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ABSTRACT 

ADAPTIVE NONLINEAR IMAGE RESTORATION BV A 

MODIFIED KALMAN FILTERING APPROACH 

Sarah Ann RaJala 

An adaptive nonlinear Kalman-type filter is presented 

in this dissertation for the restoration of two-dimensional 

images degraded by general image formation system 

degradations and additive white noise. A vector difference 

e~uation model is used to model the degradation process. 

The obJect plane distribution function is partitioned into 

disJoint regions based on the amount of spatial activity in 

the image, and difference e~uation models are used to 

characterize the obJect plane distribution function. 

It is shown that each of the regions can be uni~uely 

characterized by their second order statistics. The 

autocorrelation function for each region is then used to 

determine the coefficients of the difference e~uation model 

for each region. Recursive estimation techni~ues are 

applied to a composite difference e~uation model. 

If the images are to be restored for human viewing it 

is desirable to account for the rasponse of the human visual 

system as part of the receiver characteristics. This is 

done by weighting the variance ~ 2 of the additive noise by a 



visibility TUnction. where the visibility function is a 

subJective measure of the visibility OT additive noise in an 

image by the human visual system. As a conse~uence. the 

resulting eTfective variance depends nonlinearly on the 

state. 

Two additional features are added to the new 

restoration filter to solve problems arising in the 

implementation phase. A nearest neighbor algorithm is 

proposed for the selection of a previously processed pixel 

for providing the previous state vector for the state OT 

pixel (i, J). Secondly, a two-dimensional interpolation 

scheme is proposed to improve the estimates of the initial 

states for each !egion. 
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CHAPTER 1 

INTRODUCTION 

I. P~elimina~y Rema~ks 

Image ~esto~ation, image enhancement. pictorial pattern 

recognition, and e~coding of images for storage or 

transmission are some of the areas included in the field of 

image processing. Each of these areas is concerned with 

different aspects and properties of an image. although a 

numbe~ of the same general techni~ues are utilized by more 

than one of these areas. A new techniq_ue is deve!oped in 

this disse~tation which lends itself primarily to the areas 

of resto~ation and enhancement. It is concerned with the 

improvement of image quality. 

It is well known that no imaging system gives images of 

perfect ~uality, and it is because of this problem that the 

areas of restoration and enhancement have developed. There 

is a need to improve· the quality of the images that are 

received from these systems. 

The model generally used to rep~esent a digital image 

formation system <Hunt t22J > appears in -figure 1. 1. The 

system response is, 

g ( i I J ) = S { h ( i I J ) *T ( i I J ) } + Co 2 n 2 ( i I J ) + n 3 ( i I J ) I <1-1> 
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f ( i. J) 

b (i, J) '(i, J) 

g(i, J) = r(i, J) + n 3 <i, J) + 
r(i,J) = s{h(i,J)*f(i,J)} 

f(i, J) 

h(i,J) 
b(i,J) 

s-(•} 

r ( i, J > 
€1, (:2 

i' ( • ) 

ObJect plane radiant energy dist~ibution 
Image formation s~stem 
Image plane ~adiant ene~gy distribution 
Detecto~ response <generally nonlinea~) 
Response va~iable of the detecto~ 
Gain parameters 
Feed forward function to account for 
signal dependent noise 
Noise processes 
Signal dependent noise 
Response of the entire system 

Figure 1. 1 
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fo~ i = Q,l, ... ,M-1 and J = Q, t •...• N-1, the extent of the 

two-diffiensional image. He~e. g(i, J) is the reco~ded image 

distribution, s{•} is the detector ~esponse function, h C•, •) 

is the image formation system response, f(•,•) is the obJect 

plane radiant ene~gy distribution, and the symbol * 

represents the operation of convolution. The remaining two 

functions, n 2 <•, •> and n 3 <•• •) are noise processes; 

is noise generated independently of the signal scaled by the 

gain parameter £ 2 , and n 3 <•, •> represents signal dependent 

noise. 

In the general case, the image formation system h can 

represent any number of possible distortions. As indicated 

by its name. the original intention ~as for h to represent 

the distortion caused in imaging systems. i.e. photographic 

eq,u ipment. It has s i nee been generalized to include any 

distortion that is modeled by a linear system. This may 

include distortions from coordinate transformations. 

motion blur, or air turbulence. 

linear 

The image formation system in figure 1. 1 can be 

simplified in many situations. In general, it is assumed 

that the recording system response. s{•}, can be 

approximated by a linear function. Actually this is true 

only for low contrast images. In any event. most of tha 

restoration and enhancement techniq,ues have been developed 

under the assumption that s{•} is linear and in fact s=l. 

If an image is of high contrast, the resulting nonlinearity 

can be accounted for by a zero-memory nonlinear filter. 

3 



Another simplification is that only signal independent noise 

is present in the system. In figure 1. 1 we would only 

consider the noise source n 2 (i, J). In addition. if the 

system response is space invariant we can utilize certain 

properties from matrix theory far easier manipulation. Far 

example, if the image formation system is linear space­

invariant then CHJ has black Taeplitz structure. We will 

represent CHJ for this case by tH 8 TJ. Further reductions in 

the computational effort can then be made if CH 8 TJ can be 

approximated by a circulant, when it is applicable. Once 

represented in terms of a circulant. the discrete Fourier 

transform can be utilized. On this aspect, much work has 

been done by Hunt C21J, Ekstrom CSJ, and Gray t15J. 

In the area uf image processing good reviews and 

bibliographies are provided by Huang. Schreiber and Tretia~ 

C20J; Hunt C22J; Andrews and Hunt [4J; and Rosenfeld and Kak 

[483. Several o~ the more pertinent techniques in both 

image enhancement and restoration will be reviewed in 

chapter 2 for understanding and comparison with the new 

technique proposed. 

A considerable amount 

techniques in enhancement. 

OT 

The 

distortions has been presented 

work has been done on 

topic of geometrical 

by ~ohnston and Rosenfeld 

C26J. Roetling [47] has worked on noise suppression, while 

Martelli and Montanari C34l have considered the problem OT 

optimal smoothing, with application to fingerprints. Troy, 

Deutsch and RasenTeld C57J have performed gray-scale 
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manipula~ions for texture analysis. 

One of the basic approaches to image restoration has 

been the application of Wiener filtering with work done by 

Helstrom t18J and Slepian [53J. Sometime later, an 

extension of this basic approach was made to what is known 

as constrained least s~uares filtering. This has proved to 

be a flexible approach to image restoration. A considerable 

effort has been applied to this problem. It was first 

formulated by Phillips t42J and refined by Twomey t58J, t59J 

in the one dimensional case. The actual implementation in 

two dimensions was accomplished by MacAdam t33J and by Hunt 

t21J. Another similar techl4i~ue of interest is homomorphic 

image restoration. Oppenheim, Schafer and Stockham t41J did 

some of the original work on one-dimensional signals. 

Later. Cole t7J and Cannon t6l applied homomorphic filtering 

to images. 

More recently, recursive estimation techni~ues have 

been applied to the area of image restoration in hopes of 

obtaining a better image restoration techni~ue. Research 

has been done by Nahi and Assefi t37J, Nahi and Franco [38J, 

Aboutalib et al. [1J, Wgous C6QJ, and Jain t25J. These 

techni~ues show promise in the development or an optimal 

image restoration filter. 

II. Summary of the Results 

This dissertation describes the use of the fundamental 



theo~y of ~ecu~sive least s~uares estimation as the basis 

for the development of an adaptive nonlinear Kalman-tqpe 

filter for restoration of two-dimensional signals. A number 

of the currently existing problems a~e solved in an attempt 

to design a more nea~ly optimal ~estoration scheme. It is 

shown that recu~sive estimation provides a flexible app~oach 

to the problem of image resto~ation and admits a mo~e 

accurate method for the desc~iption of the image model. 

In an attempt to find this bette~ resto~ation procedu~e 

it is necessa~y to consider any p~oblems that cu~~ently 

exist and attempt to solve these in a manne~ that leads to 

the desired result. One of the fundamental problems with 

the existing image model used for the implementation of 

~ecu~sive estimation in two dimensions is that the obJect 

plane dist~ibution is considered to be a single wide-sense 

stationary Ma~kov p~ocess. This often leads to 

unsatisfacto~y restoration results. It is shown that a more 

accurate description of the characteristics of the obJect 

plane, i.e. 

The model 

the original undistorted 

of the obJect plane 

obJect, is required. 

distribution function is 

gene~alized to the case where it is considerd to be a wide­

sense stationary process on each of a set of disJoint 

regions of the obJect dist~ibution. 

Another problem, 

and P~asada (39J 

originally pointed out by Netravali 

is the lack of use of receiver 

characteristics in the development of most restoration 

schemes. Specifically, in the case in which images are to 
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be utilized by human viewers the restoration scheme is 

improved by taking advantage OT the characteristics OT the 

human visual system. A method is devised to utilize such 

~eceiver characteristics in the design OT a restoration 

Tilter for the system described by, 

9 ( i 1 J ) = h ( i 1 J ) *T ( i 1 J ) + n ( i 1 J ) . (1-2> 

This is accomplished by weighting the contribution OT the 

additive noise by a visibility TUnction. This visibility 

TUnction is based on the ability OT the human visual system 

to perceive random noise in an image. It is assumed that T 

is generated by a linear system b which has as its input a 

white noise source. The system impulse response b is 

determined such that the statistics oT T are generated at 

the output. 

A diTTerence e~uation model is used to describe the 

image Tormation system represented by equation <1-2). This 

model is designed to realize the distortion point spread 

TUnction h and account TOr the statistical nature OT the 

obJect distribution Tunction T in each OT the regions. The 

additive noise is assumed to be Gaussian· with zero mean and 

a known variance. The resulting set OT diTTerence equations 

Tor the kth region is: 

7 



.!.k< i. J+1) = Ak.!.k< i. J) + Bk!:!.k( il J) I 

g { i I J ) = £..~.!. k ( i I J ) + n ( i I J ) I 

<1-3) 

(1-4) 

whe~e the noise process n<•> is such that E[n(i,J)J = 0 and 

Etn<i 1,J 1 >n<i 2 ,J2)J = ~ 2 4Ci1-i 2 >4CJ 1 -J2)· The superscript 

T is used to denote thb transpose of a matrix, and 4 

represents the Kronecker delta function. The dimension of 

the state vector .!. is specified b~ the minimum order OT the 

s~stem distortion h and the system b. The input noise source 

vector !:!..k Ci, J) generates fk (i, J)l and is such that 

and 

EEY.k<i 1 1 J 1 >Y.kCi 2 , J2)T} = RkA(i 1 -i 2 )A(J 1 -J 2 >. The restoration 

filter that results from this model is realized in a 

recursive Tashion. 

In addition to the theoretical formulation of this 

generalized adaptive nonlinear Kalman-type filtering scheme, 

a new implementation is proposed to further optimize the 

restoration procedure. If the amount of spatial activity in 

the image is great, the recursive •stimation scheme may not 

be able to respond as ~uickly as the image changes in 

intensity level. In order to speed up the response OT the 

filter in regions where the spatial activity is greater than 

the response OT the filter, a reinterpretation of the 

definition of the previous state in two-dimensional 

recursive estimation schemes is given. It is proposed that 

the previous state of pixel (i, J) may not be best specified 

by pixel (i,J-1). A nearest neighbor criterion is utilized 

8 
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to dete~mine which of the pixels in the neighborhood of the 

pixel is really the best previous state. These developments 

are presented in Chapte~ 3. 

Chapte~ 4 is devoted to a desc~iption of the algorithm 

developed and of the implementation p~ocedure used in 

testing this restoration method, with a presentation of the 

results. Finally, Chapter 5 will present the conclusions of 

0 

this development and comparisons with existing techni~ues~ 



CHAPTER 2 

HISTORICAL REVIEW 

I. Intl'oduction 

This chapte,. pl'esents a l'eview OT the pl'esently 

available techni~ues in image enhancement and l'esto,.ation. 

