes an inexact algebraic eigenvalue
computation on each level of the adaptive algorithm which requires an itera-
tive algorithm and a controlled termination criterion. The analysis is carried
out for the first eigenvalue in a Laplace eigenvalue model problem in 2D.

1. INTRODUCTION

Given a bounded simply connected Lipschitz domain €2 with polygonal boundary
0%, the weak form of the eigenvalue problem —Awu = Au with homogenous boundary
conditions seeks the first eigenpair (\,u) € R x V such that ||u| z2(q) = 1 and

(1.1) a(u,v) = Ab(u,v) forallv eV = HJ ().

Here and throughout this paper, standard notation is employed on Lebesgue and
Sobolev spaces, and the scalar products a and b read as

a(v,w) ::/Vv~dex for any v,w € V = H} (%),
Q

b(v,w) = / vwdr for any v,w € L*(Q)
Q

1/2 1/2

with induced norms ||-|| := a(-,-)"/* and ||| z2(q) = b(:,-)"/*. The Crouzeix-Raviart
finite element space of piecewise linear polynomials (denoted by P; (7)) with con-
tinuity condition at the interior edges’ midpoints and corresponding zero boundary
conditions along 0f) for some shape-regular triangulation 7 of € into closed trian-
gles T € T with interior edges £(2), boundary edges £(992) and midpoints mid(E)
for E € £ :=&E(N) UE(ON) reads as

v is continuous in mid(E) for all E € £(Q) }

CRy(T) := {v €PN & o(mid(E)) = 0 for all E € £(09)
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The piecewise gradient V¢ (with respect to the triangulation 7) defines the
discrete scalar product

anc(VeRr, WoR) = / Vnever * Vacwer dz  for any ver, wer € V + CRG(T)
Q

with induced norm ||||xc := axc(-,)*/2. The discrete eigenvalue problem reads:
Seek (Acr,ucr) € R x CR%(T) such that Acg > 0 is minimal, ||UCRHL2(Q) =1,
and

(12) aNc (UCR, UCR) = )\CRb(uCR, 'UCR) fOI" all VUCR S CR(l) (T)

The nonconforming finite element approximation has recently become highly
attractive because of the guaranteed lower and upper eigenvalue bounds [19]. The
lowest eigenvalue A of (LI and its Crouzeix-Raviart approximation Acg satisfy

Acr

1.3
(1.3) 14 0.1931\cr]|hol|%

<A< Juel?

for any postprocessing ve € V of the computed ucgr € CR%(T) with L? norm one
and the maximal mesh-size ||hg||s. This is one striking advantage of the Crouzeix-
Raviart discretisation; another advantage is the diagonal mass matrix in 2D. The
first main result of this paper compares the energy norm errors of the discrete
first eigenfunction computed by the nonconforming and the conforming P; finite
element schemes. For a sufficiently small mesh-size ||hg||oo, Theorem Bl asserts the
equivalence of the errors of the nonconforming Crouzeix-Raviart solution ucgr and
the conforming P; solution uc with the L? projection IIoVu of the gradient onto
piecewise constants,

lu —ucll = llu — ucrllxe = [Vu — o Vul|p2(o).

In conclusion, the nonconforming approximation is not worse than the conforming
one and has the advantage of a consistent diagonal mass matrix in 2D and that of
guaranteed error bounds (L3]).

The reliability and efficiency of the error estimator

17 (T) == |T| |AcrucrlZzer) + I Y [I[0uck /98] gll72(m)
Ee&(T)

have been established [24] up to higher-order terms (for more details cf. Subsection
[L2). This and the recent work [I9] motivate an adaptive algorithm ACREVFEM
with successive loops on the level £ =0,1,2... of the form

(INEXACT SOLVE & ESTIMATE) — MARK — REFINE.

On each of those levels ¢, the algebraic eigenvalue solver computes an approximation
(5\5, g) to the discrete eigenpair (Ag,up) up to any tolerance monitored in terms
of the error estimator 7, with respect to inexact solve and some parameter 0 <
k < 1/2. A sufficiently fine initial mesh 7y allows for some quasi-orthogonality,
which leads to the contraction property for the inexact eigenpair approximations.
The second main result of this paper asserts quasi-optimal convergence towards
the eigenpair (A, u) of the smallest eigenvalue A with respect to the discrete energy
norm ||-||xc in the sense that

(I Tel = [To])? v — @ellne < Cops |ul 4, forall £=1,2,3,....

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ADAPTIVE NONCONFORMING EIGENVALUE FEM 1063

For conforming finite element discretisations optimal convergence rates are proven
in [I8,23]. Subsection 3] presents the details on the approximation seminorm
|ul 4, and the optimal convergence rate o > 0 and states optimality up to the
factor 1 < Copy < 00 under the condition that 7y is sufficiently fine and the bulk
parameter 6 as well as the control parameter k for the inexact solve are sufficiently
small. All constants Cop and upper bounds on  and 6 depend exclusively on the
initial triangulation 7y and on the parameter o > 0.

Optimality of adaptive algorithms for the nonconforming finite element discreti-
sation is well studied for the Poisson problem [5,29,[30], the Stokes equations
[4211[27] and the Navier-Lamé equations [16].

One technical difficulty behind the treatment of the nonlinearity is the L? er-
ror control for possibly singular solutions u in H}(Q) \ H?/?(). The standard
duality technique has to circumvent the fact that the discrete solutions are not
allowed as test functions on the continuous level and lead to jump terms times
normal derivatives of the dual solution along edges. Their analysis can be found in
textbooks [BL[12] for convex domains outside of the main application for adaptive
mesh-refinement. Instead, this paper shows an alternative L? error control for ar-
bitrarily small regularity s > 0 (compare with s > 1/2, required for the traces of
normal derivatives to exist). A similar approach has independently been developed
in [28].

The remaining parts of this paper are organised as follows. Section [2] establishes
the L? control for the eigenfunctions and convergence rates for the eigenvalues
and provides the framework for the balance of higher-order terms that arise from
the nonlinearity of the eigenvalue problem. Section [B] compares the error of the
conforming first-order method with the errors of the nonconforming approximation
and best-approximation. This equivalence enables the subsequent analysis of the
optimal convergence of the adaptive algorithm ACREVFEM of Section @l with respect
to some equivalent approximation class. The quasi-orthogonality and convergence
in the sense of a contraction property will be proven in Section[Bl Section [f] provides
the discrete reliability and the quasi-optimal convergence of the algorithm.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and
their norms is employed; f denotes the integral mean. The formula A < B rep-
resents an inequality A < CB for some mesh-size independent, positive generic
constant C; A =~ B abbreviates A < B < A. By convention, all generic constants
C =~ 1 do not depend on the mesh-size but may depend on the fixed coarse trian-
gulation 7Ty and its interior angles. The measure |-| is context-sensitive and refers
to the number of elements of some finite set (e.g. the number |T| of triangles in
a triangulation 7)) or the length |E| of an edge E or the area |T'| of some domain
T and not just the modulus of a real number or the Euclidean length of a vector.
The piecewise constant function hy with hy|r := |T|*/? on the triangle T € T
denotes the mesh-size of the triangulation 7 with maximum ||h7||oc. The L? pro-
jection onto piecewise constant functions is denoted by IIy. The space of piecewise
polynomials of degree < k is denoted by Py (7).

2. L? CONTROL

This section is devoted to the L? error control of the first nonconforming eigen-
function on a fixed triangulation 7 € T in the set T of all regular triangulations
that are refinements of the coarse initial triangulation 7y with maximal mesh-size
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T green(T) blueges (1) blueignt (T') bisec3(T)

FIGURE 1. Possible refinements of a triangle T' in one level within
the NVB. The thick lines indicate the refinement edges of the sub-
triangles as in [0L[33].

