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Abstract-We present a new adaptive nonlinear control design 
which achieves a complete controller-identifier separation. This 
modularity is made possible by a strong input-to-state stability 
property of the new controller with respect to the parameter 
estimation error and its derivative as inputs. These inputs are 
independently guaranteed to be bounded by the identifier. The 
new design is more flexible than the Lyapunov-based design 
because the identifier can employ any standard update law 
gradient and least-squares, normalized and unnormalized. A key 
ingredient in the identifier design and convergence analysis is a 
nonlinear extension of the well-known linear swapping lemma. 

I. INTRODUCTION 

HE estimation-based approach to adaptive control has T been extremely successful in linear systems. In con- 
trast to the Lyapunov-based approach, which restricts the 
choice of parameter update laws and controller structures, 
the estimation-based designs are versatile. For linear systems, 
any common update law and any stabilizing controller can 
be employed as long as the boundedness properties of the 
identifier are sufficient to allow a “certainty-equivalence” 
design of the controller. This versatility is of conceptual 
and practical importance. It is due to a modularity feature: 
the identifier module achieves its boundedness properties 
independently of the controller module. 

Thanks to its versatility, the estimation-based approach 
unifies many diverse adaptive schemes. For linear systems, this 
unification, initiated by Egardt [5], was extended by Goodwin 
and Mayne [6]. 

Attempts to apply estimation-based designs to nonlinear 
systems have had only limited success. The nonlinearities 
were either matched [24], [2], [3] or severely restricted [27], 
[35], [9], [lo], [39]. Otherwise the results were local, i.e., 
valid in regions which were not a priori verifiable. A cause 
for this difficulty is a fundamental difference between the 
instability phenomena in linear and nonlinear systems. The 
states of an unstable linear system remain bounded over any 
finite interval, so that there is enough time for the identifier 
to “catch up.” The situation is fundamentally different in a 
system with nonlinearities whose growth is faster than linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(x2,  2 1 2 2 ,  e”, etc.). Even a small parameter estimation error 
may drive the state of such a nonlinear system to infinity in 
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finite time. This explains why estimation-based designs have 
been mostly for systems with linearly bounded nonlinearities. 
Typically, linear growth constraints had to be imposed not only 
on the plant nonlinearities, but also on those derived during 
the design. 

The only nonlinear estimation-based results which go be- 
yond the linear growth constraints were obtained by Praly 
et al. [29]-[33]. In [32] a unified framework of control 
Lyapunov functions was used to characterize relationships 
between nonlinear growth constraints and controller stabilizing 
properties. In the absence of matching conditions, all the 
nonlinear estimation-based schemes presented in [32] involved 
some growth restrictions. 

In contrast to the difficulties experienced by the estimation- 
based designs, the new recursive Lyapunov-based designs for 
systems in the parametric-strict-feedback form [12], [8], [191, 
[36] and the output-feedback form [21], [22], [14] were suc- 
cessful in achieving global boundedness and tracking without 
any restrictions on nonlinearities. However, these designs do 
not allow any flexibility in the choice of the parameter update 
law, excluding, for example, the least-squares update laws. 

In spite of the previous difficulties with nonlinear 
estimation-based approaches, their flexibility and modularity 
motivate us to pursue their development. Since the indepen- 
dence of the identifier is not sufficient for modularity, we 
place the burden of the task of boundedness on the controller. 
For parametric-strict-feedback systems we seek (and find!) 
nonlinear controllers which guarantee boundedness in the 
presence of bounded parameter uncertainty. More precisely, 
we consider the parameter estimation error and its derivative 
as two independent disturbance inputs and design controllers 
which achieve input-to-state stability [37] (ISS) with respect 
to those inputs. In addition to such ISS-controllers, we also 
design weaker SG-controllers which only provide a small gain 
property and are presented for comparison with linear designs. 

These new controllers create a possibility for a complete 
identifier-controller modularity. The remaining task is to de- 
sign identifiers with guaranteed boundedness properties. A key 
ingredient in the identifier design and convergence analysis in 
this paper is our nonlinear extension of the well known linear 
swapping lemma [25]. Various forms of swapping were also 
used in most of the early nonlinear estimation-based results 
[27], [24], [29], [30], [35], [2], [9], [lo], [39]. The identifiers 
in this paper are based on two different parametric models: the 
plant model and the error system. They allow a wide variety 
of update laws-gradient and least-squares, normalized and 
unnormalized. 
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The paper is organized as follows. After the problem 
statement in Section 11, in Section 111 we design the ISS con- 
trollers and prove that the input-to-state stability is achieved. 
Section IV presents the nonlinear swapping lemma. Parameter 
identifiers with gradient and least-squares update laws are de- 
veloped in Section V, and the stability proofs for the resulting 
adaptive systems are given in Section VI. In Section VI1 we 
analyze performance of the new adaptive systems. To reveal 
the connection with linear estimation-based designs we present 
in Section VI11 the design of a weaker SG-controller. The new 
controller designs and performance are illustrated by examples 
in Section IX. 

11. PROBLEM STATEMENT 

The problem is to adaptively control nonlinear systems 
transformable into the parametric-strict-feedback form 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 n - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj.i = Xi+l + OT'Pi(Xl,. . . , X i ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5" = Po(x)u. + e T P n ( X )  

Y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 (2.1) 

where 6 E RP is the vector of unknown constant parameters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PO, and the components of qh = [ ' P I , . . .  , cpn] are smooth 
nonlinear functions in R", and Po(.) # 0, Vx E R". 
Necessary and sufficient conditions for a nonlinear system to 
be transformable into the form (2.1) are given in [ 121. It should 
be noted that (2.1) is feedback linearizable for any bounded 

The control objective is to force the output y of the system 
(2.1) to asymptotically track the output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyT of a known linear 
reference model while keeping all the closed-loop signals 
bounded. The reference model has the form 

e E w. 

1 r o l  

flexibility in the update law selection we now develop an 
estimation-based design which treats the controller and the 
identifier as separate modules. 

Notation: For vectors we use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlxlp = ( X ~ P X ) ~ / ~  to denote 
the weighted Euclidean norm of x.  For matrices, 1x1~ = 
(tr{XTX})l/' = (tr(XXT})l/' denote the Frobenius, and 
1x12 the induced 2-norm of X. The L,, C2 and L1 norms 
for signals are denoted by 11 . Ilm, and 11 respectively. 
By referring to a matrix A ( t )  as exponentially stable we 
mean that the corresponding LTV system i = A(t)x is 
exponentially stable. The spaces of all signals which are 
globally bounded, locally bounded and square-integrable on 
[0, t f ) ,  t f  > 0, are denoted by L m [ O ,  t f ) ,  L,,[0, t f )  and 
L2[0, tf ), respectively. By saying that a signal belongs to 
L,[0, t f )  or to &[0, t f )  we mean that the corresponding 
bound is independent of t f .  

A 

A 

111. ISS-CONTROLLER DESIGN 

Our modular estimation-based adaptive design for (2.1) 
places the burden of achieving boundedness on the controller 
module. We require that the controller guarantee inp_ut-to-state 
stability (ISS) with respect to the parameter error 6 = 8 - 6 
and its derivative e = -8 as disturbance inputs. 

Using the backstepping procedure, which is well known 
from [12], [19], and [18], the adaptive nonlinear controller 
is recursively designed as follows 

Yr = X m >  1 (2.2) 

where M ( s )  = S" + mn-1sn-' +. . . + mls + mo is Hurwitz, 
IC, > 0, and r(t) is bounded and piecewise continuous. 
Another way of stating the same objective is to asymptotically 
track a given reference signal yr(t) with its first n derivatives 
known, bounded and piecewise continuous. 