The emphasis in this discussion is on those techni~ues which 

al'e dil'ectly applicable to the development of the l'eseal'ch 

developed in this disse,.tation. Section II descl'ibes the 

geneT'al backgT'ound knowledge in image enhancement. Much of 

10 

this mateT'ial has led to a moT'e complete understanding of 

the image restoration problem. The thiT'd section is on the 

techni~ues of image restoration. Many of the fundamental 

techni~ues will be reviewed brieTly for general information 

and comparison. The techni~ues which are fundamental to 

this thesis will be developed in detail. 

Pl'ior to discussing the details OT the enhancement and 

restoration techni~ues. it is necessary to understand the 

difference between these two approaches to image processing. 

Image l'estoration improves the ~uality of an image by 

compensating for the effects of a specific known or 

estimated degradation process. Image enhancement improves 

image ~uality without actual knowledge of the degT'adation 

pT'ocess involved. Its obJective is to improve the ~uality 

of the image with respect to a predeteT'mined standard. 



II. Image Enhancement 

Initially. a standard must be established ~or measuring 

the quality of the image being processed. The quality o~ an 

image is a somewhat subJective measure of the accuracy to 

which certain de~ined in~ormation in the image is measured. 

The definition of quality in a given set of images is 

dependent on the purpose for which they are intended. A 

picture may be needed for precise measurements or it may be 

used for casual human viewing. The degree and type of 

degradations that would be obJectionable in one case may not 

be in the other. Two standards commonly used for measuring 

obJective image quality are resolution and acutance. 

11 

Resolution of an image describes the accuracy with 

which one can distinguish small, close obJects in the image. 

Acutance is a measure indicating the average steepness o~ an 

edge in the output image that results ~rom a per~P.ct step in 

the input image. Both resolution and acutance are commonly 

utilized in determining the degree to which the enhancement 

operations are success~ul. More details o~ these and other 

measures o~ image quality can be ~ound in a paper by Levi 

C30l. 

There are many di~~erent operations used to enhance the 

quality o~ an image. Four o~ the most common operations will 

be discussed brie~ly. The ~irst operation is gray scale 

modification. <Troy. Deutsch, and Rosenfeld C57l). There 

are two approaches used for the modification of the gray 



scale o~ an image. One is gray scale correction and it is 

used to modify gray levels o~ the individual picture points 

or pixels, to compensate ~or uneven exposure when the 

pi~ture was originally recorded. 

The second 0 approach to modi~ication is gray scale 

trans~ormation. This method changes the gray scale in a 

uni~orm way throughout the picture~ usually to increase the 

contrast. The method is perTormed by mapping Tram the given 

gray scale z to a transformed gray scale z', 

An important special 

histogram modi~ication 

z' = t<z>. <2-1) 

case OT gray scale trans~ormation is 

which assigns a speci~ied 

12 

distribution o~ gray levels to a picture. One example where 

histogram modi~ication is used is quantization of a picture 

into K disc~ete levels in such a way as to minimize 

quantization error. The K levels should be spaced close 

together in heavily populated regions and further apart in 

sparse regions. 

Operation .two is known as geometric correction. 

Johnston and Rosenfeld E26J; Sawchuk t50J; and O'Handley and 

Green C40J. have considered various types of distortion 

including perspective distortion, the result of taking a 

picture from an oblique viewing angle, 

barrel distortion, the distortion due 

optical imaging or electronic scanning. 

and pincushion or 

to limitations of 



An arbitrary geometric distortion can be de~ined by 

equations that relate the undistorted coordinate system 

<x.y> to the distorted coordinate system <x'.y'). In the 

general form they are. 

x' = b 1 <x.y> and (2-2) 

The third type of operation for the enhancement of 

images is sharpening, and Stockham C54J and O'Handley and 

Green C40J have worked on this method. Blurring is 

generally caused by an averaging or integrating operation. 

so one might expect that sharpening could be done by 

differential operations. Several methods have been 

developed to compensate for the problem o~ blurring. These 

include the use o~ the gradient, the Laplacian, and high 

emphasis filtering, all of which compensate for the effects 

of averaging by differentiating and/or emphasizing the high 

spatial frequency content <Goldmark and Hollywood C13J and 

Kovasznay and Joseph t29J). 
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Finally, the operation of smoothing is utilized for the 

removal of unwanted noise <Martelli and Montanari C34J). Of 

course, one must be careful ~ith smoothing not to blur the 

image. A general approach to smoothing is to define a cost 

function ~ for evaluating the various possible smoothings f 

of a given noisy picture g. The cost function ~ depends on 

both the irregularities of f and the discrepancy between f 

and g. Noise removal can be taken care of in several 



different ways, and the method is generally dependent on the 

type of noise present. 

III. Image Restoration 

The obJective in im~ge restoration is to compensate for 

a knoUJn 

degraded. 

original 

and the 

or estimated distortion causing an image to be 

That is, an attempt is made to determine the 

obJect distri~ution f given the recorded image g 

point spread function <PSF> h. This entails 

designing a filter to inve~t the distortion. Thet'e have 

14 

been two genet'al categot'ies of techni~ues used in designing 

image t'estoration filters. One categot'y is based entit'ely 

on the knowledge of the distot'tion and assumptions about the 

image fot'mation system. Na attention is given to the 

t'esolution of the image. The second categot'y is based on 

the fact that the image will be used for human viewing and 

resolution of the image should be considet'ed. There at'e 

many methods available for t'estot'ation of the type discussed 

in category one. However. in category tUJo, only one 

approach has been reported for the restoration of images, 

although these same ideas have been utilized to a great 

extent for image coding problems. 

In the first category of restoration methods there are 

two basic subgroups of techni~ues. One is that of 

noniterative restoration techni~ues and the other that of 

linear algebraic techni~ues. The noniterative restoration 
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techni~ues are governed by t~e rollowing assumptions: (1) 

There exists only signal independent noise. (2) A linear 

approximation can be made ror the ~onlinear detector s. 

This is known as a low con~rast assumption, and in ract 

without lass or generality it can be assumed that s=t. (3) 

It is assumed that the systems are space-invariant and 

therefore Fourier techni~ues can be applied. (4) It is 

assumed that ~hen a segment is cut a~ay from a larger image 

the restoration effects can be localized, i.e. the border 

errects can be neglected. 

There are three speciric methods in this category ~hich 

will be discussed: lea~t squares filtering, minimum-mean­

s~uare-error riltering, and homomorphic filtering. The 

general model is 

g = I:HaTJf + n. <2-3) 

where g, r, and n are lexicographically ordered vectors, and 

tHJ is the matrix resulting from the paint spread runctian. 

Invok·ing least-sq_uares restoration is eq_uivalent to 

minimizing the norm of the noise term n. The rationale 

behind this is that, in the absence of any specific 

kna~ledge about n, a solution is sought which is consistent 

~ith having n as small as possible. The resulting least 

sq_uares estimate is, 

(2-4) 
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The~e a~e two immediate p~ohlems with this technique. 

One is the ill-conditioned natu~e of the PSF mat~ix. We may 

not be able to inve~t CH 8 TJ. The second problem, also a 

result a~ this ill-conditionedness, is that inverting CH 8 TJ 

can really amplify the noise term; yet if tH 8 TJ is not ill-

conditioned this is one of the most straightfo~wa~d methods 

for ~estoring an image. 

In minimum mean squa~e er~o~ <MMSE> filte~ing a 

solution is found to minimize the diffe~ence between the 

original obJect distribution f and the resto~ed obJect 

distribution f. Let the total er~o~ of estimation. be 

defined by 

f - f. (2-5) 

The MMSE c~ite~ion ~e~uires the total er~or of estimation to 

be a minimum ave~ the entire ensemble of all the possible 

images. Since this error, ~~ could be a positive or negative 

quantity, consider the positive quantity ETE. The criterion 

then is to minimize the expected value of ET~. Assuming 

that a linear estimate exists, i.e. f = CLJg, the following 

MMSE resto~ation filter results: 

<2-6) 

One d~awback occu~s in the low signal to noise ratio 

I .. 
<SNR> cases, when the result is not good. Seve~al ~easons 
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are possible far the inade~uacy of this filter at low SNR. 

The MMSE estimate is based on linear assumptions, even 

though nonlinearities exist in the recording and human 

visual systems. Secondly, MMSE is not the criterion the 

human visual system uses far low noise situations; MMSE 

appears much too smooth. Finally, MMSE assumes a stationary 

model, which is not sufficient to model the degradation. 

Homomorphic filtering was originally proposed by 

Stockham, Oppenheim, and Schafer C41l in the area of digital 

signal processing. It was later extented to two-dimensional 

applications by Cannon C6l. Tnis techni~ue maps the image 

signal from the original space to another space with 

desirable properties for easier manipulation. The 

assumptions and model remain the same for this approach. 

The criterion, however is different. Power spectrum 

e~ualization is utilized here. This means a linear operator 

CLJ must be found, such that when this CLJ operates on g, 

the result is an image f with a power spectrum e~ual to the 

power.spectrum of f. This leads to an inverse filter 

described by, 

IL<u,v>l (2-7) 

It should be noted that this technique specifies only the 

magnitude of the filter. It is generally assumed that the 

phase is either zero or previously given. 

All three of these filters work reasonably well when 
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there is a high SNR. In ract, they all converge to the least 

squares rilter. The advantage or one method over the other 

in this situation will depend on the amount or a priori 

inrormation. Homomorphic riltering can construct the 

inrormation needed ror restoration rrom the degraded image 

itselr. by estimating ~, and ~n· MMSE requires the most a 

priori information, while the least squares approach is 

somewhere in between. 

With respect to visual quality, homomorphic riltering 

produces the best results- ror medium to low SNR. Least 

squares and MMSE are both much worse. All these techniques 

are rairly straightrorward and the number or computations 

are considerably reduced when Fourier techniques can be 

applied. However, this greatly restricts the class or images 

to which these techniques can be applied. What happens ir 

thg distorting process is not space-invariant? This 

question leads us to the second group or restoration 

techniques in this category. the one that considers the 

human visual characteristics. 

The algebraic techniques allow one to use a more 

general class of images to be processed. The assumptions 

for this category or images are: <1> only signal 

independent additive noise will be considered. <2> The 

detector response will again be assumed to be linear. (3) 

However, in this case it will be assumed that the distorting 

process can be spatially-variant. All filters developed in 

this section will be derived by a least-squares Lagrangian 



approach. 

The image formation model is now, 

g = l:Hlf + n. <2-8) 

An obJective function, W(f) is defined as the function which 

specifies the criterion for the restoration techni~ue 

developed. 

being 
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The inverse 

of the 

obJect. 

difference 

filter re~uires the minimization the norm 

between the image and the reblurred 

The obJective function becomes, 

W<f> = llg - I:HJfll 2
• <2-9) 

Solving for the estimate f yields, 

{2-10) 

where the superscript * denotes the complex conJugate. It 

is assumed that l:HJ is not singular. In the case of a 

spatially invariant image formation system [HJ this is the 

least s~uares case of the last section. It has the same 

problems as the least s~uares filter in either case. 

Since it is often the case that [HJ may be singular, 

one would like to design a filter which has more control 

over the restoration process, i.e., one which places some 

constraint on the design procedure. If we have some a priori 
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kno~ledge about f, for instance ~e might kno~ that f is a 

smooth function, then an additional constraint could be 

added to minimize a roughness measure, such as the norm of 

the second derivative <or in the case of discrete images, 

the second difference>. 

linear operation on f, 

on the noise. 

measurable, 

If the 

then 

In general ~e minimize the norm of a 

CGJf, subJect to the usual conditions 

norm of the noise is kno~n or 

minimize IICGJ fll2 subJect to 

llg - CHJfll 2 = llnll 2 . In this case, the obJective function is 

W(f) = IICGJfll 2 - ~(Jig - CHJfll 2 - llnll2 >. (2-11) 

The constrained least squares estimate (Hunt [21]) is 

.f = <CHJ*TtHJ + lCGJ*TtGJ>-1 CHJ*Tg, (2-12) 

~here l = 1/>-.. 