[lhollse by Newest-Vertex-Bisection (NVB) [6L33]; see Figure Il The following error
estimate is well established for H?(Q) regular domains [7]. That proof might be
extendable to H'*¢(Q) regular domains for 1/2 < s < 1 because of the existence
of the normal derivative of the dual solution along interior edges. The proof in this
section covers the case of reduced elliptic regularity 0 < s < 1 with some constant
C(s,82) ~ 1 (which depends on the maximal interior angle w of the polygon 92 via
s < m/w) for the Laplace equation and pure Dirichlet conditions, such that for all
[ € L*(Q) there exists some z € H}(Q) N H*4(Q) such that

(2.1) f+Az=0 inD(Q) and [z]gr+e@) < O, D fllL2)-

Theorem 2.1 (Eigenvalue and L? control). Suppose that the initial mesh-size
hollso = ||h7ollee € 1 ds sufficiently small. Then the first eigenpair (A, u) and
the discrete first eigenpair (Acr,ucr) € R x CRy(T) with lucrlz2@) = 1 and
b(u,ucr) > 0 satisfy

A= Acr| + [lu = ucrllz2 ) S llholl2cllu — ucrllxe-

Before the remaining parts of this section are devoted to the proof of this the-
orem, some conclusion for the discrete eigenpair approximations on two different
triangulations is in order.

Corollary 2.2. Suppose that the initial mesh-size ||hollco = ||h7 |oc < 1 is suffi-
ciently small and that Torm € T is a refinement of To € T. Then some eigenfunction
up € CRy(Te) (resp. worm € CRY(Towm)) with |lugl| = 1 (resp. |Juepml|| = 1) with
respect to the first discrete eigenvalues Ay (resp. Aoym) satisfies

[ Ao+ mUesm — /\ZWHM(Q) Slholl5e (lw = wellne + 1w — wegmlIne)-

Proof. Theorem ] proves that there exist eigenfunctions u, € CRy(Tz) and ugy ., €
CRo(Togm) with [Juel|L20) = 1 = [[ttppm|L2(0) and
4| A rmtierm — Aeuel| 720
= (Aem = A0)*werm + well 720y + Aerm + Xe) luerm — el 720
Sllholl38 (lw = uellfe + llu = uermlRe)-

The a priori analysis [11[7,34] guarantees that Ay and Ay, are bounded for ||hg||c0 <
1. (I

The proofs of the results in this and the following section rely on the design of
some novel conforming P, companion to the nonconforming discrete solution ucg.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 2.3. For anyvcr € CRy(T) there exists some Jyver € Py(T)NCo(Q)
such that (a) ver — Javer is L* orthogonal on the space Pi(T) of piecewise first-
order polynomials, (b) it enjoys the integral mean property of the gradient

o (Vye(ver — Javer)) = 0,
and (c) it satisfies the approzimation and stability property

(2.2) Ih7 (ver — Javer)|rz2e) + lver — Javer[lne S f}g‘f}HWCR — Vlnc-

Proof. The design follows in three steps.

Step 1. Let N denote the set of vertices of 7 and let N'(R2) := AN Q be the set of
interior vertices. The operator J; : CR§(T) — P1(T) N Co(Q) acts on any function
vor € CRG(T) by averaging the function values at each interior node z, i.e.,

(2.3) Jiver(z) = |T(2)| 7! Z vor|r(z) for all z € N(Q)
TeT (2)

for T(z) :={T € T |z € T}. This operator is also known as an enriching operator
in the context of fast solvers [I1]. The proof of the approximation property

(2.4) [h7! (ver — Jrver) |2 ) S minflocr — vllne
is included in [I3, Theorem 5.1]. This and an inverse estimate imply the stability
property
(2.5) lver — Jiverllne S minflucr — vllxe-
veV

Step 2. Given any edge E = conv{a, b} with nodal P, conforming basis functions
©a, b € PL(T)NCo(Q) (defined by p,(a) =1 and ¢, (2) = 0 for z € N\ {a}), the
quadratic edge-bubble function

br :=6p.pp

has support supp(pa) N supp(pp) and satisfies f,bpds = 1. For any function
ver € CRG(T) the operator Jy : CRE(T) — Po(T) N Co(Q) acts as

Jover = Jiver + Z (][ ('UCR — JlUCR) d8> bE
E

Ee&(Q)

An immediate consequence of this choice reads

][ Jover ds = ][ vcrds forall B € €.
E E

An integration by parts shows the integral mean property of the gradients IIoV.J; =
vNc, i.e.,

/ VJover dx = / Vycvcrdx forall T € T.
T T

An integration by parts shows for the vertex Pg € N'(T')\ E opposite to E € E(T)
in the triangle T' the trace identity

][ ('UCR — J1UCR) dS
E
1
= ][ (UCR — Jl'UCR) dl‘ + 5 f (.13 — PE) . VNC ('UCR — J1UCR) dl‘
T

T
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1066 C. CARSTENSEN, D. GALLISTL, AND M. SCHEDENSACK

The scaling ||bg|r2(0) S [T]'/? shows

\T|*1/2H > <][E('UCR—J1’UCR) ds) bE’

E€&(T)

< —J d
ey ¥ Z ’ﬁ(UCR 1UCR) ds
Ee&(T)

SITI7Y2|ver — Jiverllrzery + || Ve (ver — Jiver)| 2 er)-
This and the properties (Z4)-(23) yield
1h7" (ver = Javer) | L20) S f}g{}HWCR = Vflxe-
The stability property of Jo follows with an inverse estimate

loer — Javerline S 17 (ver — Javer)lr2) S {Jfg‘I}\HUCR = Vlne-

Step 3. On any triangle T = conv{a, b, ¢} with nodal basis functions ¢., s, @c,
the cubic volume bubble function reads
by == paprpe € Hy (T).
The affine functions
br.. = \/40 +10V7 \T|_1/2(2 —(7- ﬁ)@z) for z € {a,b,c}

are by orthonormal in the sense that (with the Kronecker §)

/ ¢y O1. b1 dr =6, for y,z € {a,b,c}.
T

Define
Jyver = Javcr + Y Y (/ (ver — J2vCR) O, dff) or,2b.
TeT zeN(T) 7T
The difference vcgr — Jivcr is L? orthogonal to all piecewise affine functions. Since
¢r,. vanishes on E € &, J; enjoys the integral mean property of the gradient
114V Jy = Vye. Since

/ (ver — Jovcr)o1,2 dx| S |lver — Javer|| L2 (1)
T

the scaling |T|'/2|Vér .| L2(ry = [Vorll2() = b7l L~ @) = (T2 672 | oo (1) =
1 and Step 2 imply the stability property

lver — Javerline S minflucr — vllxe-
veV
The Poincaré inequality proves the approximation property
Ih7" (ver — Javer)lz2) S minflvcr — v]lxc. 0
The proof of Theorem 2] starts with arguments from [34] exploited in [I7] for
conforming FEM.
Let A denote the k-th exact eigenvalue and let Acr (KC) denote the first discrete

eigenvalue with respect to CR}(K). For a sufficiently small mesh-size ||ho||oo of To
the well established a priori analysis of [1L[7,[34] implies that

(2.6) M :=sup  sup Acr (1)

o < oQ.
KeT k=2,34,... |>‘CR(IC) - )‘k‘
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ADAPTIVE NONCONFORMING EIGENVALUE FEM 1067

Lemma 2.4. Let Goru € CR(I)(’T) denote the nonconforming finite element solu-
tion of the Poisson problem with right-hand side Au, i.e.,

(2.7) anc(Goru, ver) = b(Au, ver)  for all ver CR(IJ(T).