The above problem was first posed and solved in [12] 
using n p  estimates for p unknown parameters. This number 
of estimates was subsequently reduced in half in [8]. The 
over-parametrization was completely removed in [ 191 by the 
use of "tuning functions." In [40] the adaptive scheme of 
[12] was extended and recast in the observer-based setting. 
For the case when the nonlinearities in (2.1) are polynomial, 
a solution employing growth conditions was given in [33]. 
Possibilities to enlarge the class of systems that can be 
adaptively stabilized using the approach of [ 121 were explored 
in [ l ]  and [36]. 

The Lyapunov-based results [12], [8], [19], and [36] employ 
only one type of parameter update laws. To increase the 

where ?Ei = [ X I ,  .. . ,xiIT, Z m , i  = [xm, 1 ,  ... , x m ,  i I T ,  ci > 
0, i = l , . - . , n ,  and, for notational convenience zo = 0, 
a0 = 0: In these expressions the nonlinear damping functions 
s i@,  8, ?Em,i-l) are yet to be designed. We will employ 
these functions to achieve the desired ISS property of the 
system obtained by the recursive design procedure (3.1). This 
nonlinear system, called the error system, is readily shown to 
be 

A 

A 

i = A,(z, e,  t ) z  + W ( z ,  8, t)Te" + D ( z ,  8, t)Te, z E R" 
(3.2) 
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Adz ,  e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--q - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 1 0 ... 0 -  

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-c2 - s2 1 .* .  

0 

1 

. .  . .  0 -1 . .  

0 . . .  0 -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- C , - S s ,  

. .  . .  . .  

The explicit dependence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi and aa;-l/d8 (and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs i )  
on t is due to the reference model; for example, cpl(x1) = 

Except for the term D ( z ,  4, t)Te, the error system 
(3.2)-(3.3) is similar to the error system in [19] where the term 

D ( z ,  8, t )Te  was accounted for by using tuning functions. 

Here we let both e and 8 appear as disturbance inputs. Their 
boundedness will later be guaranteed by parameter identifiers. 

To design the nonlinear damping functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi we will em- 
ploy the following lemma which evolved from [15] and [371. 

Lemma 3.1 (Nonlinear Damping): Assume that for the sys- 

c p l h  + xm,  l ( t ) ) .  

tnm 

Proof: z) Due to (3.3, the derivative of V along 
(3.4)-(3.6) is 

v = -  f + g p + g  -XpTp-g+pTd +- dx ( all ax )] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
1 2  I -U - x p-g - -d  + --(dl 1 E ;A l 2  4x 

(3.7) 
5 -U+ -Idl2 4x 1 

and, hence x E C,. 
ii) Integrating (3.7) over [0, CO), we obtain 

(3.8) 

which implies that x E Ca. If, in addition, d E C, then by 
part i) of this lemma, x E C,, and therefore, U E C, . Hence 

0 
To apply this lemma to the error system (3,2)-(3.3) we 

first note thft the coefficients multiplying e and 8 are wi and 
-dai-i/d6, respectively. They play the role of the function 
p in the lemma, while the part of (aV/ax)g in (3.6) is played 
by z;. Therefore, our choice of nonlinear damping functions is 

1 
c l l~ l l ;  I l I~ I l1  I ~ l l d l l ;  + V(0) 

x E C,. By Barbalat's lemma, x( t )  + 0 as t --+ 03. 

(3.9) 

where ~ i ,  g;, i = 1, . . . , n are positive scalar constants.' The 
usefulness of the first term for achieving boundedness was 
stressed by Kanellakopoulos [ 161. 

With this choice of si we now prove input-to-state stability 
of the error system (3.2), (3.3), (3.9), making use of the 
following constants: CO = minl l i l "  ci, 1/60 = x r = l ( l / ~ i )  
and l/go = c:=l(l/gi). 

Lemmu 3.2 (ZSS): In the error system (3.2), (3.3), (3.9), if 
L b 1 1 1  e, e E L,[O, t f )  then z ,  x E C,[O, t f ) ,  and 
x = f(x, t )  + g(x, t ) [ U  + p(x, t y d ( t ) ] ,  2 E R", U E R 

a feedback control U = p(x, t) guarantees 
(3.10) . ,  

Proof: Differentiating $ (zI2 along the solutions of (3.2) dV dV 
ax -[f(x, t )  + g(x, t )P (%,  t)l + dt I -U(%, t ) ,  

we compute 
vx E R",Vt 2 0 (3.5) 

where V, U :  R" x R+ + R+ are positive definite and radially d ( ' 1 ~ 1 ~ )  = - 2 c i z ;  - 
i=l 

dt 2 unbounded and V is decrescent and continuously differentiable 
in x uniformly in t ,  f :  R" x R+ --+ R", g :  R" x R+ --$ 

R", p : R" x R+ t RQ, p : R" x R+ ---t R are continuously 
differentiable in x and piecewise continuous and bounded in t ,  
and d : R+ + Rg is piecewise continuous. Then the feedback 
control 

i= l  

2 av 
U = P ( 2 ,  t )  - XlP(Z, t)I z ( x ,  t)g(x, t )  (3.6) 

I=1 where A > 0, guarantees that: 
i) If d E C, then x E C,. 
ii) If d E C2 and U($,  t) 2 clx12, Vx E R", Vt  2 0, c > 

0, then x E C2. If, in addition, d E C, then x E C, 
and x( t )  + 0 as t t CO. 'The constant coefficients g; are not components of the vector field g ( s ) .  

-1 I '  I - q  I 1 
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and arrive at 

From Lemma A.l(i), it follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lz(t)12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Jz(0))%--2cot 

(3.13) 

which proves z E L,  and (3.10), and by (3.1), z E L,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
The quadratic form of the nonlinear damping functions is 

only one out of many possible forms. Any power greater than 
one would yield an ISS property, but the proof with quadratic 
nonlinear damping is by far the simplest. 

A consequence of Lemma 3.2 is that, even when the 
adaptation is switched off, that is, when the parameter estimate 

6 is constant (6 = 0) and the only disturbance input is e", the 
state z of the error system (3.2), (3.3), (3.9) remain bounded 
and converges exponentially to a positively invariant compact 

set. (Note that since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0, the terms -giI(dai-1/d6)T12zi 
are not needed.) Moreover, when the adaptation is switched 
off, this boundedness result holds even when the unknown 
parameter is time varying. 

Corollary 3.1 (Boundedness Without Adaptation): If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 : W+ 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARP is piecewise continuous and bounded, and 6 is constant, 
then z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E L,, and 

Proofi Since 6( t )  = 0, (3.12) holds with e"(t) = e( t )  -8. 
0 

Thus, the controller module alone guarantees boundedness, 
and the task of the adaptation is to achieve tracking. 

IV. NONLINEAR SWAPPJNG 

The desired boundedness property having been achieved by 
the controller module, we can now proceed to the identifier 
module design. To make this design as close to linear designs 
as possible, we derive a nonlinear counterpart of the ubiquitous 
Swapping Lemma [25]. This lemma is an analytical device 
which uses regressor filtering to account for the time-varying 
nature of the parameter estimates. It was used in the early 
nonlinear estimation-based results [27], [24], [29], [30], [35], 
[2], [9], [lo], [39]. For a class of nonlinear systems, including 
our error system (3.2), we provide the following two nonlinear 
swapping lemmas. 