The constrained least s~uares restoration is a fairly 

general approach to restoration. This results from the 

general nature of the function CGJ, ~hich can represent a 

number of possible constraints. Some of these include, 

·rGJ = CIJ ~hich leads to the pseudo-inverse filteri 

CGJ = finite difference matrix ~hich, as discussed above 

gives the constrained least squares filter, CGJ = eye model, 

~hich leads to restoration from a visual perception point of 

vie~. and CGJ = C,llf 1 l-112 [,llf
0

l 112 yielding the parametric 

Wiener filter. 



One other type of filter is the maximum entropy filter 

<Frieden C12J), which is based on modeling the obJect as a 

probability density function. If f is normalized to unit 

energy, then each f can be treated as a probability. One 

reason this approach is so appealing is that it guarantees 

positive values in the restored image. 
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The obJective function for the derivation of the 

maximum entropy filter is 

<2-13) 

After taking the partial derivative and setting it e~ual to 

zero we obtain, 

CHJf>. .(2-14) 

It should be noted that this is a nonlinear solution. This 

problem is in general very difficult to solve. One approach 

to solving e~uation <2-14> is to linearize it. This 

the simplifies the solution. 

effectiveness of the filter. 

but it also reduces 

The following restoration technique is based on the 

application of recursive estimation to the problem of image 

restoration CAboutalib, et al. ( ll). A number of people 

have done work in this area with promising results, and it 

is on this theoretical development that the restoration 

filter proposed in this thesis is based. The development of 
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this method will be explained in considerable detail. Again. 

it is assumed that the recorded image is defined by the 

brightness function g, and the ubJect plane brightness 

function is f. · In the case where the paint spread function 

is assumed to be space invariant. we can represent g by the 

following e~uation: 

e t'q 
g ( i, J > = 'E . 'E h < ~· m > f < i -q, J-m > + n (i, J >. (2-15) 

q_=-& m=-1' 
q 

The noise is again assumed to be additive, white, Gaussian 

noise. .;,e ~ 0 is the vertical extent of the blur, h is the 

point spread function, and lq,t'q > 0 is the horizontal 

extent of the blur along horizontal line i-q. tt is ~ssumed 

Let us make the follo~ing 

transformation of variables to ease the ensuing development. 

Let Sl5 = l + I'q q q and use the notation r qm = h ( q_, m-"t q). 

Equation <2-15) becomes 

e Slfq 
g(i, J) = 'E 'E rqmf(i-q, J-l'q-m> + n<i. JL 

q=& m=o 
<2-16) 

The image intensity can be ~ritten in terms of the 

horizontal shift operator, The 

contribution to g<i,J) from the obJect line i-q is, 



gq(i, J) = Crqo +rq1 D+, ... ,+rq<t>q D</>ql 

f<i-q_, J+l'q > + n(i, JL 

Define a function of the delay 

Hq <D> = '~'qo +t' q1 D+, ... ,+'~'qci>q 0 </)q fot' .i~q_<e. 

cont"ribution f"rom all the &+9+1 ObJeCt lines 

e 
g(i, J) = t Hq<D>f<i-q_, J+l'q > + n(i, JL 

q=-& 

is 
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<2-17) 

operators, 

The total 

then 

<2-18) 

If is the maximum deg"ree of 

anticipation of the blu"r over all cont"ributing lines and 

f_(i, J) = col[f(i-e. J), f(i-9+1. J), ...• f(i+e. Jl (2-19) 

We can w"rite the vecto"r of causal moving ave"rage ope"rato"r 

polynomials as. 

<2-20) 

and the delay mat"rix as 

M<D> 
L-r8 L-1'8_ 1 L-r_

5 
= d iag < D , D , ..... , D > .. <2-21) 

The system eq_uation now becomes, 

<2-22) 
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fori. J = Q, 1 •... ,N-1. 

Note that the problem is formulated such that the blur 

is multi-input. In addition, 

composed of obJect intensities from each of the 6+A+1 lines 

contributing to line i. Thus, f(i,J+l) is a vector that 

scans the obJect plane. Now. define 

<2-23) 

The system description is 

<2-24> 

where ~(i,J) is the input vector. HTCD> is a multi-input-

single-output causal operator. Under this formulation, the 

system admits a recursive realization as follows: 

<2-25) 

<2-26) 

for i,J = 0,1,+ ... ,-1, where n<i,J) is white with EtnJ = 0 

and E[n2J = g 2. 

Under the assumption that the obJect plane may be 

modeled as a zero-mean, two-dimensional stationary random 

field. with a known correlation function. a difference 

e~uation model can be developed which, when driven by white 

noise. produces an output whose statistics match the 



statistics of ~(i, JL This is represented by 

L<i,J+1> = PL<i, J) + G~(i, J>• 

~(i, J) = TL<i, J), 

where Et~J = 0 and Et~TJ = R. 

(2-27) 

(2-28) 
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The degradation model can now be augmented with the 

obJect model to yield the following composite model: 

~(i,J+l> = A~<i, J) + B~<i,J), 

g(i, J) = cT~(i, J) + n<i. J>• 

A= 

(2-29) 

<2-30) 

The best linear minimum variance estimate w(i,JIJ) of 

~(i, J) can now be developed based on the observations 

<g<i.t), t=O •... , J}. The following Kalman filtering 

e~uations result, 

~(i, JIJ) = tl- +(J)~TJAru(i,J-11J-1) + +<J)g(i, J), 

+ ( J ) = p ( J) .s_[ c T p ( J ) .s.. + <T 2 J -1 I 

(2-31) 

(2-32) 

<2-33) 



~or i, J = Q, 1 •... ,N-1, and with ~(0) = ~o' P<O> = P0 . 

is de~ined as the estimation error covarince matrix and +<J) 

is the Kalman gain vector. The best linear minimum variance 

extimate of ~(i, J) based on the observations gCi,t> ~or 

t=O, 1, ... I J is 

(2-34) 

~Ci, J) = M<O>£<i, J+L), as before. 
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This method is a good way to restore images which are 

of relatively low contrast. Unfortunately, when there is a 

lot of spatial activity in the image the filter cannot keep 

up with the changes in the image. The result is then an 

undesired smoothing of the edges. The advantages of this 

method, though, are that it is ~uite easily implemented via 

a digital computer and there is the ability to model the 

obJect plane statistics. 

The second category of image restoration techni~ues is 

based on a subJective criterion. The initial work has been 

done by Anderson and Netravali t2J. The basis for this 

approach is that the restored images will be for human 

viewing, so one would like to utilize those properties of 

the human visual system <HVS> which are engaged in 

discerning information and removing noise from an image. 

The assumptions ~or this restoration procedure are: Cl> the 

recorded image is simply the sum o~ the original ObJect and 

white Gaussian noise, speci~ically, 
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g<i, J) = ~<i. J) + n<i, J); <2-35) 

and <2> n is a zero-mean, white, Gaussian noise source 

independent o~ ~and o~ unknown but constant variance vn. 

To develop the procedure ~irst construct a measure o~ 

the spatial detail in an image <Netrava~i and Prasada t39J). 

It is known that at sharp transitions in image intensity the 

contrast sensitivity o~ the HVS decreases with the sharpness 

o~ the transition and increases exponentially <within 

limits> as a ~unction o~ spatial distance from the 

transition. This in~ormation is used to de~ine the 

following measure of spatial detail, called the masking 

function: 

i+k J+r 
Mkr ( i, J) = t t 

ll(i I J) 

c 
< P• q.)ll 

tlmijvl + 
h 

lmii I J, (2-36) 

where ll(i,J)- (p,q)ll denotes the Euclidean distance between 

points (i, J) and (p, q_); m!/ and miih are the vertical and 

horizontal slopes 0~ the image intensity at (p,~), 

respectively; C is a constant controlling the rate of 

exponential decay of the ef~ect of a transition of image 

intensity on its neigh~ors; and k and r are constants 

controlling the size of the relevant neighborhood around 

(i, J). 

The second step in this procedure is to determine the 

relationship between the visibility of noise in an image and 

the m~sking function. This relationship is known as the 
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visibility function and gives the relative visibility of a 

unit noise added to all points in a picture ~here the 

measure of spatial detail~ Mkr~ has a certain value. The 

visibility function is determined by a number of subJective 

tests. Test images are computed and stored. The masking 

function Mkr is computed for each pixel of the original 

image. A masking value t and a noise power Vn are chosen. 

To each pixel of the original image whose masking value Mkr 

is in the range Cy- Al/2~1 + Al/2J, where Al is a small 

increment. white Gaussian noise of power Vn is added. The 

test image so obtained is characterized by the values t and 

~ . For each t at which we wish to measure the visibility 

f<t>• three test images with noise powers VR I VR IV 
1 2 "3 

are 

generated. 

A subJective test is performed under which the 

experimenter randomly selects a test image to which he adds 

Just enough white noise to reach a point of subJective 

equivalence between the two pictures. If Vw ,vw , and Vw 
1 2 3 

are the equivalent white noise· powers selected by the 

subJect corresponding to test images which have 

amounts of noise, then. assuming proportionality, the 

visibility function is defined as 

V<t> = (2-37) 
A"' V + V + V 9 

"1 "2 "3 

where l is the masking value and Vn is the noise power. The 

visibility function decTeases with respect to its argument 
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because at higher masking function values we add noise to 

fewer picture elements and the perception of noise at 

picture points having higher masking value is decreased. The 

visibility function is used to determine the coefficients of 

the restoration filters. Two types of filters were 

developed, the S-type filter and the SO-type filter. 

The S-type filter computes a local average of <2q+1> 

neighboring elements, 

(2-38) 

This filter was chosen because the aik can be changed for 

.. 
each sk according to the visibility function. The a's are 

subJect . to the usual constraints on filter coefficients. 

i.e .• a ~o, fori= -q •...• q and aT~= 1. 

The variance of the noise in the image g(i, J) is vn , 

assumed constant over the entire image. The amount of noise 

remaining after the filter is applied is var {SJ = v a Ta. 
n--

We can define va = ara as the relative amount of noise 

passed by the filter. As we have noted previously. the 

application of an averaging filter to an image results in 

some blurring. Since it is important that this blurring be 

kept to a minimum. a measure of this blurring is defined and 

is called the spread, 

<2-39) 
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where 5 is the spread matrix. 

The re~uirements for the filter weights a are that 

they have good noise suppressing power but a small tendency 

to blur. These are opposing goals. Conse~uently. the 

obJective function is defined as follows: 

(2-40) 

subJect to ~Ta = 1. 

solution, 

Using Lagrangian methods we obtain the 

a = "tcc!. + c 1 ct)SJ-1 Y.• (2-41) 

where ~ is adJusted to ensure that ~Ta = 1. ct is a tuning 

parameter whose value varies from 0 to 1. As « changes the 

filter changes from a sharply peaked filter to a flat, 

equally weighted averaging filter. 

Thus far. in the description above. a tunable ~ilter to 

be applied to a neighborhood o~ a given pixel has been 

constructed. The visibility ~unction is now used to tune 

the ~ilter via the parameter ct. It is assumed that the 

visibility ~unction has been scaled so that f(O) = 1. Let G 

be the number of elements in the two-dimensional filter, and 

then choose a number 54• < 1/G) < 54 < 1, a constant for a 

given image, which determines the amount of noise passed by 

the filter in a pe~fectly flat area of the image. That is. 

set « so that 
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(2-42) 

at a pixel where M = 0 and f(M) = 1. In areas that are not 

rlat choose « such that 

(2-43) 

This rule is applied at every pixel and results in unirorm 

subJective noise visibility. If v
3 

is permitted to rise in 

busy areas. the spread goes down, producing a sharper 

filter. To allow for this variability. we introduce another 

tuning ractor l to control the way in which the filter 

responds to the visibility runction. Equation <2-43> now 

becomes 

(2-44) 

This restoration method is based on a measure of 

spatial detail that corresponds to that or the human visual 

system. In addition, two numbers. ' and 1• were chosen to 

give control or the overall amount or filtering and to 

regulate the degree of adaptivitg, respectively. It would 

be desirable if in addition this procedure could recognize 

when the filter overlaps a prominent edge and would 

automatically reduce the overlapping filter weights. This 

would reduce the distorting influence of a nearby edge and 

hence preserve edge sharpness. This leads us to the second 



type of filter, the SO-type filter. 