Any eigenfunction ucgr € CR(l)(’T) corresponding to A\cr and u € V' corresponding
to X such that ||ul|r2) = 1 = |lucrlr2() and b(u,ucr) > 0 satisfy (with the
constant M from ([26)) that

lu — ucrllr2@) < V2(1+ M)|lu — Gerull 22 (o).
Proof. Some algebra with [|ucrl|z2) = 1 = [|ul|r2() and b(u,ucr) > 0 proves
llu— “CR||2L2(Q) _ [l — b(u, UCR)UCRH%?(Q)
2 ; 1+ [b(u, ucr)|

Note that b(u, ucr)ucr is the L? projection onto span{ucg }. The combination of
[23) with the triangle inequality proves

(2.8)

u—1u
% S ||u — b(U,UCR)UCRHL2(Q) = rt[élﬂglu’u, - tUCRHLQ(Q)

2.
(2.9) < lu — b(Geru, ucr )ucrl| £2(0)

< |lu = Gerull 20y + |Geru — b((Geru, ucr)ucrl| L2 () -
It remains to estimate the second term on the right-hand side of (23).

Set ver := Geru—b(Geru, ucr)ucr and N = dim(CR(l)(T)). Since the discrete
eigenfunctions (ucr; | 7 = 1,...,N) form an L2-orthonormal basis of CRg(7)
and vcr is L? orthogonal on span{ucr} = span{ucr 1}, there exist coefficients
(aj | j=2,...,N) such that

N N

VCR = ZaquRJ and Za? = ||UCR||%/2(Q)'
j=2 Jj=2

The definition of Gcgr shows that
()\CR,j — )\)b(GCR’U,, UCRJ‘) = /\b(u — GCRU, UCRJ)-
Therefore the orthogonality and the preceding identities lead to
N N A\

locrllZz () = b(Goru, Y ajucr,;) = blu— Goru, % o OR):
j=2 j=2 »J

The Cauchy inequality, the estimate (2.6]) and the L2-orthogonality of the discrete
eigenfunctions therefore shows

lverllz2) < Mllu— Gerullzz(o)-
The combination with ([2.9) concludes the proof. O

One of the difficulties in the proof of Theorem 2.1]is the fact that the right-hand
side u — Goru in the duality argument does not belong to V. This difficulty is
circumvented by the use of the companion operator of Proposition 231 A similar
result has been derived independently in [28].

Lemma 2.5 (L? control for u— Gcru). The first exzact and discrete eigenfunctions
satisfy

lv = Gerullz2 @) < [1hollZlu — ucrllxe-
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1068 C. CARSTENSEN, D. GALLISTL, AND M. SCHEDENSACK

Proof. Let e := u — G¢cru and let z € V denote the solution of the following linear
Poisson problem:

a(z,v) = b(e,v) forallveV.
Since IIy(Geru — JaGeru) = 0, it holds that
(210) ||€||%2(Q) = b(J4GCRu — GCRU, 6) + b(e, u — J4GCR’IL)
= b(J4GCRu — Gcru, (1 — Ho)e) + a(z, u— J4GCRU).
Piecewise Poincaré inequalities and ([2Z2]) lead to

b(JaGeru — Goru, (1 —T)e) S [lhollZllelFe-

Since e is perpendicular to the conforming finite element functions in P;(7) NV
and since o Vne(Goru — J4Geru) = 0, the Scott-Zhang [31] quasi-interpolation
zc € Pi(T)NV of z satisfies

a(z,u — JyGoru) = anc(e, 2 — z¢) + anc(Geru — J4Geru, 2 — z¢).
Standard a priori estimates [12] and elliptic regularity imply
Iz = zcll < lhollZcllzllzr+s (@) S Mol llell 2o -
The combination of the above estimates with ([2:2)) proves
lellzz@) < lhollZllellse-

The following best-approximation for the nonconforming approximation of the Pois-
son problem (here with right-hand side Au) can be found in [1526l28]. The im-
proved oscillation term on the right-hand side

e < min uU— + min ||hAr(Au —
lele S min Ju—venbve + min_ A7 (=)l

can be obtained by a refined efficiency analysis as in [28]. The combination of the
foregoing two displayed inequalities leads to

[u = Gerullrzie) S lhollie (lu — ucrline + [[holloo Allu — ucrllz2(e))-
The discrete Friedrichs inequality [12, Theorem 10.6.12] concludes the proof. ]
Proof of Theorem 2.1l Lemmas prove
lu = ucrllzz(o) < V2(1+ M) u — Gerull2a) S lhollllu — ucrllne.

For the proof of the eigenvalue error bound, elementary algebra with |Ju]|? = A and
lucrll¥c = Acr and [Jul|z2) = 1 = [[ucr||r2(@) proves

(2.11) A= Acr + JJu —ucr|ic = Mu — u0R||2L2(Q) + Q(Ab(u, ucr) — anc (u, ’U,CR)).
The eigenvalue problem proves for the last contribution that
Ab(u, ucr) — anc(u, ucr) = Ab(u, ucr — Jaucr) — anc(u, ucr — Jaucr)-

Since ucr — Jyucr is L? orthogonal on ucg and since Vye(ucr — Jaucr) is L2
orthogonal on IIyVu, this equals

Ab(u — ucr, ucr — J4UCR) — / (1 =TIp)Vu - Vno(ucr — Jaucr) dx.
Q

The estimates (Z2)) and [|(1 — IIp) Vul|z2(q) < ||holl3, therefore prove

[Ab(u; ucr) — axc(u, ucr)| S llu—ucr 2@ holleollu = ucrllve +[lholl% lu — ucr -
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The combination with ([ZI1]) and analogous arguments for A\cg — A conclude the
proof. O

3. COMPARISON RESULTS

This section states an equivalence result for the errors of the eigenfunction ap-
proximations by conforming and nonconforming finite element methods as initiated
in [9I5] for linear problems. This comparison result is utilised in Section[6to change
the approximation seminorm and so enables the optimality proof.

Theorem 3.1. Let IoVu denote the L? best-approrimation of the gradient of an
exact eigenfunction u corresponding to the first exact eigenvalue A onto piecewise
constants. For sufficiently small ||ho|loc < 1, the discrete eigenfunctions ucr and
uc with b(u,uc) >0 and b(u,ucr) > 0 and |luc|/z2(q) = 1 = |JucrllL2(Q) satisfy

(3.1) lu = ucll = llu = ucrlne = [[Vu = ToVul| L2 (o).

Proof. The nonconforming interpolation operator Icg is defined by
(3.2) (Icr v)(mid(E)) = ][ vds forall E €& andallve V.
E

An integration by parts proves the integral mean property of the gradients
(33) HOV - VNC ICR .
The proof of comparison departs with the split
gy e venlic
= anc(u, Jyucr — ucr) + a(u, u — Jyucr) — anc(ucr, lcr v — ucr).
The integral mean property of the gradient I[1oVJy = V¢ shows
anc (U, Jaucr — ucr) = anc(u — Ier u, Jaucr — ucr)
< lu = Ler ullscllucr — Jsucr[lne-

This, the projection property B3] of Icr, and the stability property (22 of Jy
imply
(3.5) anc(u, Jyucr — ucr) S [|Vu — o Vul| 12 (o) lu — ucr [|nc-

The eigenvalue problem on the continuous and discrete level plus some algebra
imply for the last and second-to-last term of ([B.4]) that
anc(u, u — Jyucr) — anc(ucr, Ier u — ucr)
(3.6) = b(Au, u — Jyucr) — b(Acrucr, lcr u — ucr)
= b(Au — Acrucr, u — Jaucr)
+ b(Acrucr, u — Icr u) + b(Acrucr, ucr — JaUucr).