Lemma 4.1 (Nonlinear Swapping): Consider the nonlinear 
time-varying system 

i = A(z, t ) z  + g(z, t )W(z,  t )Te  - D ( z ,  t )Te  
y1 = h(z ,  t ) z  + Z(2, t )W(z,  t ) T J  

(4.1) 

where e": R+ --j RP is differentiable, A :  R" x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ + 

D :  W" x R+ + RPXn, I :  R" x R+ --+ Rrxm are locally 
Lipschitz in z and continuous and bounded in t, and 
h :  R" x R+ -+ RrX" is bounded in z and t. Along with 
(4.1) consider the linear time-varying systems 

R"X",g: R" x R, + R"X" , w :  R" x R+ + RpXm, 

(4.2) 
X T  = A ( z ,  t)xT + g(z, t )W(z,  t)T Cz: 
yz = h(z,  t )XT + Z(z, t )W(z,  t)T 

Assume that z ( t )  is continuous on [0, CO) and there exists a 
continuously differentiable function V : R" x R+ -+ W+ such 
that 

and for each z E CO 

(4.5) 

Vt 2 0, Vc E R", a1, az, a 3  > 0. Then for Vz(O), $(O) E 
R", Vx(0) E WXn, Vt 2 0 the outputs of systems (4.1)-(4.3) 
are related by 

y1 = y2e + Y3 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY E  (4.6) 

where yE is bounded and exponentially decaying. 
Proof: Due to the continuity of z ( t ) ,  we see that 

g(z(t), t ) ,  W(z( t ) ,  t) and D(z( t ) ,  t) are continuous in t. 
Since gW E L,, and Cz is a linear time-varying system, 
then x E Lme. Therefore (x + D)Te E L,,, which implies 
11, E L,, because C 3  is a _linear time-varying system. 
Differentiating Z = z + 11, - xTO, we obtain 

E" = i + 6 - XTe" - xTs" = A ( z ,  t ) t  (4.7) 

which together with (4.4)-(4.5) yields 

Therefore V( t )  5 V(0)e-('+3/"2)t, and, hence 

(4.9) 

Now, (4.1H4.3) imply that ye = y1 - yze" - y3 = h ( z ,  t)Z. 
Since h(z,  t) is bounded then yE is bounded and decays to 
zero exponentially. 

0, the result of Lemma 4.1 
is reminiscent of Morse's linear Swapping Lemma [25]. To 
see this we rewrite (4.6) as 

Remark4.1: When D(z ,  t) 

Tz[WTe"] = T[WT]e"+ Th[T'[WT]k] + ye. (4.10) 
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In this notation T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWTe" H y1 is the nonlinear operator Changing the sequence of integration, (4.16) becomes 
defined by (4.1) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( z ,  t )  = 0,  while the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E = A(z ( t ) ,  4 E  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(z( t> ,  t )u 

Y = h(z ( t ) ,  t>r + l(z(t), t>u. (4.1 1) 

is used to define the linear time-varying operators: T : U H 

y, Tg: U H y for h = I and 1 = 0, Th: U H y for 
g = I and 1 = 0. When A,  g ,  h and 1 are constant, then the 
operator T,(s) = T(s) = h(sI - A)-'g + 1 is a proper stable 
rational transfer function, Tg(s) = ( S I  - A)-'g, Th(s) = 
-h(sI - A)-', and Lemma 4.1 reduces to Lemma 3.6.5 from 
[341. U 

In some texts on adaptive linear control, an extended result 

which guarantees that e" E LZ * T,[WTe"] - T[WT]e" E Lz 
is also referred to as Swapping Lemma. Our next lemma is a 
nonlinear time-varying generalization of this result. 

Lemma 4.2: Consider systems (4.1)-(4.3) with the same set 
of assumptions as in Lemma 4.1. Further, assume that z E L,. 
If e" E L2, then 

y1 - Yze" E L2. (4.12) 

because sst e--rrT d r  = l /a(e-as -e-at) 5 ( l /a)e-" ' .  NOW, 
the cancellation ease-as = 1 in (4.17) yields 

which proves $ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2. Due to the uniform boundedness of h, it 
follows that y3 E L2. This proves (4.12). When e" E C2 fl L, 
then $ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALa n L, and $ E L,. Thus, by Barbalat's lemma, 
$(t) +. 0 and hence y3(t) +. 0 as t +. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAca. This proves (4.13) 
because y,(t) +. 0 as t + ca. 

Remark4.2: When D ( z ,  t )  = 0,  we rewrite (4.12) as 

If e" E ~2 n c,, then T,[WTe"] - T[WT]e" E L2 (4.19) 

t-oo lim [yl(t) - yZ(t)e"(t)] = 0. 

Proof: Since z E L,, then gWT,  D E C,. Due to the 
exponential stability of A(z, t ) ,  it follows that x E L,. By 
Lemma 4.1, yE E L2. We need to prove that y3 E C2. The 
solution of (4.3) is 

(4*13) and (4.13) as 

lim {T,[WTe"](t) - (T[WT]e")(t)} = 0 (4.20) 

with T, and T as in Remark 4.1. For constant A,  g, h and 
1, the operator T, = T is a proper stable rational transfer 
function, and Lemma 4.2 reduces to Lemma 2.1 1 from [28]. 

t-oo 

$(t) = @At, O)$(O) 0 

+J",(t, 7)[x(r) + D ( z ( T ) ,  r)ITe(7) d r  (4.14) 

where (4.4)-(4.5) guarantee that the state transition matrix 
a,: R+ x R+ +. RnXn is such that liP,(t, T ) ( Z  I 
Ice-Q(t-'), k, cy > 0. Since x and D are bounded then 

I$(t)l I ke-"t\$(0)l + kllx + D l l m f e - Y ( t - T ) l ~ ( r ) \  d7 

0 

0 

(4.15) 

where the second inequality is obtained using the Schwartz 
inequality. By squaring (4.15) and integrating over [0, t ]  we 
obtain 

V. PARAMETER IDENTINERS 

We are now in the position to design the identifier module 
by applying the Nonlinear Swapping Lemma 4.1 to either z- or 
x-system. Each of the two types of identifiers, with z-swapping 
and with z-swapping, can be implemented with either gradient 
or least-squares update laws. These parameter identifiers are 
variants of the regressor filtering identifiers in [32]. 

A. z-Swapping 

For the error system (3.2) we introduce the filters 

>io = A,(z, 6 ,  t)xo + W ( z ,  6 ,  t)T6 - D ( z ,  6 ,  t)Te, 

>iT = AZ(z,  6 ,  t ) X T  + W(z ,  6 ,  t )T ,  
x o  E R" (5.1) 

x E Rpx" (5.2) 

and define the estimation error as 

(5.3) T A  € = z + x o - x  8 ,  € E R n .  

Along with E we define 

(5.4) T Z = z + x o - x  8,  Z E W .  

Then we obtain 

E = XTe" + i (5.5) 

1 I 
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and, by differentiating (5.4) and substituting (3.2), (5.1) and 
(5.2), recognize that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEI is governed by 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA , ( ~ ,  e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt)z. (5.6) 

The update laws for 6 employ the estimation error E and the 
filtered regressor x .  The gradient update law is 

and the least-squares law is 

By allowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = 0 we encompass unnormalized update laws. 
Since the regressor x is a matrix, we use the Frobenius 

norm 1x1~ to avoid the need for on-line matrix.inversion, as 
well as unnecessary algebraic complications in the stability 
arguments that would arise from applying update laws = 
rx(lp + uXTrX)-% with I' fixed or updated with r = 

The boundedness properties of the z-swapping identifiers 

Lemma 5.1: Suppose the solution x ( t )  is defined on [O, t f ) .  