The SO-type filter is a distortion-penalizing filter, 

so it is necessary to define a measure of distortion, 

q_ 

da = . t ( z i+k 
1=-q_ 

<2-45) 
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where D is the distortion matrix. The O~Jective function 

for this method is, 

<2-46) 

subJect to ~T~ = 1. and using e as a tuning parameter. 

It is readily seen that ~represents a penalty applied 

to ~- When ~ oYerlaps an edge, there is a large difference 

between the brightness at the center of the filter and the 

brightness at a point across the edge. The penalty is then 

large forcing the coefficient a to be small. 

In review, it should be noted that the main feature of 

these filters is that they are applied locally under the 

direction of a local fidelity cr'iterion based on 

psychovisual principles. The S-type filter is tractable and 

convenient, but has a tendency to blur at prominent edges. 

This problem is accounted for in the SO-type filter and 

leads to better restoration. Unfortunately the price for 

this improvement is paid in an increased number of 
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computations. 

In campa~ing the results o~ the restoration techniques 

in categories one and two. we must remember the ~undamental 

differences in their original obJectives. The category one 

techniques are based on the philosophy that images can be 

improved by designing a filter which inverts the distortion 

in the system. If there is noise in the response, the 

inversion is dane subJect to minimizing the norm of the 

noise. Category two techniques design the restoration 

~ilter, ~or removal of noise only, under the assumption that 

images will be used for human viewing. There~ore, the 

restoration filter is designed to choose the same desirable 

features in an image that the"human visual system would 

choose. 

There are important aims in the techniques o~ both o~ 

the catagories. Attempting to invert the distortion present 

in the system is a logical approach. In light of the fact 

that images are generally utilized by human viewers, taking 

into account certain aspects of the human visual system is 

desirable. 
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CHAPTER 3 

AN ADAPTIVE NONLINEAR KALMAN-TYPE FILTER 

I. Intl"oduc ti on 

This chaptel" pl"esents the theo,.etical development o~ an 

adaptive nonlineal" Kalman-type ~ilter to be utilized fol" the 

restoration o~ two-dimensional images. This development 

proceeds in a step by step fashion, solving several o~ the 

prcblems inherent in the app,.oaches currently used ~or the 

restoration of images. 

One such pl"oblem is the necessity of using the l"eceiver 

characteristics in the design of the ,.esto,.ation filter for 

the general model given in figure 1. 1. Since the l"eceiver 

fo,. many images is a human obsel"ver, it is desil"able to 

utilize the propel"ties of the human visual system in 

designing a bette,. image l"estoration procedure. In the 

present work, the response of the human visual system to the 

additive white noise pl"esent in an image is used in the 

development of the adaptive nonlinear Kalman-type filter fo,. 

the system described by equation <1-1>. 

Anothel" problem results from the assumption that the 

obJect plane distl"ibution function f is usually 

characterized by a single wide-sense stational"y Markov 

pl"ocess. If thel"e is a large sp,.ead in the amount of spatial 

activity, this tends to yield an autocorrelation function 

' 



which has less resolution than is needed to characterize 

sharp edges. This problem is solv~d in the present work by 

partitioning the obJect plane into regions according to 

local spatial activity. 
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This partitioning also helps in 

effort associated with the calculation 

reducing the large 

of the restoration 

filter. Spectral factorization is necessary for the 

determination of the coefficients in the difference 

e~uations of the dynamic model used in the derivation of the 

restoration filter. The necessary operations are performed 

on much smaller matrices in the present approach. 

Two problems are encountered in the implementation of 

the adaptive nonlinear Kalman-type filtering algorithm 

developed here. The first problem arises from the fact that 

the best choice for the previous state vector for the pixel 

(i, J) need not be the one associated with the pixel (i,J-1). 

This is apparent at the boundary between t~o regions. Pixel 

(i,J-1) may be in a region whose autocorrelation function 

differs widely from that of the region to which pixel (i,J) 

belongs; thus utilizing the state vector at (i,J-1) as the 

one previous to the state vector at (i,J> may give poor 

results. This makes it necessa~y to determine a procedure 

for selecting among the previously processed pixels, one 

whose state should be used as the previous state vector. In 

the present work, this problem is solved by using a nearest 

neighbor criterion to determine the best selection of the 

previous state in the recursive restoration algorithm. 
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The second problem encountered is the lack o~ good 

initial condition inTormation for the starting points in the 

regions. This problem is overcome by emploqing a tt~~o-

dimensional interpolation (smoothing) scheme to obtain 

better estimates o~ the initial state vectors. 

The solution o~ these problems has resulted in the 

development o~ the present adaptive nonlinear Kalman-type 

filtering scheme for the restoration o~ images. The four 

primary improvements o~~ered by the filter are: 

( 1>. The use o~ the vis ib i 1 i ty function to incorporate 

the properties o~ the human visual system as 

receiver characteristics; this is achieved 

by making the "e~fective" observation noise: 

covariance depend nonlinearly on the state. 

<2>. The partitioning o~ the image into regions to 

allow ~or more accurate modeling o~ the second 

order statistics o~ the obJect plane 

distribution ~unction according to spatial 

activity; 

<3>. The utilization o~ ii* nearest neighbor algorithm 

to determine the best previous state at 

boundaries and in regions o~ high spatial 

activity; and 

<4>. An interpolation s~heme ~or the 

improvement of initial condition information. 

In addition, our filter is capable of removing general 

image formation degradations by taking into account the 



dynamics of the image formation system. 

The following section establishes the validity of using 

the autocorrelation function as a property for describing 

the regions of the obJect plane. Next, a criterion function 

is presented which partitions the image into regions. In 

addition, a scheme is developed for the implementation of 

this partitioning process. 

II. Image Partitioning adapted to Local Spatial Activity 
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Consider the problem of characterizing the obJect plane 

distribution function. In the previous literature 

<Aboutalib, et al. [ 1] I Franks [9], Jain [25], Nahi and 

Assefi [37J, Nahi and Franco C38J, Woods and Radewan t60J), 

the obJect plane distribution function f has been 

represented by a wide-sense stationary process whose 

autocorrelation function is of the following form 

where ~ and ~ are horizontal and vertical displacements, 

respectively. This may not always be the case and can in 

fact lead to undesirable results. In particular, if there 

is large spread in the spatial activity content in the 

obJect plane, the constants K 1 , «• and ~ may vary 

considerably from one area of the image to another, where 

spatial activity is defined as the rate of change of spatial 
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luminance from one pixel to another. This is directly 

relatgd to the autocorrelation function through the 

parameters « and ~· These two parameters specify the 

average number of statistically independent luminance levels 

in the horizontal, «• and the vertical. ~· directions. 

Then. if the spatial activity is high, « and ~ will be 

greater than ~hen the spatial activity is low. In what 

follo~s, an attempt is made to categorize the information in 

the obJect plane in such a way that regional autocorrelation 

functions can be used in lteu of one global autocorrelation. 

It is necessary to guarantee that ~e have a meaningful 

set of features to be used to describe the information in 

the obJect ~lane. Several types of features may be 

considered. These include spectral, textural and contextural 

features. Spectral features describe the average tonal 

variations in the various bands of the spectrum. Textural 

features reveal the spatial distribution of tonal 

variations, and contextural features are those ~hich yield 

information obtained from the regions surrounding an area 

being analyzed. 

The problem at hand then is to find a property R, such 

that an image can be partitioned into regions Op for p = 

1,. ··' k. Each region Op is to be restored utilizing this 

property R, to yield an optimal restoration procedure. 

One class of features particularily suited to recursive 

estimation techniques is that of spectral features. These 

are often represented in terms of the autocorrelation or 
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spect~al density to yield in~o~mation about the statistics 

of an image being ~esto~ed. 

Since the autoco~~elation is dependent on the spatial 

activity 0~ the a~ea, it is reasonable to choose the ~egions 

Op based on the amount 0~ spatial activity in the image. 

The~e a~e a numbe~ of ways to pa~tition f based on the 

amount of spatial activity. One is to utilize a bank of 

bandpass filte~s and separate the image strictly by the 

spatial ~~e~uency content at each pixel. Anothe~ app~oach 

is to use a ~unction based on the amount o~ spatial 

activity as de~ined b~ the slope info~mation at the pixel. 

This type of measu~e cor~esponds closely to the in~ormation 

~ep~esented by the autocor~elation function and will 

the~efo~e be used. It has al~eady been shown, in the 

p~eceding chapter, that the masking function is indeed a 

measu~e of the spatial activity in a neighbo~hood of a 

pixel. 

Conside~ the masking function int~oduced in Chapte~ 2. 

i+k J+~ ll(i,J)-(p.q)ll 

Mkr(i,J)= I: I: C Clmijvl+lmiih(J, (3-2) 
p=i-k q=J-r 

where ll(.i,J)- <p.~)ll is the Euclidean distance between 

points ( i I J) and Cp,q_); 
h 

and mii are the vertical and 

ho~izontal slopes o~ the image intensity at (p,q); Cis the 

con~tant controlling the ~ate of exponential decay; and k 

and r are the constants controlling the size of the relevant 

neighborhood around (i,J). 
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If the constants k and r are e~ual to zero. we have a 

measure of the spatial activity in the horizontal and 

vertical directions. 

(3-3) 

It is desirable to extend this measure of spatial activity 

to include slope information in the immediate neighborhood 

of a given pixel. The immediate neighborhood of a pixel is 

assumed to include its eight nearest neighbors. Eq_uation 

C3-3) is generalized to include information about the slopes 

in the four directions defined by these eight neighbors, 

i.e. o, 45, 90, and 135 degrees. Define 

3 
Mg(i, J) = K 1 t lmiid7r4 1, 

d=O 

(3-4) 

where for d = 0 •...• 3 represents the slope 

information in these four directions. 0 
"'ii corresponds to 

the horizontal slope milh and mit
12 the vertical slope miiv of 

eq_uation <3-3>. The subscript g is used to indicate the 

generalized slope information at a ~txel and K1 is a 

constant used for scaling. 

A thresholding operation is used to segment the range 

of values of the measure of spatial activity M9 such that 

the image will be divided into regions Op, p = lt 2t ... I k. 

The region Op is chosen if 



(3-5) 

where ap is chosen subJectively depending on the range of 

Mg' the number of regions desi~ed and the class of images 

being considered. The thresholds are chosen so that 

partitioning the image into regions is based either an equal 

segmentation of the range of M9 or more generally on an 

nonuniform segmentation of Mg. The nonuniform segmentation 

allows for more discrimination in heavily concentrated 

regions of spatial activity. 
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Once the image is divided into appropriate regions. the 

recursive filter is designed to meet the specifications of 

each reg ian. 

III. A Scheme for Two-Dimensional Piecewise Recursive 

Estimation 

Consider the following discrete image formation system: 

The image plane distribution function g which is the output 

of the system modeled in figure 1. 1 is known. The input to 

the system is f, the obJect plane distribution function. 

The system is assumed to be linear with impulse response h. 

The output is added to a white, Gaussian noise to form g. 

The input-output e~uation is given by: 



e l'q 
g<i, J) = I: I: h(q_,m)f(i-q,, J-m> + n(i, J), (3-6) 

q,=-8 m=-1q 

for i = 0,1, ... ,M-1, J = o, 1, ... ,N-1, &.e > 0 shows the 

vertical extent of the blur, and 1q• l'q > 0 the horizontal 

extent of the blur along the obJect horizontal line i-q,. 

The image g is an MxN array of pixels. The problem at hand 

42 

is in general one of inverse filtering, that is, given the 

output of the system g and the system impulse response h, to 

rind an estimate or the input f. 