By the design of Jy, the term ucr — Jyucr is orthogonal on piecewise affine func-
tions. Thus,

b(Acrucr, ucr — Jaucr) = 0.
The arguments from Corollary with (A¢tm, Uetm) replaced by (A, u) show

b(Au — Acrucr, u — Jyucr) < [[hollsollu — ucrlIne v — Jyucrl L2(0)-
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1070 C. CARSTENSEN, D. GALLISTL, AND M. SCHEDENSACK

For sufficiently small ||hg]|oo < 1, uc and ucr satisfy b(uc, ucr) > 0, and therefore
Theorem [Z] plus a triangle inequality followed by (2:2]) show

llu = Jyucr| r2(0) S lu — ucrllL2@) lucr — Jaucr||L2 (o)
S [1hollZcllu = ucrllse + [[hollcolu — ucrllxe:-

Hence,
(3.7) b(Au — Acrucr, v — Jaucr) < [|holl3lu — uer e
The L? error estimate [12,[14] for the nonconforming interpolation reads as
(3.8) lu—Icrullr2) S 17 (v — Ior w)ne-
This and the projection property Vyc Icr = gV lead to
(3.9) b(Acrucr,u — Icr u) S |hTAcrucr |2 ()| VU — HoVul[12(q)-

The efficiency of the term ||h7Acrucrlz2(q) is discussed in Subsection and
based on [24]. Independently of Section Bl Theorem 4] shows

(3.10) |hTAcrucr | z2() S llu — ucr|I~c-
The combination of (4)—-BI0) leads to
lu = ucrline < 1Vu = MoVull L2(a) + [[holI3 llu — ucrlInc.
For ||ho|lco < 1, the second term can be absorbed. This proves
lu = ucrllne S IVu = 1o Vul|r2(q).

The comparison of ||u — uc|| with |Ju — ucr||xc is inspired by [I5] for the Poisson
problem. The inclusion P;(7) N Cy(Q2) € CRy(T) implies for

v = argmin lucr — wellne
wc€P1(T)NCo ()
that
Jucr = ucliic = axc(ucr - uc, ucr = vo)
5.1) + b(Acrucr — Acuc, vc — uc)

< lucr — ucllne flucr — vellxe

+ [[Acrucr — Acuc|lr2 (o) lve — ucllL2(0)-
The bound for the eigenvalues Acr < Ac < 1 and the normalisation ||uc||z2) = 1
yield

[Acrucr — AcucllLz2) S lucr — ucl|L2(q) + [Acr — Acl.

Therefore, the triangle and Young inequalities control the last term in (BI1]) as
(3.12) [Acrucr — Acucllr2 (o) lve — ucllL2(o)
S lluer — ucl|7z) + [Acr = Acl? + [lve — ucr|7:(q)-
Known a priori results [7,[34] for conforming eigenvalue approximations read as
(3.13) A= Acl + llu —ucllz2 ) S [1hollllu = ucll-
This, Theorem [Z.1] and the triangle and Young inequalities bound the right-hand

side of ([BI2) by

1hol 3w — ucll® + hol| 2 llu — ucrllke + llve — ucrlZ2(q)-
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The discrete Friedrichs inequality [12, Theorem 10.6.12] reads as ||[vc —ucr/||r2) <
lvc — ucr|lnc. It is known [I3] Theorem 5.1] that

lucr = vellve = minjluck — vline < lucr — ullxc-
veV
The preceding two displayed formulas and (BI1)) yield

luck — ucllikc < llucr — ullxcllucr — uclle + lucr — ullkc + Aol llu — ucl.

The term [Jucr — uc|lnc on the right-hand side can be absorbed. This plus the
triangle inequality and ||hollcc < 1 prove the assertion

llu = ucll < llu = ucrlne + llucr = ucll < lu = ucrllxe-

The remaining inequalities are obvious. (]

4. ALGORITHM AND OPTIMALITY

This section presents the adaptive algorithm ACREVFEM and its optimality in
terms of the approximation seminorm. This section also adopts the notation of the
previous sections for a sequence of regular triangulations 7, with mesh-size h; := h7;
and interior edges £(f2), boundary edges £,(90) and & = &(Q) U £(9). The
notation for the piecewise gradient Vyc(y) and the discrete scalar product anc()
depends on the triangulation 7; and, hence, on the level £. The index ¢ is dropped
whenever there is no risk of confusion. The first discrete eigenpair on the level £ is
denoted by (Mg, us) € R x CRS(Ty).

4.1. Adaptive algorithm ACREVFEM.

INPUT. Given an initial triangulation 7o with maximal mesh-size ||hg|| (and refine-
ment edges RE(Tp) as in [6L33]), the bulk parameter 0 < § <1, and 0 < k < 1/2,
the adaptive algorithm ACREVFEM runs the following loop.

For £ =0,1,2,... (until termination) do

INEXACT SOLVE. Throughout this paper, the algebraic eigenvalue problem (2]
is solved approximately with some known discrete approximation (5\2,125) € R x
CRy(Te) such that ||| z2() = 1 and

(4.1) llue = @i + [Ae = Aef® < & min{n7, n7_;}
for £ € Ny (with n_y := +00).

Remark 4.1. The inexact solve is unavoidable in iterative procedures for the alge-
braic eigenvalue problem. The interaction of ESTIMATE and SOLVE breaks with the
traditional AFEM loop in that the tolerance k77 is not known in (f1I) when the ter-
mination is applied. In other words, the assumption (I cannot be implemented
straight away but needs to be linked in an internal loop with the computation of 7,
in (£2). We refer to [21[3] for the analysis of a similar algorithm for linear problems
and to [I§] for an example of a practical realisation in the context of conforming
FEMs for eigenvalue problems.

That paper [18] furthermore illustrates that optimal complexity of an overall
strategy can in fact be expected under realistic assumptions on the performance
of the algebraic solver in SOLVE. This paper focuses on the convergence analysis
of the discretisation and, hence, omits further algorithmic details on the algebraic
eigenvalue problem.
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ESTIMATE. For any interior edge £ = T NT_ shared by the two triangles T € T
with edge-patch wg :=int(T4 UT_), let []g := - |7, —-|7_ denote the jump across
E. For E € £/(09), the jump is defined as [-]g := - |1, for the one element 7'y with
E C T} and wg = int(T) owing to the homogeneous boundary conditions. For
any T' € Ty with set £(T) of edges and the known approximations ¢ and @ with

@), set n? == n3(Te) := > reT, n2(T), where, for any T € T,

(4.2) 0 (T) = |T| | Actell oy + T1V? D" 1110%e/05] 5l 725y

Ec&y(T)
MARK. The bulk criterion [25] selects an (almost) minimal subset M, C T; of
triangles with

(4.3) On; <ni (Mg):= > ni(T).
TeM,

REFINE. Given the marked edges My in 7y, refine the triangulation with the newest-
vertex bisection (NVB) [6L33] of Figure [[l and generate a minimal regular triangu-
lation Tpy1 in which at least the marked edges are refined. The refinement edge
RE : Ty — &, with RE(T) € &(T) for any T € Ty, is fixed for the initial triangu-
lation 7Ty; the configuration of the refinement edges in refined triangles is depicted
in Figure [l The result Ty41 of REFINE is the smallest regular refinement of 7
from NVB, where at least the refinement edges of the triangles in M, are bisected
[10]. od

OUTPUT. Sequence of triangulations (7¢); and discrete approximations (5\5,&4)@
with b(u, @) > 0.

Remark 4.2. The analysis of the following sections relies on the assumption of a
sufficiently fine initial mesh 7y with mesh-size ||ho|lcc < 1 such that the results
from Sections 2H3] are valid.

Remark 4.3. The discussion of the next subsection (cf. Remark [£1]) shows that a
proper choice of k£ and a sufficiently fine initial mesh-size guarantee b(u,g) # 0.
Hence, the output of the adaptive algorithm is uniquely defined.