1) if U = 0 then e" E &[O, t f )  and E E &[O, t f ) ,  
2) if U > 0 then 8 E Lm[O, t f )  and 

-rx(ip + uXTrX)-lXTr. 

are as follows. 

The update laws (5.7) and (5.8) guarantee that 

Proof: (Sketch) Noting from (5.6) and (3.3) that d / d t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C ~ E ?  5- - c o ~ C ~ ~  it is clear that the positive 

can be used as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

As explained in 161, various modifications of the least- 
squares algorithm (covariance resetting, exponential data 
weighting, etc.,) do not affect the properties established by 
Lemma 5.1. A priori knowledge of parameter bounds can also 
be incorporated via projection. 

(i1C12) = - 
definite function V = f lO l? - ,  + 
[61, 1341, [7] to prove the lemma. 

B .  x-Swapping 

(3.2) we consider the plant (2.1) rewritten in the form 
A different identifier results if instead of the error system 

(5.9) x = E x  + e&,(z)u + 4(x lTe  

where 

0 

E =  [o L:l 0 ] '  

We employ the following filters 

fro = x(t)(Ro - x )  + E x  + enPO(x)u, 

SjT = a(t)nT + +(x)T, 

Ro E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW" (5.10) 

R E RpXn (5.11) 

where ?r(t) is an exponentially stable matrix. We define the 
estimation error vector 

E = x - Ro - RT6, E E R". (5.12) 

and along with it 

2 = x - a() - RTB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E W". (5.13) 

Then we obtain 

t = R T e " + Z  (5.14) 

and, by differentiating (5.13) and substituting (5.9), (5.10) and 
(5.11), recognize that C is governed by 

t" = Z(t)z. (5.15) 

The update laws for 6 employ the estimation error t and the 
filtered regressor R. The gradient update law is 

and the least-squares law is 

Again, by allowing U = 0 we encompass unnormalized 
gradient and least-squares. Concerning the update law mod- 
ifications, the same comments from the preceding subsection 
are also in order here. 

Lemma5.2: Suppose x ( t )  is defined on [O, t f ) ,  and z(t) 
is continuous and bounded on [0, t f )  and exponentially stable. 
The update laws (5.16) and (5.17) guarantee that 

1) if U = 0 then e" E Lm[O, t f )  and E E &[0, t f ) ,  
2) if U > 0 then e" E Lm[O, t f )  and 

Proof: (Sketch) There exists a continuously differen- 
tiable, bounded, positive definite, symmetric P : R+ -+ RnX" 
such that P+Px+?rTP = -I,& E [O, t f ) ,  and the positive 
definite function V = ille"lF-l + 1C1; can be used as in [6], 

0 [34], [7] to prove the lemma. 

VI. STABILITY AND TRACKING 

Either of the identifiers from the preceding sections can 
now be connected with the ISS-controller (3.1), (3.9). We give 
stability proofs for the resulting adaptive systems. These proofs 
encompass both normalized and unnormalized update laws. 

Theorem 6.1 (z-Swapping Scheme): All the signals in the 
adaptive system consisting of the plant (2. l), controller (3. l), 
(3.9), filters (5.1), (5.2), and either the gradient (5.7) or 
the least-squares (5.8) update law, are globally uniformly 
bounded for all t 2 0, and limt-.+mz(t) = 0. This means, 
in particular, that global asymptotic tracking is achieved: 
limt,co [y(t) - y,(t)] = 0. Furthermore, if limt,, ~ ( t )  = 0 
and 4(0) = 0 then limt+mx(t) = 0. 

-I 7 1'7 1_T -- 
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Pro08 Due to the continuity of x, and the smoothness 

of the nonlinear terms appearing in (2.1), (3.1), (3.9), (5.1), 
(5.2), (5.7), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.8), the solution of the closed-loop adaptive 
system exists and is unique. Let its maximum interval of 
existence be [0, t f ) .  

For the normalized update laws, from Lemma 5.1 we obtain 

When the update laws are unnormalized, Lemma 5.1 gives 
only e" E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,[O, t f )  and we have to establish boundedness of 

8. To this end, we treat (5.2) in a fashion similar to (3.11) 

This proves that x E C,[O, t f ) .  Therefore, by (5.5) and 
because of the boundedness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< we conclude that E E 

C,[O, t p ) .  Now by (5.7) or (5.8), 8 E Cc,[O, t f ) .  Therefore, 
by Lemma 3.2, z ,  x E C,[O, t f ) .  Finally, by (5.3), xo E 

We have thus shown that all of the signals of the closed-loop 
adaptive system are bounded on [0, t f )  by constants depending 
only on the initial conditions, design gains, the external signals 
x, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  and not depending on t f .  The independence of 
the bounds of t f  proves that t f  = m. Hence, all signals are 
globally uniformly bounded on [0, m). 

Now we set out to prove that z E C2, and eventually 
that z ( t )  + 0 as t + 00. For the normalized update laws, 

from Lemma 5.1 we obtain 6, E E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x E C, then E E Ca. When the update laws are unnormalized 
Lemma 5,l gives E E CZ,  and since x E C, then by (5.7) 

or (5.8), 8 E C2. Consequently in both the normalized and 
the unnormalized cases xTe" E CZ because C E 132. With 
V = ilc12, all the conditions of Lemmas 4.1 and 4.2 are 
satisfied. Thus, by Lemma 4.2, z - xTe" E C2. Hence z E CZ.  
To prove the convergence of z to zero, we note that (3.2), 
(3.3) implies that i E C,. Therefore, by Barbalat's lemma 
z ( t )  + 0 as t + 00. When ~ ( t )  + 0 then x,(t) + 0 as 
t + 00, and from the definitions in (3.1) we conclude that, if 

U 
Now we proceed to prove stability of the x-swapping 

scheme. With normalized update laws, the proof is similar 
to the proof of Theorem 6.1. With the unnormalized update 
laws, it is not clear how to prove boundedness of all signals for 

.C,[O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtf). 

4(0) = 0, then x(t) + 0 as t + 00. 

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArl- 

an arbitrary exponentially stable A(t). We avoid this difficulty 
by designing 

- 
A(t) = A0 - X $ T ( ~ ) $ ( ~ ) P  (6.2) 

where X > 0 and A. is an arbitrary constant matrix that 
satisfies PA0 + ATP = - I ,  P = PT > 0. With this design 
the matrix z(t) is exponentially stable because 

P x ( t )  + x T ( t ) P  = -I  - 2XP$T$P 5 -I .  (6.3) 

Theorem 6.2 (x-Swapping Scheme): All the signals in the 
adaptive system consisting of the plant (2.1), controller (3.1), 
(3.9), filters (5.10), (5.11), and either the gradient (5.16) or 
the least-squares (5.17) update law are globally uniformly 
bounded for all t 2 0, and limt,, z ( t )  = 0. This means, 
in particular, that global asymptotic tracking is achieved: 
limt,, [y(t) - y,(t)] = 0. Furthermore, if limt,, r ( t )  = 0 
and $(O) = 0 then limt,,z(t) = 0. 

Proof: We first consider the normalized update laws. 
As in the proof of Theorem 6.1, we show that 8, 8, z ,  x E 
&[O,  t f )  and hence U E C,[O, t f ) .  From (5.10) and (5.11) 
it follows that 00, 52, and therefore t are in C,[O, t f ) .  Now, 
by the same argument as in the proof of Theorem 6.1 we 
conclude that t f  = 00. 