In the method proposed in the present work, the model 

in figure 1. 1 is modified slightly to account for the 

statistical nature of the obJect plane distribution function 

f. It is assumed that f is generated by passing white noise 

sources through a bank of linear systems, whose impulse 

responses are bp for p = 1.2 •...• k, such that the obJect 

plane distribution function f is composed of a set of 

disJoint regions. Each of these regions is characterized by 

a zero-mean two-dimensional, stationary random field with a 

known autocorrelation function. This is depicted in figure 

3-1. A difference equation model is developed for each 

region QP, such that when the input is a white noise source 

the output of the system has statistics that match those of 

the pth region of f . Such a model is given by 

.!.p<i,J+1) = Gp.!.p<i,J) + SpY.pCi,J>• 

f(i,J) = Tp.!_p(i,J), 

(3-7) 

(3-8) 



• 
• 

• 

bk(i,J)- Linea? system gene?ating the obJect 
distribution function f(i,J) from a white 
sou?ce at the input. 

f(i,J) ObJect plane dist?ibution function. 

h(i,J) -Image fo?mation system impulse response. 

n(i, J) Additive ~hite noise sou?ce. 

gCi, J) Received distorted image. 

~ Union of disJoint regions. 

Figure 3. 1 
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forp=1,2 •...• k. i=O •...• M-1, J=O •...• N-1, and where 

= 0 and E[Y,.(i
1

, J
1

)Y,.Ci
2

, J
2

) l = RPA(i 1 -i
2

)A(J
1
-J

2
L 

= 0 and E<z zT} = K. 
-p-p 

E~uation <3-6) defines the input-ouput relationship for 

the image formation system depicted in figure 3-1. It is 

necessary no~ to arrange e~uation (3-6> such that a 

difference e~uation model, such as described by e~uations 

<3~7> and (3-8) ~ill result for the image formation system. 

In a manner similar to that of Aboutalib, et al. t1J, the 

following development evolved. 

Without loss of generality, it is assumed that 

notation r qm = h < ~· m-lq >. 

Define. -q = lq + rq an~ use the 

E~u~tion <3-6) now becomes. 

e 
g(i,J) = :& 

~=-& 

l!Sq 
:& rqmf<i-~, J+lq-m) + n<i, JL 

m=O 
(3-9) 

If we introduce the shift operator DPf(i, J) = f(i, J-p), then 

the contribution to g(i, J) from the obJect line i-~ is 

9q < i, J ·) = l:rqo +rq1 D+, ... , +rqcf>q D IPq J 

f<i-~, J+lq) + n<i, J). 

Now if we define. 

D
«Pq 

= r qo +r q 1 D+, ... , +r q<f> , 
q 

<3-10) 

(3-11) 

for -.S<~<e, the total contribution from all the 8+6+1 lines 



is 

e 
g(i,J) = ~ Hq<D)f(i-~·J+1q) + n<i,J). 

q_=-& 
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(3-12) 

Let, L = max <1q; -&<~<9} be e~ual to the maximum degree of 

anticipation of the blur over all the contributing lines. 

We maq then define the following: 

(3-13) 

the vector of caus·a'l moving average operata!' polqnomials. 

E~uation <3-12) can be written as 

(3-14) 

where the vector a<i• J) is now considered the input vector 

to the sqstem and is defined bq: 

a<i.J) = col[f(i-e.J+1e),f(i-e+l.J+1e-1) 

I • • • I f(i+&, J+1_
0 

)J, 

where f(i, J) is defined b.q (3-7) and <3-8). 

(3-15) 

Sin c e H T ( D ) i s a mu l t i- i·n p u t single-output causal 

operator. it "'"' "'T "'T admits a recursive realization (A,B,~ .~ ) of 

the following form 

(3-16) 
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(3-17) 

fori= Q, 1, ...• M-1, and J = Q, 1 •...• N-1. The ~hite noise 

process is such that E[n(i,J)J = . 0 .and 

E[n<i 1 , J 1 >n<i
2

, J
2

>J = <F 2 A<i 1 -i
2

>A<J
1
-J

2
>. The dimension OT A 

is the minimum order or all state-space realizations OT 

H<D>. The parameter matrices A,a,cT~~T are either space-

variant or constant depending on the nature or the 

degradation. 

The degradation model described b~ <3-16> and <3-17> 

can be augmented ~ith the obJect plane model <3-7> and <3-

8), to ~ield the composite model for the entire system shown 

in figure 3-1. 

!!!.p<i1 J+U = Ap!:!!p(i, J) + Bp!:!.p(i, J)l 

g ( i I J) : £.~!!!. p (if J) + n ( i I J) I 

(3-18) 

(3-19) 

for p = 1, 2, ... , k·, i = o, . · .. , M-1 and J = O, ... , N-1. The 

noise source statistics are ~s given and the vector 

!!!.~<i,J) = r~T(i,J) ~~(i,J)} is the state of the system with 

dimension defined by the dimension of ~(i,J) and ~P(i,J). 

The matrices Ap' Bp' and £.~ are determined as follows, 

(3-20> 
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With the system model desc~ibed in e~uations <3-18) and 

(3-19) I it is desi~ed to de~ive a class of optimal 

estimato~s which yield a linear function of the observation 

image as its estimate. F~om this model, we wish to find an 

estimate of the n vecto~ ~p(i, J+l) denoted ~P Ci, J+1) which 

is a linea~ function of the obse~vations gCi,Q), ...• g(i, J), 

and is const~ucted with least mean s~uare er~or of the 

reg ion Q P· This is accomplished by minimizing 

{3-21) 

We can w~ite, 

(3-22) 

whe~e «<i,J) is a <n x J+l) coefficient mat~ix and g{i,J) a 

(J+l>-vecto~ of the obse~vations g(itO), ... ,g(i,J). 

By substituting <3-22> into <3-21) and diffe~entiating 

with respect to the elements of the mat~ix «(i, J) yields a 

set of e~uations: 

(3-23> 

fo~ m = o, 1, ... , J. This is commonly known as the 

o~thogonality principle. It states that the linea~ estimate 

.. 
~P(i,J+l> which minimizes the quadratic cost given by <3-22) 
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is such that the estimation error [~P(i, J+l) - wp(i, J+l>J is 

uncorrelated with every observation g(i,Q), ... ,g(i, J). 

The inverse filter that results from this formulation 

is ~h~ piecewise Kalman filter: 

~p<i. JIJ) = CI - Pp<J>~~JAp~p<i, J-11J-1> 

+ JZip (J)g(i, J), (3-24) 

JZip(J) = T 2 -1 
p P < J > ~P [ £..pPp ( J > ~ P + o- J , (3-25) 

p p( J+l) = ApCI 
T T T 

- jllp(J)£..pJPp<J>Ap + BpRpBp• (3-26) 

for p = 1. 2, ... , k. The coe~ficient matrices A and B are 

the system coefficient matrices from e~uation <3-20) and £..p 

is the coefficient vector from (3-20). The vector 5ifp(J) is 

the Kalman filter gain vector and P P (J) is the error 

covariance matrix for region k. The estimate of the input 

is derived from the estimate of the state vector by 

(3-27) 

where T is the parameter matrix from equation <3-7). 

Equations <3-24> <3-26) are the two-dimensional 

Kalman filtering equations for each region Op. This filter 

is applied to the two-dimensional output signal 9• and the 

output of the filter will be a best linear minimum mean 

square error estimate of the input signal f restricted to 

the region Op. 

The coefficient matrices in e~uations <3-24> {3-26) 
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are specified in equation <3-20). The A, B, cT, dT are 

determined by spectral factorization of the distortion 

modeled by the system impulse res~onse h. These remain the 

same in each region. The coefficient matrices Gp, T p I Sp 

are dependent on the autocorrelation functions pertaining to 

each reg ion Op. It has been shown <Franks C9l) that for a 

stationary random process f the autocorrelation is 

CD 

R('J') =A t rmP(m,'f"), (3-28) 
m=O 

A= E[f~ l and ECfnl = 0. 

P<m,'J') is the probability that points t and t+'J' are in 

intervals m apart. If it assumed that {fn} is a wide-sense 

stationary sequence in the regions chosen then. 

(3-29) 

The constant Ap is proportional to the variance and 

specify the average number of statistically 

independent luminance levels in a unit distance along the 

horizontal and vertical directions. Alternatively, the 

correlation is characterized the parameters 

UJhich are the 

correlation coefficients of the luminance levels of adJacent 
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picture elements when the picture area is ~uantized into 

small s~uares of dimension Te. For our images Te = 1 and 

the correlation coefficients can be calculated as. 

<3-30) 

It has been pointed out that. in general. the 

assumption of wide-sense stationarity over the entire image 

is not true, but it will be seen that assuming regional 

wid'e-sense stationarity leads to significant improvement in 

the estimate. Once the autocorrelation functions of the 

regions are determined, the appropriate recursive filters 

can be designed using these autocorrelation functions and 

the appropriate weighting calculated for the additive noise. 

It has been shown by Nahi and Franco r38l that under 

the assumption that the autocorrelation can be represented 

by e~uation <3-29), it is straightf~rward to obtain the 

coefficients G,S,T in e~uations <3-7> - <3-8): 

Gp = -xh , (3-31) p 

Sp = <2 -xhp > Yz (3-32) 

T -Tp Tp = H, (3-33) 

,..... 
where the kmth element of H is hkm = exp<-Xvp<m-k>>. The 

obJective of this ·procedure is then to design regional 

Kalman filters based on the statistics of each of these 

regions. 
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IV. Visibility Adapted Observation Noise Model 

We assume that the image ~ormation system is 

contaminated by white Gaussian observation noise with zero 

mean and variance ~ 2 . Anderson and Netravali [2J and 

Netravali and Prasada [39l incorporated the visibility o~ 

the noise with respect to the human observer in the 

construction of their restoration filter. In what follows. 

we use a similar criterion in our restoration procedure. 

We note that the use of the visibility criterion by the 

above authors was for the case in which the disturbance was 

caused bt,~ additive noise only. Our 

using the 

additive 

criterion 

noise, the 

takes into 

presence of 

restoration procedure 

account, in addition to 

motion blurs. The 

application of such a visibilitt,~ function to the general 

image formation model is determined here. 

The visibilitt,~ ~unction as derived bt,~ Anderson and 

Netravali [2J is a measure of the visiblitt,~ of the noise in 

an image to the human viewer. It is dependent on the amount 

of additive noise present as well as the masking function. 

which is the response of the human visual system to the 

spatial activity in the image. That is. at sharp 

transitions in image intensity, the contrast sensi'tivity of 

the human visual system decreases with the sharpness of the 

transition and increases exponentially as a function of the 

spatial distance from the transition. The masking function 

does indeed respond in such a manner, as is shown by 
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equation (3-2). 

The following pToceduTe, pTesented in moTe detail in 

chapteT 2, is used foT deteTmining the form of the 

visibility function. FiTst, the masking function Mkr (•, •) 

is computed for each pixel (i, J); then a masking function 

value l and a noise power Vn are chosen. To each pixel of 

the original image whose masking function Mkr is in the 

range Cl- Al/2,l + Al/2], where Al is a small increment,-

white Gaussian noise of power Vn. is added. 
I 

For each value 

of M, three test images with noise powers Vn
1

' Vn
2

' Vn
3 

are 

generated. 

A subJective test is performed under which the 

experimenter randomly selects a test image to which he adds 

JUst enough white noise to reach a point of subJective 

equivalence between the test image with noise power Vni and 

the image with additive white noise of power Vwi. The 

result of these tests is the visibility function given in 

equation <2-37> and quoted below 

{3-34) 

The resulting curves which express a relationship between 

the visibility of the noise and the masking value as 

published by Anderson and Netravali [2] have the general 

-Form of 



V<Mkr(i,J)) = A1 exp<-k 1 Mkr(i,J)), 

A2exp<-k 2Mkr (i, J) ), 

for O~Mkr(i, J)~P (3-35) 

for P<Mkr (i,J) (3-36) 

~here k 1 and k2 are constants dependent on the slopes of the 

curves and P is an appropriate positive constant. 

Recall the piece~ise Kalman filtering e~uations (3-24> 
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<3-26>. The statistics of the noise are utilized in 

(3-25) in determining the amplification factor for the 

filter. The variance o- 2 of the noise is the term that 

represents the additive noise present in the system. In 

~hat follo~s. it is weighted by the visibility function to 

'adJust the restoration filter according to the visibilit~ of 

the noise by the human observer. 