4.2. Efficiency and reliability of the error estimator. Recall that the param-
eter 0 < s < 1 describes the elliptic regularity of the Poisson problem as in (2.1))
and ||hgl|so denotes the maximal mesh-size of 7y.

Theorem 4.4 (Efficiency and reliability [24]). The error estimator g := pe(Tp) :=

(ZTen pZ(T)) Y2 with respect to the exact discrete eigenpair (Ag, ug) with b(u, ug) >
0, namely
we (T) = |T| [ MewellFogry + 1712 Y0 NOue/0s)gllEe () for all T €T,
Ee€&(T)
is reliable and efficient in the sense that
(4.4) lu = wellve S pe + 1holl5clu — wellne,
' pe S (1 [lhol2) lw — wellne

Proof. Tt is proven in [24] that
lu = wellne S pe+ X = Aol + (A2 [|u — wel| L2 (@),

(4.5)
e Sl = wellne + [[he(Au = Apug)|| L2 -
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It is stated in [24] that, according to known a priori estimates, the additional terms
in (@A) are of higher order. Indeed, the results from Section 2l prove

A= el + ) = well 2 @) + Ihe(Au = Acue) |2y S lIhollSllu = uellne. O

The following lemma plus the triangle inequality and (&I]) imply efficiency and
reliability of the error estimator n? = > reTs nZ(T) with an approximate eigenpair

(5\@, ’ﬁg) and

07 (T) = [T| | Aol fairy + |TIVZ D7 11000/05] 5l ()-
Ee&(T)

The inexact discrete solutions (5\@, i) satisfy for, sufficiently small k < 1, that
(4.6) lu = Gellxe < Cre (ne + [[hollZlu — Gellxe) »
(4.7) 17 < Cest (14 [|hol122)lu — wellFe-

Remark 4.5. In particular, this plus the L? control from Theorem 1] and the
tolerance (@.I)) imply

lu— el < (lholl3 + #(1+ [lholl3)) llu — uellne
and, therefore, 1 < b(u, i) for sufficiently small ||ho|/2 and &.

Lemma 4.6 (Continuity of the error estimator). There exists Ceont = 1 such that
any subset M C Ty satisfies

1ne(M) — pe(M)] < Coont (lue — tellne + |Xe — Ael)-

Proof. One triangle inequality in R*™! is followed by another in L?(T') for any
T € M to verify

1ne(M) — pe(M)|

} 1/2
—|(Z (171 el + 17172 3 1[020/055 1)) )

Tem EE&,(T)
1/2
(X (1 aley + 1112 w0l ) )
TeM ECE,(T)
~ 2
< < > (|T\(||>\eﬂ£||L2(T) - HMWHB(T))
TeM

1/2
P S (005l ~ Nous 03]l ) )

Ec&(T)

. 1/2
< ( > (|TH|>\411@—/\@W||2L2(T)+|T|1/2 > ||[0(ﬂe—ue)/38]E|%z(E))) :

TeM EE€E(T)

The discrete Friedrichs inequality [12, Theorem 10.6.12] controls the first term,

> Tl eie = Mool 2y S lwe — diellZe + [Ae = Al
TeMm
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The trace inequality [12], p. 282] leads to

ST N7 0 — o) /05| gl T2y S llue — dellie- O
TeM Ee&y(T)

4.3. Approximation class. Given an initial triangulation 7q, a triangulation 7
is called an admissible triangulation, written 7, € T, if there exist regular trian-
gulations Tg, 71, ..., T such that, for kK = 1,...,¢, each T is generated from T_1
with refinements from Figure [l

The set of all such admissible triangulations is denoted by T, while T(/V) denotes
the subset of all admissible triangulations with at most |To| + NV triangles. For any
T € T(N), let Il denote the L? best-approximation onto piecewise constants with
respect to 7. For the first eigenpair (A, u) and o > 0 define

. g :
lul 4 Jsvté%]\] Tel%l‘l(fN)”vu HrVaul g2 )
It is the comparison of Theorem [B.1] that allows the conclusion that |u[, < oo
for the first eigenpair (A, u) leads to discrete eigenvalues which converge at the
same rate o (with respect to the optimal admissible meshes) and so enables the
optimality analysis of this paper.

Optimal convergence rates means that |u] A, < oo for some 0 < o < oo implies
the rate for the output (M\s,us) of the adaptive algorithm (with an appropriate
choice of uy amongst all eigenvectors of the minimal discrete eigenvalue) even on
any level £ with Ny :=|T¢| — |To| in the sense that

N{ sup [lu — wllne < Copt [ul 4, -
£eN,

The point is that the constant Cyp > 1 is bounded from above, Cope < 00.

4.4. Asymptotic optimality. The following theorem states the quasi-optimal
convergence of the adaptive algorithm; its proof follows at the end of Section [Gl

Theorem 4.7 (Quasi-optimal convergence). Let Q be simply connected. For suf-
ficiently small 0 < 0 < 1, 0 < k < 1, 0 < [[hollc = ||h7pllze) < 1 and any
o >0 with |u| < 0o, ACREVFEM computes sequences of triangulations (T;)¢ and

discrete solutions (5\[,@[)[ of optimal rate of convergence in the sense that

(ITel = [To)7lw — tellne < Copt lul 4, for all £=0,1,2,. ..

5. CONTRACTION PROPERTY

This section is devoted to the proof of the contraction property, which implies
the convergence of the adaptive algorithm.

Theorem 5.1 (Contraction property). For sufficiently small ||hollco and 0 < k <
1, there exist positive constants 0 < B, v < 0o and 0 < pa < 1 (which depend
in addition on Ty) such that, for any £ € Ny the following holds. The solution
(Ae, ug), its approzimation (Mg, ), the error estimator ng from [E2) with respect
to the triangulation Ty generated by ACREVFEM, and the term

& =7 + Bllu — @ell¥e + vlhereuel| 720
satisfy

(5.1) €21 < pa&f for£=0,1,2,....
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1

E 0O

FIGURE 2. Edge patch wg and plot of the function ¢g.

The proof is based on the error estimator reduction property.

Theorem 5.2 (Error estimator reduction). There exist constants 0 < p; < 1
and 0 < A < oo which depend only on Ty, such that for the refinement Tyy1 of
Te generated by ACREVFEM on two consecutive levels £ and ¢ + 1, the respective

discrete approzimations iy € CRE(Ty) and g1 € CRY(Tey1) satisfy
(5.2) i1 < prfg + Alaeer — el + Aern = A+ [Ae = Al
+lluers = Gesallie + llue — Gellic)-

The proof employs the following lemma, which generalises [20, Theorem 4.1].

Lemma 5.3 (Local discrete efficiency). Any v, € CR}(T;) and any edge E €
Eo\ Evpm with edge-patch wg satisfy

E1/2 8 (9 < i v - m wWEg)*
|E]= ||[Ove/ S]Elle(E>NUHmeggzl(mm)H ne (Ve = Verm)| L2 (wp)

Proof. Let ¢ € P1(To+m)NC(2) be the piecewise affine continuation of ¢ g (mid(F))
=1 and ¢p = 0 on Jwg as in Figure An integration by parts and the L?
orthogonality of Curl ¢ := (—0¢g/0x2, 0pr/0x1) on Ve CRé(’]}er) prove

+E[2|[0ve/ 058 12() = |E| [0ve/0s] = 2/ [0ve/0s|pdp ds
E

=2 Vxcve - Curl ¢E dx = 2/ Ve (Ug - U€+m) - Curl ¢E dx.

wWE WE

A Cauchy inequality plus a scaling argument for ||Curl ¢g||r2(w,) S 1 conclude the
proof. O