Second, we consider the unnormalized update laws (5.16) 
and (5.17) with x(t) given by (6.2). Along the solutions of 
(5.11) we have 

d 
d t  
-(RPRT) = -onT - 2XRP$T$PRT + RP$T + $POT 

= -ROT - 2x $POT - - Ip  ( 2x ) T  

. ($POT - %Ip ) + - Ip  2: (6.4) 

which implies 

(6.5) 
d 
dt 2x 

Hence R E C,[O, t f ) .  Lemma 5.2 gives2 8 E C,[O, t f ) ,  and 
from (5.14) and (5.15) we conclude that E E .C,[O, t f ) .  Now 

by (5.16) or (5.17), 8 E C,[O, t f ) .  Therefore, by Lemma 3.2, 
z ,  x E C,[O, t f ) .  Finally, by (5.12), OO E C,[O, t f ) .  As 
before, t f  = 00. 

Now we set out to prove that z E CZ.. For normalized update 

laws, from Lemma 5.2, we have that 8, E /  ,/- E CZ.  
Since R E C, then E E C2. When the update laws are 
unnormalized, Lemma 5.2.gives E E CZ, and since O E C, 
then by (5.16) or (5.17), 8 E CZ.  Consequen_tly for both the 
normalized and the unnormalized cases, Q T B  E C2 because 
Z E C2. Now, as in-Theorem 6.1, we invoke Lemma 4.2 to 
deduce that z xTB E C2. To show that z E C Z ,  we need to 
prove that RTB E C2 implies xTe" E C2, or, in-the notation of 
Lemma A.2 from the Appendix, that TZ[$~]B 'E C2 implies 

-(tr{RPRT}) 5 -tr{RRT} + E .  

*Since x(t) depends on z(t) whose boundedness is yet to &_proven, in 
invoking Lemma 5.2 we violate the boundedness condition for A(t). This, 
however, causes no difficulty because the boundedness condition is required 
only in order to establish the existence of P. and we know P in (6.2) a priori. 

. I ,  I I 
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TA, [WT]e E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2. To apply this lemma to our adaptive system 
we note from (3.3) and (3.1) that 

1 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ( z ,  e, t)$hT(x). 

Since M(z( t ) ,  e(t), t) satisfies the conditions of Lemma A.2 
then xTe E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E C2. The rest of the proof is the 
same as for Theorem 6.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Remark 6.1: All the above results are presented for the 
parametric-strict-feedback form (2.1) without zero dynamics. 
As in [ 121, they can be readily modified for the strict-feedback 
systems with zero-dynamics 

where the xr -subsystem has a bounded-input bounded-state 
(BIBS) property with respect to y as its input. The procedure 
can also be modified, as in [12], to obtain a local result 
for the parametric-pure-feedback systems, i.e., the systems in 
which pi also depends on x;+1. As in [40], the subset of 
pure-feedback systems that can be controlled globally can be 
enlarged using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan appropriate filter and parameter estimate 
initialization. U 

VII. c,, MEAN-SQUARE AND c2 PERFORMANCE 

For linear systems the issue of transient performance has 
recently received considerable attention (see [4], [20] and 
references therein). For the adaptive schemes presented in the 
preceding sections we now derive C,, mean-square, and C2 
bounds for the error state z,  which incorporate the bounds for 
the tracking error y - yr. 

First we give performance bounds for parameter identifiers 
and use them to establish C, and mean-square bounds for 
z that are valid for both the z-swapping and the x-swapping 
schemes. Then we derive an C2 norm bound on z for the z- 
swapping scheme. For the x-swapping scheme a similar C2 

bound is not yet available. 
We analyze in detail the scheme with the normalized gra- 

dient update laws and suggest in Remarks 7.1 and 7.4 how to 
modify the derivations for other update laws. 

Without loss of generality we assume in our analysis, and 
recommend for implementation, that Z(O), x(0) (in the z- 
swapping scheme), and R(0) (in the x-swapping scheme), 
be set to zero. This can be achieved by initializing xo(0) = 
-z(O), x(0) = 0, in the z-swapping scheme, and Qo(0) = 
x(O), n(0) = 0, in the x-swapping scheme. For simplicity, 
we also let I? = 71. We explain in Remark 7.3 how the 
performance bounds differ in the absence of initialization. 

Lemma 7.1: For both the, z-swapping (5.7) and the x- 
swapping (5.16) normalized (v > 0) gradient update laws, 
the following bounds hold 

Proof: The proof is given for the z-swapping identifier 
(5.1), (5.2), (5.7). The proof for the x-swapping identifier 
(5.10), (5.11), (5.16) is identical. 

Consider the positive definite function Vi = 1/2y18I2.Its 
derivative along the solutions of ( 5 3 ,  (5.7) is 

(7.4) 

i )  Due to the nonpositivity of Vi we have Vg(t) 5 Vi(0) 
which implies (7.1). 
i i )  From (5.7) we can write 

(7.5) 

By using (5.5) we get 

which, in view of (7.1), proves (7.2). 
iii) By integrating (7.4) over [0, CO) we obtain 

Integration of (7.5) over [0, CO) and substitution of (7.7) yields 

Remark 7.1 : The only difference in the case of the normal- 

ized least-squares is that (7.3) becomes llelln 5 JrTf;le(O)l. 
0 

Theorem 7.1: In the adaptive system (2.1), (3.1) using 
either the identifier (5.1), (5.2), (5.7) or (5.10), (5.11), (5.16) 
with normalized update laws, the following inequalities hold 

(7.3). U 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi )  This bound follows by substituting (7.1) and 
(7.2) into (3.10). 

i i )  By integrating the first line of (3.13) we get 

Now, to arrive at (7.9), the sequence of integration in (7.10) 
is interchanged as in the proof of Lemma A.l.(ZZ). 

Remark 7.2: Although the initial states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2 (0) , . . . , zp (0) 
may depend on c;, K;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg;, this dependence can be removed 
by setting z(0)  = 0 with the following initialization of the 
reference model 

It can also be proven that in this initialization ~ ~ ( 0 )  does not 
depend on ci, K;, gi. Therefore, the bounds (7.8), (7.9) can be 
made as small as desired by increasing CO, and/or KO,  go. A 
practical limit to the increase of these gain coefficients is that, 
in the presence of an error in the initial state measurement, 
they increase z(0)  and the performance deteriorates. As for 
the pure-feedback systems mentioned in Remark 6.1, the fea- 
sibility region may, in general, decrease as c;, ~ i ,  g; increase. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Remark 7.3: The above bounds are readily modified to also 
cover the case when E"(0) # 0. For example, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, bound 
(7.8) is augmented by the term 

If we set both filter initial conditions to zero, namely, x(0) = 0 
and xo(0) = 0, we get Z(0) = z(0) .  (This initialization is 
always exact because it does not depend on the measured 
state.) In this case, (7.12) shows that, for z(0)  # 0 the 
performance bound (7.8) is 

+ Iz(0)le-cot. (7.13) 

0 
Lemma 7.2: For the adaptive system (2.1), (3.1), (5.1), 

(5.2), (5.7), the following inequalities hold 

1 
2) (7.14) 

(7.15) 

Proof: i )  By Lemma A.1-i), and since x(0) = 0, 
inequality (6.1) is rewritten as 

and (7.14) follows. 
i i) NOW (5.5) implies I I C I ~ ~  I 1 1  I x~~ I Ioo I I~~ Ioo  5 