First, the visibilit~ function is scaled so that in 

areas of no spatial activity. i.e. ~here the masking 

to zero, the variance of the noise is function is e~ual 

exactly e~ual to o-2. In such regions, the human e~e is most 

sensitive to additive noise; therefore as much noise as 

possible is removed. In a region of high spatial activity, 

the relative visibility of the noise is less than one. In 

these regrons the filter can pass more noise until its 

subJective visibility is equal to that in the spatially 

inactive regions. The noise variance becomes 

0" 
2 
(i , J ) = 0" ~ /V ( M k r ( i • J ) ). (3-37) 

The result is that the piecewise Kalman filtering equations 
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now adapt to the noise as observed by the human receiver. 

and according to (3-37) this variance depends nonlinearly on 

the state. Hence. even though we use the basic Kalman 

filter e~uations, the overall filter structure is piecewise 

and nonlinear. 

There is one significant problem with the utilization 

of the above procedure as it stands. Since it is assumed 

that only the distorted image is available for use, it is 

true and is indicated by Anderson and Netravali 1:2J, that 

there is a marked reduction in the ~uality of the restored 

image when the masking function is determined from an 

already noisy image. This problem is overcome in the 

present work by the development of a difference estimation 

operator to be used in the calculation of the slopes in the 

masking function. The difference estimation operator for 

the one-dimensional case is. 

DC X) = 1 

x+w.; 
t g<u> 1 

This operator windows lengths w 

X 

t g ( u). (3-38) 

and w JUSt before and 

after x. then averages g over the windows and takes the 

difference of the averages. This provides us with a more 

accurate measurement of the slope in a noisy image. For the 

two-dimensional case the directional difference estimation 

operators can be defined as. 

x 2 +w1 
t g<x 1 .u> 

u=x 2 

lC2 

1 t g<x 1 .u), (3-39) 
w 2 u=x2 -w 2 
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x1 +v1 

1 }': g ( u, X 2) (3-40) 
v 1 u=x1 

where w1 • w2 and v 1 • v 2 define the e~tents of the window in 

the vertical and horizontal direcions. respectively. In 

general this difference estimation operator can be used to 

determine the slope information in any direction. 

V. Determination of the Previous State Vector by a Nearest 

Neighbor Criterion 

The adaptive nonlinear Kalman-type filtering ~quations 

as derived in section III are given by, 

~p<i,JIJ> = [I - ~p< J) .s_~JApw p< i, J-11 J-1 > 

+ !.p(J)g{i, J), (3-41) 

!.p(J) 
T + (7'2]-1 I (3-42) = Pp<J>,S.p[£.pPp (J),S.p 

Pp<J+l) ApCI 
T T T 

(3-43) = - ~p<J>.S.plPp<J)Ap + BpRpBp. 

A problem can still exist in the implementation stage 

of the procedure. In each region, the Kalman filter is 

implemented so that the current pixel <i•J> is dependent on 

the state vector of pixel (i,J-1>. At the boundary between 

two regions this can lead to poor results. Pixel (i,J-1) 

may be in a.region characterized by significantly different 

statistical information. This is seen by the illustration 

in figure 3-2. 
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~ X X X X X 

1 X X + + 
Region 1 2 X X + + Region 2 

3 X X <t) + 

Consider the x's to denote pixels in one region and the +'s 

to denote pixels in a second region. If scanning is being 

done on row 3 and an estimate is being calculated for the 

circled pixel, the previous state for e is in the other 

reg ion. If the autocorrelation function for region 1 is 

significantly different than the autocorrelation function 

for region 2 this leads to a poor estimate for the state 

vector of e. In this case, it would be desirable to 

determine which one of its other neighbors would be better 

suited for the previous state. 

The second case where better previous state information 

ma~ be needed is in regions of high spatial activity. There 

are two possible explanations for this result. 

image to which one has access is a degraded image, 

Since the 

some of 

the significant edge information may be lost by the 

degradation process. It is possible that edges are smoothed 

to such an extent that these areas appear to have a lower 

amount of spatial activity than actually exists. Secondly, 



it is possible that in regions of high spatial activity an 

autocorrelation function of a different form than shown in 

<3-34) should be used. In either case. use of a nearest 

neighbor criterion to choose the best previous state 

improves the ~uality of the restored image. 
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It is proposed that under these two conditions one 

should consider all of a pixel's previously processed 

closest neighbors when determining which pixel should be 

used as its ~revious state. The neighborhood to which a 

pixel belongs is defined as those points surrounding the 

pixel encased by any m x n window. In each region the 

Kalman filter is implemented in whichever manner one 

chooses. i.e. left to right. top to bottom, etc. Note that 

the implemsntation procedure tends to bias the estimation in 

one direction, therefore it may be desirable to scan in the 

reverse direction in a second pass. For the purposes of 

this development it is assumed that the Kalman filter is 

implemented from left to right and the previous state for 

pixel (i, J) will be obtained from pixel (i, J-1>. However, 

in regions of high spatial activity or at the boundary of 

two regions, each pixel in the desired neighborhood will be 

checked. As an example choose a 3 x 3 neighborhood. It is 

shown in figure 3-3 that there 

neighborhood whose state vector 

estimated. 

are four pixels in this 

has previously been 
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X X X 

X + 

Figu-re 3-3 

Fo-r pixel + at (i, J) the fou-r nea-rest neighbo-rs for which 

state vecto-rs have been p-reviously calculated a-re (i, J-1), 

(i-1.J-1), <i-1, J>• and <i-1. J+l>. Note. that as shown in 

figure 3-4 it is possible fo-r a given pixel, denoted 1, to 

be he p-revious state fo-r the next pixel in row 2 and fo-r 

. 
pixel 2 in row 3. In this eventuality the two pat~s f-rom 1 

do not inte-rsect. In fact. it is cleaT' that this p-rocedu-re 

geneT'ates a t-ree of pixels whose ve-rtices a-re ce-rtain pixels 

and the edges a-re st-rings of subsets of the -remaining 

pixels. 

Line 

1 X X X X 

2 X X +1 + 

3 X X X +2 

Figure 3-4 
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In regions of high spatial activity, one expects to see 

relatively large differences in intensity values. If, ror 

one or the reasons previously mentioned. the autocorrelation 

information is not exact, the adaptive nonlinear Kalman-type 

filter may not be able to follow these changes in intensity. 

For this reason. it is desirable to choose that neighbor 

which most closely matches the pixel in intensity and 

spatial activity. 

The fundamental question now becomes one of how to 

choose the nearest neighbors for the previous state 

information. On what criterion is similarity measured from 

one pixel to another? The criterion functio~ used for the 

nearest neighbor decision will be based on the spatial 

activity information of the pixel's neighbors as well as the 

intensity levels. This is natural because the property with 

which each region was originally classified was determined 

by the amount or spatial activity. In addition. it is 

important to also maintain a consistency in the intensity 

levels. This is of considerable importance at the edge of a 

region where there is a significant difference between gray 

levels on either side of the edge. Any of a number of 

measures of similarity could be used to determine a pixel's 

nearest neighbor. Define the similarity measure as +, then 

all of the following are possible measures: 

cu. +1 <r<i.J>.r<i'•J'» = tf<i,J>- f<i'•J'>t 2 

+ IM
9
<i,J)- M

9
Ci'•J')J 2

• (3-45) 



(2). 

(3). v
3
(f(i, J),f(i', J')) = K2lf(i.JH1

9
Ci, J) 

- f(i'•J'>M 9 Ci'•J')I, 
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(3-46) 

(3-47) 

where M9 is the spatial activity at pixel (i, J) as given by 

eq_uation <3-4>. The first two functions i' are metric 

distance measures between two pixels. i- 1 is a measure of the 

distance in slope information and the intensity between two. 

pixels. while i- 2 is a measure of the distance with respect 

to slope only. i-
3 

is a measure of the difference in product 

of the slope information and intensity between two pixels. 

This is the measure chosen in the present work in the 

application of the nearest neighbor criterion. The measure 

i- 3 can be interpreted from the following point of view 

v
3 

is therefore a measure of the slope of the intensity 

function squared. This indicates that in regions of high 

intensity the slope information is more heavily weighted 

than in regions of low in~ensity. 

The resulting adaptive nonlinear Kalman-type filtering 

equations are 
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@.p<i. JIJ) = I: I - Jdp<J>£.~lApwp<i*• J*IJ*> 

·+- jdp(J)g{i. J), (3-49) 

jdp{J) = T 
Pp(J)£,pE£,pPp(J)£.p + <r2J-1, (3-50) 

PpCJ+l) = A p( I 
T T T 

- ~p(J)£,pJPp(J)Ap + BpRpBp' (3-51) 

for p ·= 1,2, ...• k and (i*• J*) is the position of the pixel 

that is used for the previous state information. A block 

diagra~ of the ~hole system is shown in figure 3-5. 

VI. Interpolation Procedure for Initial State Determination 

The final question that arises is, how can the 

estimates of the initial points of ~. region be improved if 

insufficient initial condition information is available? 

The problem is compounded if there are a great number of 

regions and no a priori information about the initial 

states. 

The solution proposed for improving the initial 

estimate in each region is by implementing a two-dimensional 

interpolation scheme for the initial points in a region. 

Consider the following model: 

(3-52) 

(3-53) 

It is assumed that scanning will be done across each ro~ 

~ith the observations g(i,m> fol' m = 0.1 •... , J given. The 



n(i, J) 

h 
g(i, J) 

Figure 3. 5 
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problem is to determine the best linear estimate o~ ~(i, J-p) 

~or p>O. Let us denote the estimate o~ ~(i,J-p) as 

w(i, J-piJ>. The problem o~ ~inding the best linear estimate 

o~ ~(i, J-p> is one o~ determining the set or constants 

a(i,m> ~or m = Q, 1 •... , J such that: 

(3-54) 

which minimize the cost ~unction: 

(3-55) 

~or any positive de~inite matrix G. 

into (3-55) the result is, 

I~ we substitute (3-54) 

El:~< i, J-p > 

(!!!,( i, J-p) 

a(i,m)g(i,m)]TQ 

a(i,m)g(i,m>J. (3-56) 

Minimization of (3-56) re~uires dif~erentiating <3-56) with 

respect to the constants a(i, J) and setting the resultant 

e~ual to zero. This yields the following e~uations. 

<3-57) 

ror m = Q,1 •... 1J. As in the one-dimensional case this 

e~uation may be interpreted as an orthogonality condition. 
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In a fashion comparable to that in two-dimensional Kalman 

filtering, we would like to find a recursive 

implementing the interpo:~tion scheme. 

formula for interpolation is given hy, 

techniq_ue for 

The recursive 

(3-58) 

In eq_uation (3-58)1 w<i~J-p+1) is the one-step 

prediction of ~Ci1 J-p+l) using the observations g<i~m>, 

m = 011 •... •J-p~ with ~Ci1 J-p+1) the optimal previous state, 

and ~(i, J-p+liJ) is the J-1 optimal interpolation given 

g ( i1 m) 1 m = 01 11 ... 1 J-p. We now need to find the necessarq 

constants K and L to satisfq (3-56). If ·we substitute 

<3-58> into <3-57) we get, 

EE~<i, J-p>- K w(i,J-p+llJ) 

- L ~(i, J-p+l)lgT(i~m> = 01 (3-59) 

for m = O,l, ... IJ. Since ~(i, J-p+liJ) is assumed to be the 

optimal .estimate of ~(J-p+l) given g(i, m>, m = O, 1, ... , J• 

then it must satisfy <3-57>. Now, substitute this into <3-

59L 

Et~<i, J-p> - K ~(i, J-p+l> 

- L w(i, J-p+l)JgT(i,m) = Q, (3-60) 

TOT' m = o,t •... IJ. In order to solve TOT' the coefficients K 
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and L consider the original system formulation in (3-53). 