Lemma 5.4 (Discrete Friedrichs inequality on two levels). Let Tyy1 be some re-
finement of Ty generated by ACREVFEM. Any functions vey1 € CRY(Tey1) and
vy € CRY(Ty) satisfy

lve+1 — vellL2) S lvess — vellne.
Proof. The discrete Friedrichs inequality [12] Theorem 10.6.12] reads as

][ [Ug+1 — UZ}F ds
F

2
||’Ug+1 — ’U[H%z(g) ,S Z + |||1)g+1 - UK‘”%C'

Fe&pp
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Note that each edge E € £\ &1 is bisected and, hence, [v/] vanishes at mid(E) €
F, for F C E, F € &E41\ &, while fF [ver1]pds = 0. Hence, the Friedrichs
inequality along each edge F' € £;41 yields
][ [ve] P ds
F

2
Z ][ [ve — vey1]F ds
F F€£g+1\£g

Fe&opn
< > IFTRdRl ey S D IFN[0ve/0s]lTa ey
FEE(+1\E( FEE@+1\E@

< > 1B [0ve/0s) 513wy
Ec&EN\Ery1

2

This and Lemma [£.3] prove

>

][ [Ve41 — ve] pds
Ec&pi1 E

Proof of Theorem 521 Let o(K) := 1/2 if K € Tg \ Tr41 and o(K) = 1if K €
TeN Teg1. The triangle inequality implies for K € Ty and all T € To11(K) :={T" €
Tog1|T" C K} that |T) < o(K)|K|. Hence, it follows for all 0 < p < oo that

Z |T| ||5‘Z+11~"Z+1H%2(T)
TeTe+1(K)

2
< lver = vellke- O

<(1+1/p) Z T ||5\£+1ﬁe+1 - 5‘ZWH%Q(T)
T€ETe1(K)

F@+p) D oK) K| Neiel|Fz -
TETe4+1(K)

Since b(tgsq + U, tor1 — Ug) = 0,
A Aesrties — Atiel|72 0

= (Neg1 + M) |1 — ﬁl”%?(ﬂ) + (A1 = A0)? [[igs1 + ﬁ4||i2(9)

< A1+ A0)? |1 = el 2oy + 4001 — Ae)%.
Since [Jue|4c = Ao and |Jugs1]|3c = Aey1 are bounded, it holds that

Ao = Aol = lanc (verr + we, wer — ug)| S fluer — vellne-

The triangle inequality therefore proves

Aesr = Ael S lliesr — tellne + luesr — diesallne + llue — dellne

+ |)\e+1 — 5\£+1| + P\z - 5\@‘-

The combination of the above estimates with Lemma B4 for @, and @y plus

(Aes1 4+ Ae)? S 1 yield

( S |5\e+1ﬁe+1||2L2(T)) (14 o) K| [Rviie 2 e
TETe41(K)

S (U4 1) K[ (e — terallRe + [esr = Aegal® + [Ae = Al

+ e — wera e + e — uellRe)-
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The triangle inequality used for the second summand of the estimator and the
trace inequality [12] with constant C, lead, for K € Ty, to

Yo T Y 101/0s]E ] ze sy

TETe4+1(K) Ec&p11(T)
S@+1/p) D AT YD [0ieg1/0s — /O8] 6]} ()
TE%+1(K) EEE(+1(T)
+ () Y T Y 1I(00/0s] ] 7 sy
TeETi41(K) Ec& 1 (T)
<SA+1/p D CulTIV? > BTV — Vel 72
TeTe+1(K) Ee&p1(T)
1 K 1/2 K 1/2 O, 10 2
+ (14 p) o(K) /7| K| > 0ie/05)kll72 -

EGE@(K)

Since |T|'/2|E|~" ~ 1, the sum over all triangles in 7; yields

iy = (14 ) ((Te N Togn) + 03 (T2 \ o) /V2)
S U+ 1/p) (e — el + Perr — Ao
e = A+ laers — uenllic + e — wellic)-
The bulk criterion assures 6n7 < n7(7¢ \ Te+1), whence
e (Te N Terr) + 07 (Te\ Teyn)/V2 < (1= 0(1 = 1/v2))17.

The combination of the preceding two estimates imply (52) with py := (14 p)(1 —
6(1 —1/4/2)) < 1 and some A = (1 + 1/u) for sufficiently small x> 0. O

Quasi-orthogonality is the second main ingredient for the contraction property.

Theorem 5.5 (Quasi-orthogonality). There exists some positive constant Cqyo =~ 1
which solely depends on Tog such that, for any refinement Toym of Te, the ex-
act solution (\,u) and the discrete solutions (Nptm,Ustrm) and (Ag,up) (with re-
spect to Torm and Tp) with inexact approzimations (Apym, Gorm) and (g, Gp) with
ltellL2(0) =1 = [[termllL20) satisfy
‘GNC(U—ﬂeer, up — ﬂ£+m)|
(5:3) <Cqo(lherevell L2\ Te s )y 1t = etemllne
' + I = Gggmllne (lue = tellne + luesm — Gesmline)
+ et — dermlie + 1ol 2 (lu — uelic + lu = uermllic))-
Proof. Some elementary algebra plus the Cauchy inequality show

anc (U = Tptm, e — Uptm)

= anc (U — Ugqm, e — Ug)

+ anc (U = Upym, Uem — Uogm) + ane (U — Tpgm, Ue — Ugpm)

< H|U — Upm ”|NC (MW — Uy |||NC + muum - ﬁz+m|||Nc) + anc (U = gy, Ug — W+m)-

It remains to bound the last term, axc(4 — Gopm, Ue — Uptm)-
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Let I, (resp. Ip4.,) denote the nonconforming interpolation operator from ([B.2))
with respect to the triangulation 7; (resp. Tyi+m). Note that the interpolation
operator I is well defined also for functions vg,, € CR(I)(ﬁer) by

Iy Vo (mid(E)) = ][ Vgrm ds for any F € &.
E

The piecewise integration by parts shows that the analogue of ([B3) holds in the
form

(5.4) / VNncVrim dx = / V1pvepmdx forany T € Ty
T T

This and the discrete Friedrichs inequality [12, Theorem 10.6.12] eventually lead to
the approximation result [30]

1/2

(5.5) ||W+m -1, UZerHLQ(T) S |T| ||VNCU£+mHL2(T) for T € Ty.

The orthogonality (54) implies the Pythagoras theorem

(5.6) loesm — Levermliic + Mevermllic = lvermlic-
This shows stability of I, : CRy(Tr+m) — CR}(Tz). The projection properties (B:3)
and (54 of the nonconforming interpolation operators I, and Iy, on the levels £
and ¢ + m and the discrete problem (2] prove
anc(te = Wetms U — Ugtm)

= aNC(Ub IZ(U - ﬂum)) — anc (W+m7 Lopmu — ﬂ/Zer)

= Aeb(ue, Le(u — tprm)) = Nepmb(Wesrms Loym u — Gogm)

= b(Aeue, Tem —Lo) (Gosm — u)) + b(Aermterm — Aetwes Lo (Tom — u)).