(1/2&) le(0) I which proves (7.15). 
i i i )  The bound on the CZ norm of is obtained using 

By substituting (7.7) and (7.14) into (7.18) we prove (7.16). 0 
Remark 7.4: With the bounds (7.14)-(7.16) for. the z- 

swapping scheme we can tighten the bounds on 118112 and 

I 1811 oo in Lemma 7.1 and make them valid for the unnormalized 
update laws with v = 0. It is straightforward to show that 1/v 
in (7.2)-(7.3) can be replaced by min{l/v, 1/4c0~0}. The 
same is true for (7.8H7.9). We can also show that for the 
2-swapping scheme 1/v can be replaced by min {l/v, (p/2X) 

Theorem 7.2: In the adaptive system (2.1), (3.1) with the z- 
swapping identification scheme (5.1), (5.2), (5.7) the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 norm 
of z is bounded by 

[Xmax(PO>lXmin (PO) ] ) .  0 

Proof: We will calculate the C2 norm bound for z as 
11412 I I I t l I Z  + 11$112, where 

(7.20) A $ = xo -x% 

A bound on (1~112 is given by (7.16). To obtain a bound on 
11$112, we examine 

11, = A,(z, 8, t)$ - D ( z ,  8, t).k - xTk. (7.21) 

By using (3.3) and repeating the sequence of inequalities 
(3.11), we derive 

which gives 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 7 -  - I 1  
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By applying Lemma A.l.(iZ) to (7.23), we arrive at 

By substituting (7.3) and (7.14) into (7.24) we get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%E( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ -) 1 + -lz(O)I 1 (7.25) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 Jz& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJco 
where we have assumed that xo(0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(0).  Combining this 
and (7.16), and rearranging the terms, we obtain (7.19). 0 

The form of the bound (7.19) is favorable because it is 
linear in le(0)l. It may not be possible to make the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 
norm of z as small as desired by CO alone because of the 
term le"(O)l / f i .  With the standard initialization z (0 )  = 0, 
however, a possibility to improve the C2 performance is by 
simultaneously increasing CO, go and y. 

VIII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARAPPROCHEMENT WITH LINEAR DESIGNS 

A connection of the adaptive nonlinear ISS-design presented 
in this paper with linear estimation-based designs will become 
clearer when the ISS-controller of Section 111 is replaced by 
the weaker SG-controller developed in this section. The only 
difference between the two controllers is that the SG-controller 
employs weaker nonlinear damping functions si. For example, 
for an uncertain term 8 9 ( ~ 1 )  in the first equation of the plant, 
the ISS and SG nonlinear damping functions are respectively 

s : ~ ~ ( z ~ )  = ' p ( ~ 1 ) '  and 

In this way the growth of sYG is reduced by a factor of 
z?. In the process of backstepping this reduction is even 
more pronounced. However, the SG-controller can .no longer 

guarantee the ISS property with respect to e" and 8. Instead, 
we reveal a small gain property and prove boundedness with 
a linear-like Gronwall lemma argument. The main interest 
in the SG-controller is that for linear systems it becomes 
linear in z and in that sense is similar to linear estimation- 
based designs. In contrast, the ISS-controller for linear systems 
remains nonlinear. 

To derive the nonlinear damping expressions for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASG- 
controller we rewrite the regressor vectors w; as follows 

w ; ( Z ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, t )  = ~ i ( 0 ,  8, t )  + wi(Z;, e^, t )TZ ;  (8.2) 

where Zi = [zl, . . . , ziIT, and wi : Ri x RP x R+ + R i X p  is a 
matrix-valued function smooth in the first two arguments and 
continuous and bounded in the third argument (with a slight 
abuse of notation relative to (3.1) we now express 20, as a 
function of Zi, 8, t). Thus we have 

A 

W = WO + [WTZl,. . . , w,TZn] (8.3) 

where WO denotes W(0, 6, t) .  Likewise, we rewrite D from 
(3.3) 

D = Do + [O, 6FZ1,. . . , 6,Tzn-1] (8.4) 

where 6i: Ri-' x RP x W+ + R(i-l)xP are matrix-valued 
functions smooth in the first two arguments and continuous 
and bounded in the third argument, and DO denotes D(0,  8, t) .  

The SG-controller has the same form (3.1) as the ISS- 
controller, but its nonlinear damping functions are defined 
as 

(8.5) 

As in linear estimation-based adaptive control, the SG- 
controller employs an identifier with normalized update 
laws. 

Theorem 8.1: All the signals in the adaptive system con- 
sisting of the plant (2.1), SG-controller (3.1) with (8.5), 
z-swapping filters (5. l), (5.2), and either the gradient (5.7) 
or the least-squares (5.8) normalized update law (v > 0), are 
globally uniformly bounded for all t 2 0, and limt+m z ( t )  = 
0. This means, in particular, that global asymptotic tracking 
is achieved: limt,, [ y ( t )  - yT( t ) ]  = 0. Furthermore, if 
limt+w r ( t )  = 0 and d(0) = 0 then limt+, z( t )  = 0. 

si = ~ilwil'$ + gilsil:. 

Pro08 Using (8.3) we write (5.2) as 

X T  = A,xT + W,T + [wTF1,. . . , w;ZnIT. (8.6) 

In a fashion similar to (6.1) we compute 

n 

On the other hand, using (8.4) we write (7.21) as 

4 = A,$ - (X +  DO)^^^ - [0, 6rZ1,. * * , 6,TZn-11Te  ̂(8.8) 

and compute 

i=l 

7 I '  1 ' I  
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The system (8.7), (8.9) is summarized as with the objective to regulate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz to zero (without a reference 

model). The second example makes a comparison between the 
ISS design and the SG design. 

2KO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO We define the error variables 
2 -  1 ’  

d 1 1 
,([XI$) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 -Colx l$ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---Izl2 + -IWol$ (8.10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z1 = 21 
d 2  ,(I111 ) I -col11l2 + -le121x1$ + - le l2 l~ l2  

CO 290 
22 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2  - Ql(Z1, e). (9.2) 

(8.1 1) 
The two-step ISS-controller design 

From Lemma 5.1 we have 8 E Lm[O, t f ) ,  so IWo($ < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
and [Dol$ < k, where k denotes a generic positive finite 

constant. From Lemma 5.1 we also have 6 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe/,/- E 
&[O, t f )  n Lc,[O, t f ) .  Let us denote by 11 a generic function = -” - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIE2 

in Ll[O, tf) n L,[O, t f ) .  Since e = z + 11, then we have 

1zI2 L 2 results in the error system 

d a l  
ax1 

+ -(z2 + Bp) (9.3) 

(9.4) < 211p + .Ixl:) + 211112. (8.12) - 

where 
T ~ U S  (8.10)-(8.11) become 

d 1 -c1 - K l V 2  1 -(lxl$) 5 - ‘l)lXl$ + -1$12 + (8.13) A, = [ 
dt KO -1 -e2 - Ic2(2)2P2 - 9 2 ( % ) 2 1 .  