If it is assumed that A is a nonsingular matrix <3-60) 

becomes: 

m = o, ... , J. (3-61) 

Now if we make a change of variables. and then 

add and subtract the term CA~- Klw<i,J-p+l) to <3-60) the 

result is, 

-1 - . -1 ,. E<CA - Kl~<l·~-p+1) + CA - K- LJ~(i,J-p+1) 

- A-
1 

BY..(i, J-p)}gT(i, m) = o, m = o, ... 1 J. (3-62) 

J 

Since we know that w<i, J-p+l) is the one-step 

prediction of ~(i,J-p+l) using observations g<i~m>, m = 

the optimal 

interpolation given g(i,m>~ m = 0 •... 1 J-p~ consider dividing 

<3-62) into two parts. One part form= o •...• J-p and the 

other part form= J-p+1, ... •J· First take m = 0 •... , J-p, 

-1 - . -1 ,. EC<A -K)~(ll J-p+l) + CA - K- LJ~Ci1 J-p+l) 

- A-
1

B,!:!.Ci, J-p>Jg T<i~m> = 01 m = 01 ... 1 J-p. (3-63) 

By definition @.<i~ J-p+l) is the optimal estimate given the 

observations g(i10)1 • .. I g(il J-p). Using the fac~ that 

Y..Ci1 J-p> is independent of g<i~m> form= 01l1 . .. 1J-P1 and 
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equation (3-57> results in the ~allowing relationship. 

A-
1

- K - L = 0. (3-64) 

Now consider <3-62) ~or m = J-p+1 •.. ·•J• 

EEA-
1 

- KJw(i, J-p+1) 

- A-1 By_(i, J-p)JgT(i,m) = 0. (3-65) 

First. take the case when m = J-p+l. From <3-65) and 

(3-53) I 

E{EA-1
- KJ~(i,J-p+1>- A-1 By_<i·J-p-)} 

•[CT!:!!,(i,J-p+l> + d n(i,J-p+l)JT = 0. (3-66) 

- A We know n is independent o~ !:!!. and !:!.• and since !:!!. is a linear 

combination o~ g<i.J>• 

E{tA-1 
- KJw(i, J-p+l)}!:!!,T(i, J-p+1)~ 

- E{tA-1 By_(i, J-p)~T(i, J-p+l)~J = 0. 

I:A -
1 

- KJP ( i, J-p+U £.. 

- EI:A-
1

By_<i•J-p)!:!!,T(i,J-p+l)£_J = 0. 

(3-67) 

(3-68) 

From <3-52) and knowing that !:!. is independent o~ !:!!. and 
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-1 
<tA - KJPCi, J-p+l) <3-69) 

Now take, 

(3-70) 

<3-70) is now satisfied when 

(3-71) 

If <3-70> is true then it will be shown that <3-56) 

will hold form= J-p+2, ...• J. From (3-70) and <3-71), 

Substituting <3-72) into (3-65) re~uires that, 

E{tA -
1 

BRBTP - 1 
( i, J-p+l )!!!_( i, J-p+l) 

- A-1 By_(i, J-p)}gT(i, J) = O, 

(3-72) 

(3-73) 

for m = J·-p+1, ... , J. Now choose any value of m such as k so 

that J-p+l < k < J. Then, 

(3-74) 
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If e~uation (3-53) is solved for ~<i.m) with initial 

conditions e~ual to ~Ci,J-p+l) the result is, 

for m> J-p+l, (3-75> 

where Fl: • J is some function of ,!!( i. m>. 

becomes. 

Therefore (3-73) 

and 

EI:BRBTP-1 (i, J-p+l)~(i, J-p+l)~T(i, J-p+1)NT~J 

- ECB~(i, J-p)~T(i, J-p+l)NT~J = 0. 

If we summarize these results, we have. 

wei, J-plp> = +<i·J-p>w<i, J-p+liJ> 

+ rA-1 
- +<i·J-p>Jw<i,J-p+l>. 

(3-76) 

(3-77) 

(3-78) 

It should be noted that during the recursive estimation 

procedure, estimates ~(J-p+l) were determined along with the 

values of P < i, J-p+l). It wi 11 be nee essary to store these 

v~lues to perform the interpolation. 
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VII. Conclusions 

The nonlinear adaptive recursive estimation procedure 

is implemented by the two-dimensional Kalman filtering 

equations represented by: 

m.p<i.J(J) = CI-~p(J)~~JAp~p<i*•J*lJ*) 

+ ~p(J)g(i, J), (3-80) 

~p(J) = T 
PpCJ)~pC~pPp(J)~p + 0'2J-1 I <3-81) 

Pp<J+l> 
T T T 

= ApCI - J!S P < J ) ~ pJ p P < J ) A P + BpRpBp (3-82) 

where <i*, J*) is used to denote the position of the pixel 

that is used for the previous state informatiori~ The 

coeffients A p, Bp. ~~ are cilosen to match the model of the 

obJect distribution function and the degradation as 
' 

described by the image formation system. These coefficients 

will be either constant or time-varying depending on the 

type of distortion present. The variance of the observation 

noise cr 2 is adapted at each pixel to account for the 

response of the human visual system to this noise. This 

causes the Kalman filtering equations to be nonlinear in 

each region. A nearest neighbor test is done prior to 

updating equation (3-80) to determine which of the 

neighbors of a pixel should be used for the previous state 

information. In addition, if insufficient knowledge of the 

initial state is known then the two-dimensional 

interpolation scheme is implemented to obtain this 
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information. 



CHAPTER 4 

EXPERIMENTAL RESULTS 

I. Problem Formulation 

The adaptive nonlinear Kalman-type filtering e~uations 

for two-dimensional signals are given by: 

wp<i. JIJ> = rr- ~p<J>~~JApwp<i*, J*IJ> 

+ ~p(J)g(i, J), 

, 

(4-1) 

(4-2) 

<4-3) 
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where p = 1, 2, ... , k. The coeTficient matrices Apr Bp , Rp 

and ~P are dependent on the structure of the image formation 

system being modeled and <i*' J*) represents the position of 

the pixel used for the previous state information. The 

general procedure for the implementation of this restoration 

is described below. 

An Adaptive Nonlinear Kalman-~ Filtering Algorithm 

Step 1. Calculate the masking function for 

each image using equation <3-19). 

Step 2. Divide the image into regions using the 

directional derivative information given by 



Step 3. 

Step 4. 

Step 5. 

(3-24) through <3-25). 

Determine the statistical information 

for each region according to <3-36). 

a. Horizontal correlation coefficient. <Xp. 

b. Vertical correlation coeffficient, ~P· 

Using this statistical information calculated 

in step 3 and known information about the point 

spread function determine the Kalman filtering 

coefficients Ap, Bp, ~~-

Implement the regional Kalman filtering scheme. 

a. At each line i, scan line i+1 to determine 

which state vector and error covariance 

matrices are to be saved and used as the 

previous state information in line i. This 

is done by using the nearest-neighbor 

criterion in equation <3~43). 

b. If there is a lack of initial condition 

information, implement the interpolation 

scheme on the initial points in each region. 
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The implementation of this adaptive nonlinear Kalman­

type filter was performed on a DEC PDP 11/55 computer. A 

GENISCO Color Graphics Display System, supported by this 

computer, was used to display the digitized images. All the 

images used were previously digitized and contained 256 

picture elements per line and 256 lines per frame. The data 

bases for the images in figure 4-1c and 4-ld were obtained 
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from Bell Laboratories, Holmdel, New Jersey. 

The form of the autocorrelation function on each region 

p is 

(4-4) 

for p = 1,2 •...• k. 

3 of the algorithm. 

Each Ap• ~hp, ~vp are determined in step 

The model for the distortion used was 

consistent with that of Aboutalib, et al. (1 J. The 

distortion is a model of the combination of horizontal 

translation and vertical oscillatory vibration. This is one 

of the many possible types of m~tion that occur in imaging 

systems. The horizontal translation is assumed to have an 

extent of H pixels and the vertical vibration affects V 

1 i nes. The model for this type of distortion is given by 

H-1 V 

g<i.J) = E E h<k,m)f(i-k,J-m) + n<i•J>- <4-5) 
k=O m=O 

The values of V and H used in the simulations are H = 5 and 

v = 2. It is also assumed that h<k.m) = 1 fork= 0.1 and m 

= Ot . .. I 5. E~uation <4-5) now becomes 

1 5 
gCi, J) = E E f<i-k, J-m) + nCi, J). (4-6) 

k=O m=O 

The noise is white. Gaussian with a mean of zero and a 

standard deviation of 14. 142. 
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Recall that the dirrerence equations ror the image 

rormation s~stem are given by 

..... 
!,.(i, J+l) = A!,. ( i, J) + B,a ( i I J)' (4-7) 

<4-8) 

,.... .....,. ,...T "'T 
The coefficient matrices A. a. s I ~ are determined from 

the equation <4-6) 

,...,T 
£.. = 

0 -1 -1 -1 -1 

0 0 0 0 0 

..... 
A = 0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

B -1 0 0 

-1 0 0 

[1 o o o o] "'T 
and !!. = [1 1]. 

The difference equations that represent the obJect 

distribution function formation are: 

!.pCi, J+1) = Gp,!.p(i, J) + SpY.p<i, J>• 

f.Ci, J) = Tp!.p<i, J>• 

(4-9) 

(4-10) 

for p = 1, 2, ... , k. The resulting coefricient matrices G , 
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S , T are determined from the values of Ap• >..vp in 

equation (4-4>. 

G = exp<->..hp>' (4-11) 

s = c2-xhpJ (4-12) 

T ..... 
TpTp = H, (4-13) 

,..,. 
the elements of H deteT'mined by 

The composite model dynamic 

eq,uati ons a't'e, 

(4-14> 

(4-15) 

p = 1, 2, ... , k. The coefficients for these composite 

eq,uations aT'e calculated fT'om the following relationships 

Ap 
= [A B Tp] Bp = [o ] 

0 Gp Sp 

(4-16) 

The coefficients in <4-16) are from equations <4-9), <4-10), 

<4-14), and <4-15). 

In the masking function given by eq,uation <3-2>, the 

constant C = 0.35 and k = r = 1. The resulting form of the 

masking function is, 
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i+1 J+1 IICi, J)-{p, q,>ll h 

I: I: 0. 35 C I m ivi I+ I m i i I J. 

p=i-1 ~t=J-1 

(4-17) 

Several different classes of images were chosen to test 

the validity of the proposed image restoration scheme. The 

representative of the first class of images is a simple 

diagonal two-tone image shown in figure 4-la. Figure 4-lb 

is the same image zoomed up by a factor of four· to allow 

closer examination of the effect of the distortion. The 

zoom was performed on the upper left corner of figure 4-la. 

The second class of images is represented by the woman shown 

in figure 4-lc. The final class is that of w~itten text and 

is exemplified in figure 4-ld. 

<a> 
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(b) 

(i:) 
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sea 

(d) 

Figul'e 4-1. Original pictures. The ol'iginal pictures al'e 
256x256 al'l'ays of discl'ete points with each pixel lineal'ly 
q_uant i zed to 8 bits. The val'iance of each image is; 
<a> ~2 = 2232~ <c> ~2 = 2694, and (d) ~2 = 685. 

The images of figure 4-1 were degraded using the 

distortion described in equation <4-6> and the noise added 

was white, Gaussian noise with a standard deviation of 

14. 142. The degraded images are shown in figures 4-2a, 

4-2b, 4-2c, and 4-2d. Again, the second image in figure 4-2 
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is zoomed by a racto~ or rou~. The deg~adation is clearly 

seen in the zoomed po~tion of the image. 

(a) 
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(b) 

<c> 



·~--

-· ·~.-~.0)~ 
-~ ... ~ .. 111¥ .. •• • .......- ~ ~ 

~_..~· .. ·m·· .. . •-y.-- ~-..... • .. ~ . -\ . . 
·~' .. ,.. .. . ...... . . . . 
. .-,... ~ 

~ . 

,~:~· 
~ ..... -... __ . ·:.. 

(d) 
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Figure 4-2. Images degraded with motion blur plus additive 
white noise (412 = 200>. 

A second type of degradation is considered in order to 

make another comparison with previously published results. 

