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ABSTRACT

ADAPTIVE NONLINEAR IMAGE RESTORATION BY A

MODIFIED KALMAN FILTERING APPROACH
Sarah Ann Rajala

An adaptive nonlinear Kalman—type filter is presented
in this dissertation for the restoration of two-dimensiaonal
images degraded by general image formation system
degradations and additive white noise. A vector difference
equation model 1is wused to model the dégradation process.
The object plane distribution function is partitioned into
disjoint regions based on the amount of spatial activity in
the image, and difference equation models are wused <to
characterize the object plane distribution function.

It is shown that each of the regions can be uniquaely
characterized by their second order statistics. The
avtocorrelation function for each region is then used to
determine the coefficients of the difference equation model
for each region. Recursive estimation technigques are
applied to a composite difference equation model.

I+ the images are to be restored for human viewing it
is desirable to account for the roesponse of the human visual
system as part of the receiver characteristics. This is

done by weighting the variance ¢2 of the additive noise by a



visibility function, where +the visibility function is a
sub jective measure of the visibility of additive noise in an
image by the human visual system. As a consequence. the

resuvlting effective variance depends nonlinearly on the

state.

Two additional features are added to the new
restaration filter to solve problems arising in the
implementation phase. A nearest neighbaor algorithm is

praposed for the selection of a previously processed pixel
for praoviding the previous state vector for the state of
pixel (i, ). Secondly, a two—dimensional interpﬁlatiun
scheme 1is propased to improve the estimates of the initial

states for each region.
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CHAPTER 1
INTRODUCTION
I. Preliminary Remarks

Image restoration. image enhancement, pictorial pattern
recggnition, and encoding of images +{for storage oar
transmission are some of the areas included in the field of
image procassing. Each of these areas is concerned with
different aspects and properties of an image, although a
number of the same general techniques are uvtilized by more
than one of these areas. A new technique is developed 1in
this dissertation which lends itself primarily to the areas
of restoration and enhancement. It is concerned with the
improvement of image quality.

It is well known that no imaging system gives images af
perfect quality, and it is hecause of this problem that the
areas of restoration and enhancement have developed. There
is a need ¢tao improve the quality of the images that are
received fraom these systems.

The madel generally used to represent a digiftal image

formation system (Hunt E22]1) appears in figure 1.1. The

system response 1is,

g(i, 3) = st{h(i, pI#f(i, 3)¥ + £,n,¢i, J) + njz(i, g), (1-1}



n i )

¥¢e) ,\Z
n,(i, 3}
(i, 3}
'-———-"i% h{i, j) L, s{b}
b(ilJ) ‘(ilJ) 3
gli, g) = vli, g}y + nali, gy + n,{i, )
(i, 3} = sth(i, j)=*f{i, J)) n,y(i, y)
£(i, J} — Object plane radiant energy distribution
h{(i, §) — Image formation systeam
b¢(i, j} — Image plane radiant energy distribution
s{e} — Detector response (generally nonlinear)
(i, J} - Response variable of the detector
€1, €2 - Gain parameters
¥(+}) — Feed forward function to account for

signal dependent noise
n,.n; — Noise pracesses
nj - Signal dependent noise
g(i, j} - Response of the entire system

Figure 1.1



for i = 0,1,...,M-1 and j = G, 1,...,N-1, the extemnt of the
two—-dimensional image. Here, g(i., }) is the recorded image
distribution, s{*} is the detector response function, hie, o)
is the image formation system recponse. F{s,*) is the object
plane radiant enerqy distribution, and the symbol %*
represents the operation of convolution. The remaining two
functions, ny(+,*} and ni(e+, *) are noise processes; na(e,*)
is noise generated independently of the signal scaled by the
gain parameter £,, and njz(+, ) rTepresents signal dependent
noise.

In the general case:, the image formation system bh can
represent any number of passible distortions. As indicated
by its name. the original intention was for h to represent
the distortion caused in imaging systems., i.e. photographic
equipment. It has since heen generalized ta include any
distortion that is modeled by a linear system. This may
include distortions from caordinate transformations:. linear
motion blur, or air turbulence.

The image formation system in figure 1.1 can be
simplified in many situations. In general, it 1is assumed
that the recording system respanse, s{*}» can bhe
approximated by a linear function. Actually this is frue
only +for 1low cantrast images. In any event. mast of the
restoration and enhancement techniques have been develoaped
under the assumption that s{«} is linear and in fact s=1.
If an image is of high contrast, the resulting nonlinearity

can be accounted for by a zero-memaory nonlinear #ilter.