Since the action of the nonconforming interpolation operators I, and Iy;,, on the
levels £ and ¢+m is the same on the triangles 7,N 7Ty, the approximation property

(E3) and the stability property (5.6) of I, and the projection property B3] of Ip4
for the gradient prove

b(Agug, (L —Lo) (tpgm — )
=b(Netwe, Ly (term — 1) — Te(Togm (Goym — u)))
Shhedevell L2 7e s It = g [Ine-
The Cauchy and the Young inequalities prove
(5.7) 2b(MemUetm — Aoy Loy (Toym — 1))
<A et mterm = Aewel T2y + [Lerm u = Gegm|F20)-

The first term on the right-hand side has been bounded in Corollary For the
second term on the right-hand side of (&), the triangle inequality reveals

[ Tesm w — Tpgm L2 (@)
< lw = wegmll2(@) + l[wesrm = Gegm|L2) + v = Term ull L2(0)-
Theorem [2.1] proves
lu—wermlz2) < llhollSllu — wermllne

The discrete Friedrichs inequality [12, Theorem 10.6.12] shows

[werm — Gesrmllzz(9) S Nwerm — Germline.
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The estimate for the nonconforming interpolation (B.8]) and the projection property

B3) prove
[ = Tepm ullL2(@) S lhollsollu = werm lIne-

The combination of the previous arguments shows

b(Aegmepm — Aoty Lo (Togm — 1))

< Iholl3lu = uesmllRe + Nuerm = Germllie + IholZlu — uelic-

This concludes the proof. (Il

Proof of Theorem 51l The estimator reduction property (5.2 and the binomial
formula for @41 — e = (te41 — u) + (u — ) yield

Mep1 < p1nj + A(\HU —ellRe = lu = Gerallie + Pern = Aepal* + 1A = Al

+ flwer — @erallFe + luwe — @ell¥e — 2anc(u — Gppr, Gpgr — ﬂe))

This, the quasi-orthogonality (B.3]), and the Young inequality lead to

Mpp1 < prg + A((l +4Cqolhol|2)llu — el

— (1 = 4Cqllholl 2w = T 1l + [Aest — Aesr
+ 1A = Aef? + (1 + 200 + 4Cq0lho 13 st = et [Re
+ (1 + 4C0llholl22) lue — @ell¥e

+ 2Cqo ([heeuel| L2 LT\ T ) e — Gy llne

+ lu — eI (lue — Gellve + lluerr — W+1|||Nc))>-

The Young inequality asserts, for any 0 < p < 1, that

2CqollheAetwe|| 2T\ Te s It — TegrlIne
2
o o ~
< Tq\|hé)\eué||2m(u(n\n+l)) + 5\”” — tigpa R

Similarly

2Cqollu — tgqr e (llue — ellne + luess — Gegallne)
2 2
g — dellic + —2

I - _
< Gl = e lie + et — e llie:
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A combination with (5.8) plus some rearrangements lead to

Moyr < prmg + A <(1 +4Cq0|lhol133)lu — dellic

— (1= 4Cqllho % = Wllu = sl
2 ~
(5.9) * Tq”hWWH%%um\ml)) +Aerr = Aeya [
Y 12 4030 2s ~ 112
e = Aol 4 (1 =12 4 40 llholl2) e — il

4C2, _
(e +4qu||ho||iz+2cqo)||ue+l—uulnic))-

For the third contribution to &£p41, the triangle inequality followed by the Young
inequality implies, for any 0 < § < oo, that

1Py derrterlliz(o)
S+ O herr Nerrtuesr = Aewe)l[72i) + (14 1/8) [hesiAeue]| T2 o
A moment’s reflection shows that
1/2]|heXevelZe (o isay) + Therideuel 7 ) < Ihedeuel|7zq)-
A combination of the previous two estimates with Corollary yields
[P derruelZz o) + (14 1/8) /2 1hedewel T2 e
< (1+0)(C/2)[holl 2 (lu = wellic + llu — w1 lke)
+ (1+1/8)||heeuel|72 (g
< (L4 0)Clholl2* (flu — @elifc + llu — Ge1 k)
+ (L+1/8)[[hedeue]|72 )
+ (14 8)Cllholl33 (Nue — Gellie + Nuesr — Gesallie)

with some C & 1. For f := A(1 — 4Cqcllhol|25 — p — 46C3,C||hol|25%% /1) and
v :=4A6C2, /(1(6 + 1)), the estimates (59) and (5.10) eventually imply

(5.10)

N +B8lu — @i ke + Y heri Aeravesa |1 72q)
<p1ni + A (14 4Cqollho|33 + 46C5,Cllhol| 232 /1) llu — e[l
+ A (4C2, /1) llhedeuel|Zz ) + AAesr — Aegal” + AAe = Agf?
+ A (L+48CCE [lhol|3> /1 +4C5, /1 + 4C0 | ho 1)
x (ue = @ellfc + luers = derillc)

+2ACq0|lugsr — G [Rc-

Lemma [54] (for ve1 = 0) leads to
1heheue = Netie)l|72() S Nholl3llAeue = Aciiel -

Hence, a triangle inequality and the tolerance ([@1I]) guarantee the existence of some

C such that N
[Pedeuel|72 0y < 261hol12.Cn7 + 2[ heXetiel 72 (-
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Since ||h55\gﬂg||%2(m < n?, this proves
1hedeuelF2 () < (2 + 26]hol|Z.Cm7-
The reliability (£6) of 7, and the choice of the tolerance ([@I) lead to
i1 + Blu = e lic + vllherideruelliz )

< (m + (2 + 405 pA + 267 (2 +40CC | holl5? /1 + 405, /1

+ 4Cqol|Roll% + Cao + Ihol2Cr) )n?
+ A (1+ 4Cqol|hol[22 + 46C,CllhollT™ /1 = 2+ ACTallho 132 s) llu — FelRe
+ A (4G5, /i — 1) 1hedeueF 2 q)-
This is smaller than or equal to p2 (17 + Bllu — GcllRe + YllheAeuel|72q)) for

pa = max{m + (2 +4C2% ) puA + 2/<;A(2 +46CC2 | holl25% /i +AC2, /1

+ 4CaollhollZ + Cao + o2 Ch).
A (14 4Cqo o122 +43C2,Cllhol| %> /11 = 21+ 4C2 lhol %) /8,

A (42 /i — p) /v}-
For sufficiently small p, &, and [[ho||oc with 8 :=4CZ2, /2, it follows py < 1. O

6. OPTIMALITY ANALYSIS
This section is devoted to the proof of Theorem [£.7] with the discrete reliability.

Theorem 6.1 (Discrete reliability). Let Q be simply connected. For sufficiently
small mesh-size ||holloo < 1, there exists a constant Carea S 1 such that any re-

~

finement Tyrm of T in T and their respective discrete solutions (Aptm, Uorm) and
(A, ug) from the adaptive algorithm satisfy

e — uelic < Casa (u?(ﬁ \Tom) + [o0l2 (1 — wesmlic + llu — wel2e) )

The proof of Theorem splits the left-hand side into two orthogonal terms.
One of these terms, the nonconformity residual, is bounded by the tangential jumps
in the following consequence of [30].

Theorem 6.2 (Discrete reliability of nonconformity residual). If Q is simply con-
nected, any refinement Toym of Te and any function vy € CR(l)(ﬂ) satisfy

min fu-venlies S IEI0w/0 sl
vetmEORG(Tem) TET\Tem BEELT)

Proof. The use of the discrete Helmholtz decomposition as in [5] yields the existence
of Apym € CRY(Tm) and Beim € Pi(Torm) N C(R) such that

Ve = VncQppm + Curl Bop .
The orthogonality of the decomposition implies

. 2 2
min Vg — Vg = ||Curl B, .
vz+m€CR(1,(77g+m)m +m”|Nc || +mHL2(Q)
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The proof of [30, Theorem 2.1] shows

ICul Besmlizy S D Do |EI[0ve/ds] gl 72 .
TET\Tetm E€E(T)

Proof of Theorem Bl Let Py mup € CRY(Tesm) denote the best approximation of
Uy in CRé(ﬁer) with respect to ||-|lxc and To4m and set vy = wppm — Prpmte €
CR}(Tesm). The Pythagoras theorem reads

(6.1) luesrm = welfic = Mvermlie + lue = PesmuelRc.