This degraded image is formed by simply adding white, 

Gaussian noise to the original image. The noise was again 

assumed to have zero mean a~d a standard deviation of 

14. 142. The result is shown in figure 4-3. 



Figure 4-3. 
200). 
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Image degraded ~ith additive ~hite noise (u2 = 

The masking function is determined for each of the 

images in figure 4-2 according to step 1 of the algorithm. 

The values for k and r, the coefficients that determine the 

size of the neighborhood ~ere both set equal to one. The 

masking values are then used according to equation <3-20) to 

determine the visibility function, ~hich in turn is used to 

~eight the variance of the noise in the Kalman filtering 

equations. An e~am~le of the masking function for figure 4-

lb is shown in figure 4-4. 
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Figure 4.4. Masking function for figure 4-2c with k=r=l. 

Each or the images is divided into regions in step 2 or 

the algorithm. All of the images were divided into two 

regions in this step. In addition, figure 4-lb was ~lso 

tested for the case in which it is divided into five 

regions. An example of the results or dividing figure 4-1c 

into two regions is shown in figure 4-5. 
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Figure 4-5. Figure 4-2d divided into t~o regions. 

The results of determining the statistical informaticn 

in step 3 of the algo~ithm are as follo~s: 

Figut"e 4-la: 

Regions = 2 

Figure 4-lc: 

Regions = 5 

R1 = 1848.7exp<-.12171-. 1221~1), 

R2 = 1990. lexp<-.436171- .4261~1>. 

R1 = 2682. lexp<-. 1081TI 

R2 = 314.6exp<-. 19941TI 

. 16091 (J' I ) I 

. 31 06 I (J' I ) I 
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R3 = 393.53exp<-.47031TI . 3826 I 0" I ) I 

R4 = 919.45exp<-.65121TI . 6084 I 0" I ) I 

Rs = 1221. 7exp<-.7241TI - . 6961 0" I) I 

Regions = 2 R1 = 2667.9exp<-.09731TI - .0191l<TJ), 

R2 = 549.98exp<-.6121TI - . 39541-<TI >. 

Figure 4-ld: R1 = 673.0exp(-. 1011TI -. 1271o-l>~ 

Regions = 2 R2 -· 795. 25exp<-. 8561TI - . 70121<TI ). 

From these autocorrelation functions the appropriate 

values ~ere determined for the coefficient matrices Apr Bp, 

£~ . The actual filtering procedure is now implemented and 

the results are presented in the next section. 

II. Results 

In order to compare the results of the adaptive 

nonlinear Kalman-type filtering algorithm ~ith the existing 

state of the art, the results at several different stages or 

the filtering process are presented. A calculation or the 

average cummulative mean s~uare error bet~een the original 

image and the restored image was determined to give some 

' quantitative assessment of the improvements. The error ~as 

determined as follows: 

Er-ro-r = € 2 
= 

N-1 M-1 
1 E E (4-17) 

NM i=O J=O 
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where N is e~ual to the arra~ size in the horizontal 

direction and M is the array size in the vertical direction. 

For these images, N = M = 256. 

Figure 4-6 shows the first stage in the restoration 

procedure. This is the im~lementation of the Aboutalib. et 

al. t2J algorithm. It should be noted .that this figure 

demonstrates two of the problems that exist when an image 

has large differences in intensity levels. The filter does 

not respond as ~uickly as the intensity levels change and 

therefore the edges are not restored to their original 

sharpness. In addition, when there is a sudden change in 

intensity or there are poor initial conditions. a ringing is 

present while the filter attempts to 

conditions. The error that is 

image is 3570. 5. 

present 

adapt to the new 

in this restored 

Figure 4-7 is the result 

procedure the adJUStment in the 

of adding to the first 

noise variance via the 

visibility function. As is expected the edges are sharper 

than those of figure 4-6. The error, however. has only been 

reduced. It is e~ual to 1994.55. 
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Figure 4-6. Restored image of figure 4-2c using the 
Aboutalib. et al. 1:1] algorithm. 

Figure 4-7. Restored image of figure 4-2c using the 
visibility function. 
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The nonlinear adaptive Kalman-~~pP. f~ltering algorithm 

is no~ implemented wi~h the number of regions equal to two 

and the result is shown in figure 4-8. The image is 

improved and the overall error is reduced considerably to 

795.24. The edges in figure 4-7 are still not as crisp as 

one might hope for. An improvement is made by adJusting the 

number of regions to a more nearly optimal number for this 

image. The result of changing the number of regions from 

two to five is shown in Figure 4-9. The edges in this 

figure are crisper and the restored image does match the 

original more closely as the error is now e~ual to 653.2. 

Figure 4-8. Restored image of figure 4-2c using the 
nonlinear adaptive Kalman-type filtering algorithm with the 
number of regions equal to two. 
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Figure 4-9. Restored image o~ ~igure 4-2c using using the 
ne~ algorithm ~ith the number of regions e~ual to ~ive. 

The results of restoring ~igure 4-ld with the Abautalib 

et al. [1] algorithm results in figure 4-10. The error is 

1409. 2. Now implementing the ne~ restoration scheme an this 

image yields a restored image with an error e~ual to 725.95. 

The restored image is shown in figure 4-11. 



... tiiJ:,· .. 
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Figure 4-10. Restored image or rigure 4-2d using the 
Aboutalib, et al. r1J algorithm. 

---

•·' 

·rttspon.clih ·. ··.··•··.· .. 
a given tr 
hosen dot sea 

Figure 4-11. Restored- image or rigure 4-2d using the new 
algorithm with the number or regions e~ual to two. 



Finally, to get a better idea of what is actually 

resulting in the restored image at an edge, consider figure 

4-12a and 4-12b. Figure 4-12a is the result of applying the 

nonlinear adaptive Kalman filtering algorithm to the 

distorted image in figure 4-2a. If we examine the zoomed 

configuration, it is seen that the edge has been improved, 

although it is still not perfect. 

is 100.87. 

(a) 

The error for this case 
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(b) 

Figure4-12. Restored image a~ ~igure 

algorithm with regions e~ual to two. 
a ~actor o~ four. 
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4-2a using the new 
Pa~t (b) is zoomed by 

The final compa~ison was done on the ~esults a~ 

restoring figu~e 4-3. This is the case where the image was 

deg~aded only with additive noise. Figure 4-13 shows the 

result of applying the restoring filter to figu~e 4-3 if it 

includes JUSt th~ adaptatibn to the noise via the visibility 

function. The result is fairly noisy and the edges a~e 

somewhat blurred. The e~~or is 3534.5. The result of 
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~esto~ing this same image with the adaptive nonlinea~ 

Kalman-type filte~ is showrl in figu~e 4-14. The image was 

divided into five ~egions fa~ this test and the ~esulting 

e~~o~ was 837.01. 

Figu~e 4-13. Resto~ed image o~ ~igu~e 4-3 with the 
visiqility ~unction. 
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Figure 4-14. Restored image of figure 4-3 with the new 
algorithem and the number of regions e,ual to five. 
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CHAPTER 5 

CONCLUDING REMARKS 

A new recursive technique is 

dissertation for the restoration of 

presented in this 

images degraded by 

general image formation distortions and additive white 

noise. A vector difference e~uation model is used to 

represent the degradation in the image formation system. 

This type of description is easily adapted to a variety of 

applications where degradation occurs. The difference 

e~uation coefficient matrices (A, B, ~T, ~TJ can be either 

constant or space-variant. Difference e~uation models are 

also used to characterize the obJect plane distribution 

function. The obJect plane is partitioned into regions 

based on the amount of spatial activity in the image. 

It is shown that each of the regions can be uniquely 

characterized by the second order statistics of the region. 

The obJeCt plane distribution function fp(i,J) for the pth 

region 

impulse 

function 

is generated at the output of a linear system whose 

response is determined by the autocorrelation 

characterizing the region. The input to this 

system is a Gaussian. white noise source. 

The above two difference e~uation models are combined 

to form a composite system of difference equations for each 

region.· Recursive estimation techni~ues are applied to 

these composite difference e~uation models and the result is 
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a nonlineal' adaptive Kalman-type filtel' desct'ibed by the 
I 

equations 

!!!p(i, JIJ) = CI - ap(J),S.pJAp!!!p(i*• J*IJ*) 

+ ap<J>g<i, J), (5-1) 

~p( J) = PpCJ)~pC.s,pPp(J)~p + a J (5-:2) 

PpCJ+l> = ApCI - ap<J>~pJPpCJ)Ap + BpRpBp• (5-3) 

-
rot' p = 1.2 •...• k, ~ Ci, JIJ) is the state vectol'• and Ap. 

Rp I .s,~ at'e the coefficient matl'ices specified by the 

image fot'mation system degl'adation and the statistics of the 

input obJect plana distl'ibution function. The val'iance of 

the additive noise is T'epl'esented by a2 and Pp(J) is the 

estimation el'T'OT' covat'iance matl'ix. 

If the images to be t'estot'ed al'e to ~e used by human 

' obsel'vet's it is desit'able to account rot' the human visual 

system as pal't of the T'eceivet' charactel'istics. This is 

accomplished by weighting the statistics of the additive 

white noise by a visibility function. The visibility 

function is a subJective measure of the visibility of 

additive noise in an image by the human visual system. The 

vat'iance of the obset'vation noise a2 is adJusted at each 

pixel dut'ing the implementation of the filtel' making the 

scheme nonlineal' in each 'region. 

Two additional features at'e added to the adaptive 

nonlineal' Kalman-type filter to account fol' inadequacies in 

the implementation phase. It is shown that it is not always 



desirable to choose the state vector of pixel (i,J-1) as the 

previous state vector for pixel (i, J). A nearest neighbor 

criterion is proposed to determine which one of the state 

vectors of a previously processed pixel should be used as 

the previous state vector. 

Finally, if there is insufficient information about the 

initial conditions for the state vector ~p<i.J) or the error 

covariance matrix Pp(J), an interpolation scheme is proposed 

to improve the estimates of the first points in a region. 

In summary, the adaptive nonlinear Kalman-type filtering 

scheme developed in the present work offers four primary 

improvements: 

(1). The use of the visibility function to 

incorporate the properties of the human visual 

system as receiver characteristics. 

(2). Partitioning of the image to allow for more 

accurate modeling of the second order statistics 

of the obJect plane distribution function. 

(3). A nearest neighbor algorithm is utilized 

to determine the best previous state at the 

boundaries and in regions of high spatial 

activity. 

(4). An interpolation scheme is provided for the 

improvement of initial condition information. 
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Implementation of this adaptive nonlinear Kalman-type 

filtering scheme was successful. Three types of images were 

used in the testing procedure. a simple geometric figur~, 
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the face of a woman~ and the image of a w~itten text. 

The cumulative mean sq,ua~e e~~o~, S, calculated fo~ the 

images ~esto~ed·b~ the adaptive nonlinea~ Kalman-t~pe filte~ 

showed imp~ovement ove~ the images ~esto~ed b~ the p~evious 

~ecu~sive ~eto~ation schemes. Emplo~ing such an algo~ithm 

on the deg~aded image of figu~e 4-2c ~ields a value or 59.25 

pe~ pixel TO~ The ~esto~ation of this same image 

using the new adaptive nonlinea~ Kalman-type filte~ with the 

numbe~ of ~egions eq,ual to two yields 28.2 pe~ pixel fo~ 

e. Changing the number of ~egions to five ~educed the 

e~~o~ to 25. 5 pe~ pixel TO~ e. 
The ~esult of ~esto~ing the image of w~itten text in 

figu~e 4-2d with the new filte~ is also encou~aging; the 

e~~o~ is 26.9 pe~ pixel. The lowest e~~o~ is seen in the 

~esto~ed image of the simple geomet~ic image in figu~e 4-

12a. The e~~o~ was onl~ 10 per pixel. This is to be 

expected as there is ve~~ little spatial activity in the 

image. 

It is appa~ent f~om these ~esults that this method of 

image ~esto~ation p~ovides encouraging ~esults. It also 

p~oduces a gene~al fo~mulation so that it is easily adapted 

to a large variety of images. 
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