,(I111 d 2  I - (CO - 11)I11I2 + Iilxl$ + k. (8.14) 

This is a loop with small gain because 1 ~ 1 %  appears multiplied 
by 11 in (8.14). To finish the proof we define the “superstate” 

( 5)  

X O  = A,(z ,  ~ ) X O  + [-& 1 4  - [-h]e (9.6) 

The z-swapping identifier is designed with the following filters 

axl q ae 

(8.15) (9.7) 

differentiate it and substitute (8.13)-(8.14). After straightfor- which are used to implement the augmented m ~ r  

(9.8) T A  ward rearrangements and majorizations, we get e = z + x o - x  e 
x I -($ - l l ) X + k .  (8.16) and the gradient update law 

By applying the Gronwall lemma we conclude that X is 
uniformly bounded on [0, t f ) .  In view of (5 .3 ,  e is bounded, 
which along with the boundedness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, proves that z is 
bounded. Thus t f  = 00. The rest of the proof is the same 
as for Theorem 6.1, and again uses Lemma 4.2 for proving 

In contrast to the ISS design, the global result has been 
established only with normalized update laws. The issue of 
normalization in adaptive nonlinear design was discussed 
in [26]. 

Performance bounds similar to those in Section VI1 for the 
ISS design are not available for the SG design, nor is it clear 
how to develop its z-swapping version. 

In Section IX we compare the linear SG design with the 
new ISS design for a linear plant. 

convergence. 0 

Ix. EXAMPLES AND DISCUSSION 

The first example in this section illustrates the performance 
properties of the ISS design on the relative-degree two plant 

xl = z2 + 
x 2  = U (9.1) 

(9.9) 
X‘ e = y  

1 + UXXT‘  

The z-swapping identifier is designed with the following filters 

f io = -(a + Xq2)(Ro - XI )  + ~ 2 ,  Ro E R (9.10) 

fi = -(z + Xq2)R + cp, R E R (9.11) 

which are used to implement the equation error 

E = x1 - a. - Re (9.12) 

and the gradient update law 

R€ 
e=y- 

1 + uR2’ 
(9.13) 

This reveals that the z-swapping approach is uncertainty 
specific in the sense that only the terms qi multiplying 
the unknown parameter e need to be filtered. This opens 
a possibility for a reduction in the dynamic order of the 
identifier. 

In simulations, the only difference between the z-swapping 
and the x-swapping approach was in the value of y needed 
to achieve the same speed of adaptation-higher value was 
needed in the z-swapping case. Since the responses were 
similar we show them only for the z-swapping scheme. 

__ 
1 I l l  I 1 -  
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0 1 2 3  

8E 0 1 2 3  e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 

I 

kl 

0 1 2 3  
I I I  

0 1 2 ;  

no adaptation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

I O , ,  

0 1 2 3  

0 0.05 0.1 0.15 0 0.05 0.1 0.15 

(a) (b) 
Fig. 1. Dependence of the transients on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO with no = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo = 1. (Note an 
expanded time scale for control u.) (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = 10; (b) y = 0. 1: CO = 1; 2: 

= 5; 3: CO = 15. 

Example 8.1 (IS-Performance): We consider system (9.1) 
with nonlinearity cp(z1) = z:. The simulations were carried 
out with nominal values c1 = cg = CO = K~ = K~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKO = g2 
= go = 1, y = 10, 0 = 5, 0(0) = 0 which were judged to give 
representative responses. All simulations are with following 
initial conditions: z(0) = - X O  (0) = [0, 10IT, x (0 )  = 0 (to 
set Z(0) = 0). 

Fig. l(a) illustrates Theorems 7.1 and 7.2. The design 
parameter CO can be used for systematically improving the 
transient performance. Up to a certain point the error transients 
and the control effort in Fig. l(a) are simultaneously decreas- 
ing as CO increases. Beyond that point the control effort starts 
increasing. The control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is given in an expanded time scale in 
order to clearly display the main qualitative differences among 
the three cases. Fig. l(b) illustrates Corollary 3.1. When 
adaptation is switched off, the states are uniformly bounded 
and converge to (or remain inside) a compact residual set. 
Corollary 3.1 does not describe the behavior inside the residual 
set, which may contain multiple equilibria, limit cycles, etc. 
For this example (but not in general), there is an asymptotically 
stable equilibrium at the origin for any value of the parameter 
error. For small values of C O ,  this equilibrium has a basin of 
attraction which is strictly inside the residual set. For higher 
values of CO the global asymptotic stability is achieved. 

Fig. 2 shows the influence of KO on transients. According to 
Theorem 7.1 and Remark 7.4, the peak values can be decreased 
by increasing KO, which is confirmed by the plot. The CZ 
performance may not be improved, however, by increasing KO 

because the &-terms slow down the adaptation and make the 
transients longer. The effect of the g-terms was shown to be 
significant only for very small CO and KO or for very large y. 

Fig. 3 demonstrates the influence of the adaptation gain y 
on transients. Due to the slow initial adaptation, which should 
be attributed not only to the normalized gradient ,update law 
but also to the fact that the regressor is filtered, there is a 
clear separation of action of the nonadaptive controller, which 

e 

Fig. 2. Dependence of the 
CO = 1; 2: CO = 5; 3: CO 

e 

. . . .  
0 1 2 3  

transients on no with CO = go = 1, -, = 10. 1: 
= 15. 

0 1 2 3  

0 1 2 3  

Fig. 3. Dependence of the transients on y with CO = go = no = 1. 1: 
CO = 1; 2: CO = 5; 3: CO = 15. 

at the beginning brings the state z quickly to the residual 
set, and the adaptive controller which takes over to drive 
the state to the origin. The property that the Lm bounds are 
increasing functions of y, to be expected from Theorem 7.1, 
was exhibited in simulations only with extremely high values 
of y. This indicates that some of the bounds derived are not 
very tight over the entire range of design parameter values. 

Finally, an explanation is in order about the initial condition 
z(0) in our simulations. We used z(0) = [0, 10IT, and hence 
z(0)  = [0, 10IT which is independent of the design gains 
C O ,  KO, go. This is why the peak of z1 decreases monotonically 
as any of these gains increases. If, instead, we used zl(0) # 0, 
then, according to Remark 7.2, we would have added an 
appropriately initialized reference model (with ~ ( t )  0). In 
this way, bad transients would be eliminated by following a 

0 
Example 8.2 (ISS vs. SG): Let us consider system (9.1) 

with cp(z1) = 21. For this linear system we make a comparison 
between the ISS and SG designs. The only difference is that 
the terms &l(p2, ~ z ( d a l / d z l ) ~  p2, g2(dal/d8)2 in the ISS 
design are, respectively, replaced by KI, ~z (da l /dz l ) ' ,  9 2  

in the SG design. The same design coefficients and initial 
conditions are used as in Example 8.1, except for 6' = 3. 
The adaptation gains, y = 5 for the ISS design, and y = 1.5 
for the SG design, are chosen so that the rate of parameter 
convergence is the same for both designs. Thencontrol law of 
the SG design is linear in z and nonlinear in 8. 

Fig. 4 shows the difference in performance between the two 
designs. The ISS design uses larger control effort and achieves 
better attenuation of the zl-transient. The dashed responses 
illustrate the underlying nonadaptive behavior (y = 0). While 

less aggressive path to the origin. 
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-1 -K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0.1 0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.3 

Fig. 4. 
y = O.(Note an expanded time scale for control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu.) 

ISS design vs. SG design. The dashed lines show zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz l ( t )  when 

the response of the SG design exhibits linear exponential 
instability, the response of the ISS design, according to Corol- 
lary 3.1, is bounded. Hence, there is a clear trade-off of 
performance improvement versus control effort between the 
new ISS design and the linear adaptive designs such as the 
SG design. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

X. CONCLUSIONS 

Recent Lyapunov-based recursive designs of adaptive 
controllers for nonlinear systems transformable into the 
parametric-strict-feedback form [12], [8], [ 191, [36] achieve 
global stability and tracking, but do not allow a choice 
of parameter update laws. In these designs the wealth of 
knowledge about standard identifiers is not utilized because 
the identifier does not appear as a separate module of the 
adaptive system. 