Since anc(Prymte, Votm) = anc(Ue, Votm) = anc(ue, Ig Veym), the discrete problem
(T2 (on the levels £ +m and ¢) implies

lvesmlic = Nuerm — Premuelic = anc(Uerm, verm) — ano(ue, Le vem)
= Mopmb(Upm — ey Vorm) + Mogm — Ae)b(we, Vepm) + Aeb(we, Vom — Lo Vo).
The Cauchy and discrete Friedrichs [12, Theorem 10.6.12] inequalities prove
Aetmb(Uerm — e, Vorm) + Aegm — Ae)b(us, Veym)
SAerm [werm = well L2 @) + [Aerm — Xel lJuell 2)) lverm s

The fact that veyym — Lyverym = 0 on all T € Ty N Ty, and the approximation
property (&3] of I, lead to

Aeb(tg, vesm =T verm) S llhedetel| L2 w(7i i\ 700) lvesmline .-
The combination of the preceding estimates results in

lvermline S Ao Nwerm — well2@y + [ Aegm — Aol + [Thedewel| L2 (U(Ti s \To)) -

This, the triangle inequality, and Theorem 2] lead to

(6.2) loermllse S pe(Te\ Term) + [hollZe (lu — wellse + llu = wem lIne)-
This and (6] plus Theorem [6:2] conclude the proof. O

Proof of Theorem 7. Theorem[3.Ilimplies that the approximation seminorm |u| 4
is equivalent to the following modified version:

u = sup N? inf |lu—wu
| \A; NP TGT(N)N T lne;

where ur € CR(l)(T) denotes the nonconforming discrete normalised eigenfunc-
tion with [Jur|[z2(q) = 1 with minimal distance [Ju — u7|nc. The proof of quasi-
optimality will rely on this characterisation. The proof is structured into Claims
A-D and excludes the pathological case &, = 0 for

& = + Bllu— wllic +vllhedeue|F2iq) forall £=0,1,2,...

from Theorem 51l Choose 0 < 7 < |u\i, /€3, and set e%(¢) := 7&7. Let N({) € N
be minimal with the property

(6.3) lul 4, < (@) N(0)7.
Claim A. Tt holds that
(6.4) N(£) <2 [ul{7e(@)™" forall £ € Ny.
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Proof of Claim [Al For N(¢) =1, (63) and the contraction property (5.1I) imply
uly, <e(0)? =76 <76 < |ul}, ,
whence |u|i‘, =¢(f)2. For N(f) > 2, the minimality of N(¢) in ([6.3) yields
e(O)(N(0) = 1)7 < [ul 4, -
Therefore,
N(£) <2(N(0) —1) <2[ul{7 e(0)77. O

The definition of |u| 4, as a supremum over N shows for N = N (/) that there

exists some optimal triangulation 7, (which is possibly not related to 7;) of cardi-
nality |T¢| < |To| + N(£) with discrete solution (Xg, ;) € R x CR{(T¢) and

(6.5) lu =Tl < N ()7 July, < e(0)*.

The overlay 7A2 := T, ® T4 is defined as the smallest common refinement of 7, and
Te¢. It is known [22/[33] that

(7ol = |Tel < [Tl = Tol < N(O).
The number of triangles in 77 \ 77 can be estimated as
ITAT < > (Tl = 1) = [Te\Tel = |Te\ Tel = 1Tel = |Tel.
KeT\Te
Thus
(6.6) T\ Tel < N(0) < 2Jul 4 e(€)7/°
Claim B. For sufficiently small ||ho|loc < 1 there exists C; ~ 1 such that the
discrete solution uy € CRO('U) with respect to 7; satisfies
(6.7) lu —tellze < Cre?(0).
Proof of Claim Bl The quasi-orthogonality of Theorem shows
lu = TelRe = llu = T@elRe — e = Gellkc + 2anc(u — T, e — )

< (14 2Cqolholl33) llu = Tellke — e — @ellic
202 T 7y (12 20l ol — el
The efficiency ||h[XZﬂfH%2(Q) < Cer (1 + ||hol|2) v — Te||% o from @A) implies

(1/2 = 2Cqollholl22) 1w — @ellic + e — @ellc

< (14 2CqollhollZ) llu = Tellic + 205 1heAetiel. 7, 7,

< (1+ 2Cqollhol13 + 202 Cerr (1 + (ol 2)) 1w — Tellic-
This and (€3] conclude the proof for

Cr = (14 2Cqo|lhol|23 + 2C3Cerr(1 + 1hol1%2))/(1/2 = 2Cqo|lhollZ)- O

Claim C. There exists Cy ~ 1 with
(6.8) n < Canf(Te\ To).
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Proof of Claim [Cl Since k < 1, the efficiency from [T) shows
(6.9) 7/ Cett < (14 [Ihol1Z)lu — wellFc.-
The quasi-orthogonality leads to
lu = wellZc = lu = @l + Nae = uell¥c + 2anc(u — Te, Te — ue)
< (24 2C 0ol 2w — TellRe + 2CqollhollZllu — wellic
+ "laf - uél”IQ\IC + Cgo‘lhé)‘qu'QLQ(u(n\ﬂ))'
This and the discrete reliability from Theorem [6.1] with constant Cq,e lead to

(6.10)
(1= 2CqollhollZ — Carerllhol132) lu — uellc

< (24 2Cqollho0]13 + Caraallno|2) 1w = @ellic + (Caver + Coo)pf (Te \ To)-
Lemma and the choice of the tolerance (£1]) yields
(6.11) HF (TN Te) < 203 (Te \ Te) + AC2merin;.
The combination of (1) and (69)—(@I) leads to

2
M~ Cy 7 )
Cup = 2065772(72\72)4‘ 20 U

with
Cy = 4 Cor(1 + | h0]122) (1 = 2C0lhol1% = Caretllho2) ™ (Caver + C2,)
and
0 := 2Ceg (1 4 ||hol|2) (1 — Cyollhol% — Caretllhol|%)
X ((2+2Cqollh0 1% + Carell|hol|22) CeqCr 7 + 4C04 5 (Carel + C3))

with equivalence constant Ceq from 77 < &2 < Coqn? (for ||hollec < 1). The choice

of 2 2
1= Collholl% = Casall ol

4CerCeqC1(2 + 2C 40| hol13 + Carerllholl33) (1 + [|hol132)
and of sufficiently small k leads to ¢ < 1 and, hence, to (63). O

Claim D. The choice 0 < § < 1/C5 implies
(I = [T0l) " llu = dcllne < C(o) [ul 4 -

Proof of Claim [Dl. MARK selects My C Ty with minimal cardinality | M| such that
0n? < n?(M,). Since

0<1<

O <7 /Ca < nj(Te \ To),
Te \ Te also satisfies the bulk criterion and the minimality of M, proves, with (6.6)
and the definition of £(¢) from the very beginning of the proof, that
|M£‘ < |72\7\2| <2 |u|}4//: 6(5)71/0 -9 |u‘}4/£7 771/(20)651/0

with 7 ~ 1 and for all ¢ € Ny. It is known [6l Theorem 2.4] (see also [33, Theorem
6.1]) that the newest-vertex bisection and proper initialisation of refinement edges
lead to a constant Cgpy ~ 1 with

-1 =1
|7l — 70| < CepV Z |My| < 2Cppv |U|i\//: 71/ ) Zf/c_l/g~
k=0 k=0
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The contraction property of Theorem [B.1] f,% 1 < pgf,%, for all £ € Ny and mathe-
matical induction prove

& <py ke foro<k<e.

Since 0 < p2 < 1,

-1 -1

—1/0 —1/0 l—k)/(20 —1/0 1/(20 1/(20
ng / < / Zpé )/( )ng /p2/( )/(1—/)2/( )).
k=0 k=0

Altogether,
T — |76| < 20Dy |U|}4//: T—l/(2a)§;1/ap;/(20)/(1 . pé/(2a))-

This and |Ju — we|lnc < & conclude the proof of Claim [Dl and of Theorem 7l O
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