Another simplification is that only signal independent naise
is present in the system. In +$igure 1.1 we would oanly
consider the noise source nyli. y). In addition. if the
system response is space invariant we can utilize certain
properties from matrix theory for easier manipulation. For
example, i# the image formation system is linear space-
invariant then [Hl has block Toeplitz structure. We will
represent [Hl for this case by [Hgyl. Further reductions in
the computational effort can then be made if C[Hgl can be
approximated by &a circulant, when it is applicable. Once
represented in terms of a circulant, the discrete Fourier
transform can be wutilized. On this aspect, much wark has
been done by Hunt £211, Ekstrom E81, and Gray f153.

In the area of image pracessing good reviews and
bibliographies are provided by Huang, Schreiber and Tretiak
L203; Hunt [221; Andrews and Hunt [41; and Rosenfeld and Kak
£481. Several of the more pertinent techniques in both
image enhancement and restoration will be reviewed in
chapter 2 for understanding and comparison with the new
technique proposed.

A considerable amount of work has been done on
techniques in enhancement. The tapic af geaometrical
distortions has been presented by Johnston and Raosenfeld
{24681. Rgetling [471 has worked on noise suppression, while
Martelli and Montanari {341 have caonsidered the problem of
optimal smoothing, with application to fingerprints. Troy.,

Deutsch and Rasenfeld [57]1 have performed gray—scale



manipulations for texture analysis.

One of the basic approaches to image restoration has
been the application of Wisner filtering with work done by
Helstram [18]1] and Slepian [531. Sometime later, an
extension of this basic approach was made to what is known
as constrained least squares filtering. This has praved to
be a flexible appraach to image vrestaration. A considerable
effort has been applied ¢to .this problem. It was first
formulated by Phillips [42]1 and refined by Twamey L5811, £391
in the one dimensiaonal case. The actual implementation in
two dimensions was accomplished by MacAdam [33]1 and by Hunt
[211. Ancther similar techwnique of interest is homamarphic
image vestoration. Oppenheim, Schafer and Stockham [411 did
some .oF the original waork on one—dimensional signals.
Later, Cole [71 and Cannon L[&]1 applied homomorphic filtering
to images.

More recently, recursive estimation techniques have
bean applied to the area of image restoration in hopes af
obtaining a better image restoration technique. Research
has been dane by Nahi and Assefi [371, Nahi and Franco [381,
Aboutalib et al. [11, Wegidis ©&01, and Jain [291. These
tachniques show promise in the development of an optimal

image restoration filter.

II. Summary of the Results

This dissertation describes the usevoF the +fundamental



theory of recursive least squares estimation as the basis
+ovr the development of an adaptive nonlinear Kalman—type
filter for restoration of two-dimensional signals. A number
of the currently existing problems are solved in an attempt
to design a more nearly optimal restoration scheme. It is
shown that recursive estimation provides a flexible approach
to the problem of image restoration and admits a more
accurate method for the description of the image model.

In an attempt to find this better restoration procedure
it is necessary to consider any problems that currently
exist and attempt to solve these in a manner that leads to
the desired result. One of the fundamental problems with
the existing image model wused for the implementation of
recursive estimation in two dimensiens is that the object
plane distribution is considered to be a single wide—-sense
stationary Markov process. This often leads to
unsatisfactory restoration results. It is shown that a more
accurate description of the characteristics of the object
plane, i.e. the original undistorted object, is required.
The model of the object plane distribution function is
generalized to the case where it is considerd to be a wide-
sense stationary process on each of a set of disjoint
regioﬁs of the object distribution.

Another problem, originally pointed out by Netravali
and Prasada £391 is the 1lack of use of receiver
characteristics in the development of maost restoration

schemes. Specifically, in the case in which images are tao



be utilized by human viewers the restoration scheme is
improved by +taking advantage of the characteristics af the
human visual system. A method is devised tao wutilize such
receiver characteristics in the design of a restaoration

filter for the system described by,

gCis ) = hCi, PI#ECL, §) + nis ). (1-2)

This is accomplished by weighting the contvribution of the
additive noaise bg' a visibility function. This visibility
function is based on the ability of the human visual system
to perceive random noise in an image. It is assumed that &
is generated by a linear system b which has as its input a
white noise source. The system impulse rtesponse b is
determined such that the statistics of £ are generated at
the output.