A complete separation of the controller and identifier mod- 
ules is one of the main accomplishments of this paper. It has 
been achieved by a new nonlinear controller with an input-to- 
state stability property with respect to the parameter estimation 
error and its derivative as disturbance inputs. This strong ISS- 
controller remains nonlinear even when the plant is linear. 
For comparison with linear estimation-based designs, a weaker 
SG-controller is introduced, resulting in a small-gain rather 
than the ISS property. For linear plants this controller is linear. 

As a separate module, the ISS-controller can be connected 
with the standard unnormalized or normalized gradient or 
least-squares identifiers, while the SG-controller requires nor- 
malization. The connection of the controller and identifier 
modules is made possible by a nonlinear extension of the well 
known swapping lemma. 

In addition to the global boundedness and tracking, the new 
design also provides explicit bounds on the transient perfor- 
mance, which can be utilized for its systematic improvement. 

The results of this paper assume that the full state is 
available for feedback. Relying on the experience gained with 
recent recursive output-feedback designs, such as [22], [ 141, it 

is expected that the estimation-based design of this paper will 
be extended to nonlinear systems in the output-feedback form. 

The applicability of various designs, Lyapunov-based or 
estimation-based, will ultimately depend on their robustness 
with respect to unmodeled phenomena. This is another impor- 
tant topic of current research. 

APPENDIX 

Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA.1: Let v, p : R+ -+ R, C ,  b > 0. If 

i )  then 

v( t )  5 v(0)e-ct + b e-c(t-T) p(r ) '  dr .  (A.2) /d' 
i i )  If, in addition, p E CZ, then v E C, fl C1 and 

(A.3) 

Proof: i )  Upon multiplication of (A. 1) by ect , it becomes 

('4.4) 

Integrating (A.4) over [0, t ] ,  we arrive at (A.2). 
i i )  Noting that (A.2) implies that 

v( t )  5 v(0)e-ct + b sup {e -c ( t -T) } l tp ( r )z  d r  (AS) 

E C,. By integrating (A.2) over [O, t ] ,  

T E P ,  tl 

we conclude that 
we get 

5 [v(O) + b l p ( r ) ' d r ]  

which proves (A.3). 0 

(i = Ai(t)<i + U 

Lemma A.2: Let T; : U H [i, i = 1, 2 be linear time- 
varying operators defined by 

(A.7) 

where A i :  R+ + Rnxn  are_ continuous, bounded and ex- 
ponentially stable. Suppose 8 :  R+ + RP is differentiable, 
#: R+ + R p x m  is piecewise continuous and bounded, and 
M : R+ 4 Rnx" is bounded and has a bounded derivative on 

R+. If e E CZ then 

T1[4T]e E C2 * Tz[MqF]e E Cz. 64.8) 

If moreover, M ( t )  is nonsingualr Vt, and M-' is bounded 
and has a bounded derivative on W+ then (A.8) holds in both 
directions. 

- 1  I 1 1  ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 
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Proof: Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT1[45T]B” E Lz. By Lemma 4.2, 

T1[q5T8] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- T1[q5T]8 E Lz and therefore CI = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT1[q5~8] E Lz. 
We-will show first that 52 e Tz[Mq!~~8]  E Lz. By substituting 
q5Te = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl - Al(t)Cl into the variation of constants formula 
and applying partial integration we calculate 

A 
[9] I. Kanellakopoulos, P. V. KokotoviC, and R. H. Middleton, “Obsewer- 

based adaptive control of nonlinear systems under matching conditions,” 
in Proc. I990 American Contr. Conf., San Diego, CA, pp. 549-552. 

[ 101 -, “Indirect adaptive output-feedback control of a class of nonlinear 
systems,” in Proc. 29th IEEE Conf. Decis. Contr.. Honolulu, HI, Dec. 
1990, pp. 2714-2719. 

[ l l ]  I. Kanellakopoulos, P. V. Kokotovid, and R. Marino, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“An extended 
direct scheme for robust adaptive nonlinear control,” Automatica, vol. 

[12] I. Kanellakopoulos, P. V. KokotoviC, and A. S. Morse, “Systematic 
design of adaptive controllers for feedback linearizable systems,” IEEE 
Trans. Automat. Contr., vol. 36, pp. 1241-1243, 1991. 

[I31 -, “Adaptive output-feedback control of systems with output 
nonlinearities,” Foundation Adaptive Control. P. V. KokotoviC, Ed., 
Berlin: Springer-Verlag, 1991, pp. 495-525. 

[I41 -, “Adaptive output-feedback control of a class of nonlinear 
systems,” in Proc. 30th IEEE Conf. Decis. Contr., Brighton, UK, Dec. 

[ 151 -, “A toolkit for nonlinear feedback design,” Sys. Contr. Lett., vol. 

[ 161 I. Kanellakopoulos, “Passive adaptive control of nonlinear systems,” Int. 

[17] P. V. KokotoviC, Ed., Foundation Adaptive Control. Berlin: Springer- 

27, pp. 247-255, 1991. 

1991, pp. 1082-1087. 

18, pp. 83-92, 1992. 

J. Adaptive Contr. Sig. Process., vol. 7, pp. 339-352, 1993. 
~~ ~~ 

Verlag, 1991. where ‘ 2 ( t ’  is the state matrix Of A2(t )  that 
satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ) \ Z  I ke-”(t-‘),k, a > 0. It is clear that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q2( t ,  O ) < z ( 0 ) + M ( t ) ~ ,  (t)-a2(t, O)M(0)(l(O) E Lz because 
@ ~ ( t ,  0) is exponentially decaying, M ( t )  is bounded and 
Cl E L2. Since 

I l a 2 ( t ,  ~ ) [ n ; ( r ( ~ )  + A z ( ~ ) M ( ~ )  - M(T)A1(T)]C1(7) dT 

[ 181 -, “The joy of feedback: Nonlinear and adaptive,” Contr. Sys. Mag., 

[I91 M. KrstiC, I. Kanellakopoulos, and P. V. KokotoviC, “Adaptivenonlinear 
control without overparametrization,” Sys. Contr. Lett., vol. 19, pp. 

[20] M. KrstiC, P. V. Kokotovid and I. Kanellakopoulos, “Transient per- 
formance improvement with a new class of adaptive controllers,” Sys. 
Contr. Lett., vol. 21, No. 6, 1993. 

[21] R. Marino and P. Tomei, “Global adaptive observers and output- 
feedback stabilization for a class of nonlinear systems,” in Foundations 
of Adaptive Control, P. V. KokotoviC, Ed. Berlin: Springer-Verlag, 
1991, pp. 455493. 

[22] -, “Global adaptive output-feedback control of nonlinear systems, 
Part I: Linear parametrization,” IEEE Trans. Automat. Contr.. vol. 38, 

12, pp. 7-17, 1991. 

177-185, 1992, 

(2 
dr (**lo) 5 I I ~ ; ( ~ + A ~ M - M A ~ J ~ ~  

then similarly to (4.16H4.17) from the proof of Lemma 4.2, 
we can show that the expression (A.lO) is in L2. Thus 6 = 
T2(Mq5TB] E Lz. By Lemma 4.2, Tz[Mq5T8] - T2[M4 T e €  ] 
LZ and therefore T2[Mq5Te] E Lz. The proof of the other 
direction of (A.8) when M ( t )  is nonsingular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVt ,  and M-’ is 
bounded and has a bounded derivative on R+ is identical. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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