A difference equation model is used to describe the
image farmation system represented by equation (1-2). This
model is designed to realize the distortion point spread
function h and account for the statistical nature af the
ob ject distribution function £ in each of the regions. The
additive noise is assumed ¢o be Gaussian with zerpo mean and
a known variance. The resulting set of difference equations

far the kth region is:



Xli, y+1) Aklk(i'\l) + Bruk(i., g, (1-3)

gli, g} = clx (i, §) + nli. ), (1-4)
kX k

where the noise process n{(+*) is such that ELn(i, j}l1 = O and
EfnCiqs g4InCisz, J231 = c2a(iq—ijla(yy—J2). The superscript
T is wused to denote the transpose of a matrix, and a
Tepresents the Kronecker delta function. The dimension of
the state vector x is specified by the minimum order of the
system distortion h and the system b. The input noise source
vector yy (i, j) generates F (i, 3}, and is such~ that
ECux(i, 321 = Q and
ECu,liqsr JlU8yCigs y22T> = Reali;—=ijzlaly,—y,). The restoratian
filter that results from this madel is realized in a
recursive fashion.

In addition +to <+the theoretical formulation of this
generalized adaptive nonlinear Kalman—-type filtering scheme,
a new implementation is proposed teo further optimize the
restoration procedure. If the amount of spatial activity in
the i1image is great, the recursive estimation scheme may not
be able to rtespond as quickly as the image changes in
intensity level. In order to speed up the response of the
filter in regions where the spatial activity is greater than
the response of the filter, a reinterpretation of the
definition of the previous state in ftwo-dimensional
recursive estimati;n schemes is given. It is proposed that
the previous state of pixel (i, J) may not be best specified

by pixel (i, j—~1). A nearest neighbor criterion is wutilized



to determine which of ¢the pixels in the neighborhood of the
pixel is really the best previous state. These developments
are presented in Chapter 3.

Chapter 4 is devoted to a description of the algorithm
developed and of the implementation procedure wused in
testing this restoration method:, with a presentation of the
results. Finally., Chapter 5 will present the conclusions of

this deQelopment and comparisons with existing techniques,



CHAPTER 2
HISTORICAL REVIEW

I. Introduction

This chapter presents a review of the presently
available techniques in image enhancement and rtestoration.
The emphasis in this discussion is on those techniques which
are directly applicable to the development of the research
developed in this dissertation. Section II describes the
general background knowledge in image enhancement. Much of
this material has led to a mare .complete understanding of
the image restoration problem. The third sectian is on the
techniques af image vestoration. Many of the fundamental
techniques will be reviewed briefly for general infarmation
and comparison. The techniques which are fundamental +to
this thesis will be developed in detail.

Prior %o discussing the details of the enhancement and
restoration techniques, it is necessary to understand the
dif?eren?e between these twao approaches to image processing.
Image restoration improves +the quality of an image by
compensating for the effects of a specific known ot
estimated degradation process. Image enhancement improves
image quality without actval knowledge of the degradation
process involved. Its objective is to improve the quality

of the image with respect to a predetermined standard.
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II. Image Enhancement

Initially, a standard must be established +#or measuring
the quality of the image being processed. The quality of an
image is a somewhat subjective measure of the accuracy +to
which certain defined information in the image is measured.
The definition of quality in a given set of images is
dependent on the purpose for which they are intended. A
picture may be needed for precise measurements or it may be
used for casval human viewing. The degree and type of
degradations that would be objectionable in one case may not
be in the other. Twe standards commonly used for measuring
objective image quality are resolution and acutance.

Resolution of an image describes <the accuracy with
which one can distinguish small, clase objects in the image.
Acutance is a measure indicating the average steepness of an
edge in the output image that results from a perfect step in
the input image. DBoth resclution and acutance are commonly
utilized 1in determining the degree to which the enhancement
operations are successful. More details of these and other
measures of image quality can be found in a paper bg‘Levi
£301.

There are many different operations used to enhance the
quality of an image. Four of the most common operations will
be discussed briefly. The first operation 1is gray scale
madification, (Troy. Deutsch. and Rosenfeld [371). There

are twa approaches used for the modification of the gray

it



scale of an image. One is gray scale correction and 1t is
used to modify gray levels of the individual picture points
or pixels, to compensate +for uneven exposure when the
picture was originally recorded.

The second O approach to modification is gray scale
transformation. This method changes the gray scale in a
uniform way throughout the picture, usually to increase the
contrast. The method is performed by mapping from the given

gray scale z to a transformed gray scale 2/,

z = t(z). (2-11

An  impartant special case of gray scale transfaormation is
histogram modification which assigns a specified
distribution of gray levels to a picture. One example where
histogram modification is used is quantization of a picture
into K discrete levels in such a way as ta minimize
quantization error, The K 1levels should be spaced close
together in heavily populated regions and further apart in
sparse regions.

Operation twao is known as geometric carvrection.
Johnston and Rosenfeld [261; Sawchuk [50]; and O'Handley and
Green [401]. have considered wvarious ¢types of distortion
including perspective distortion, +¢the result of taking a
picture from an oblique viewing angle, and pincushion or
barrel distortion, the distortion duve to limitations of

optical imaging or electronic scanning.

12



An arbitrary geometric distortion can be defined by
equations that relate the wundistorted coordinate system
(x,y) to the distorted coordinate system (x',y’). In ¢the

genevral farm they are.

x° = b (x,y) and gy’ =b,y(x,y4). (2-2)

The third type aof operation +for the enhancement of

13

images is sharpening, and Stockham [54]1 and O‘Handley and -

Green [40]1 have worked on this method. Blurring is
genetrally cavsed by an averaging or integrating operation,
so one might expect that sharpening could be done by
differential operations. Several methods have been
developed to compensate for the problem of blurring. These
include the use of the gradient, the Laplacian., and high
emphasis filtering, all of which compensate for the effects
of averaging by differentiating and/or emphasizing the high
spatial frequency content (Goldmark and Hollywocd [13] and
Kovasznay and Jaseph L[291).

Finally, the operation of smoothing is utilized for the
Temogval of unwanted noise (Martelli and Montanari [34]). O+
course, one must be careful with smoothing not to blur the
image. A general approach to smoothing is to define a cost
function ¢ for evaluating the various possible smeothings £
of a given noisy picture g. The cost function g depends on
both the irregularities of £ and the discrepancy between ¢

and g. Noise rtemoval <can be taken care of in several



different ways: and the method is generally dependent on the

type of noise present.

III. Image Restouration

The objective in image restoration is to compensate for
a known or estimated distortion causing an image to be
degraded. That is, an attempt 1is made to determine the
original object distribution f given the recorded image g
and the point spread function (PSF) h. This entails
designing a ¢filter to invert the distortion. There have
been two general categories of techniques used in designing
image restoration filtars. One categary is based entirely
on the knowledge of the distortion and assumptiaons abaut the
image formation system. Nn attention is given tao the
resolutian of the image. The second category is based on
the fact that the image will be wused for human viewing and
resolution of +the image should be considered. There are
many methods available for restoration of the type discussed
in category one. However, in category <two, only one
approach has been rteported for the restoration of images.
although these same ideas have been wutilized to a great
extent for image coding problems.

In ¢the first catagory of restoration methods there are
two basic subgroups of techniques. One |is that of
noniterative restoration techniques and the other that of

linear algebraic technigques. The noniterative restoration



techniques are governed by the following assumptioans: (1)
There exists only signal independeni naise. (2) A linear
approximation can be made foar the nonlinear detector s.
This is known as a low contrast assumptiaon, and iIin fact
without 1lass of generality it can be assumed that s=1. (3
It is assumed that the systems are space—invariant and
therefore Fourier techniques can be applied. (4 It is
assumed that when a segment is cut away from a larger image
the Testoration effects can be localized, i.e. the border
effects can be neglected.

Thevre are three specific methaods in this category which
will be discussed: least squares +filtering: aminimum—-mean-—
square—errar ¢#iltering: and haomomorphic +$iltering. The

general model is

g = CHBT]F + n, (2-3)

where g, £, and n are lexicographically ordered vectors, and
LHl is the matrix resulfting from the point spread function.
Invokiing least—-squares restoration is equivalent ¢to
minimizing the norm of the noise term n. The rationale
behind ¢this is that, in the absence of any specific
knowledge about n, a solution is sought which is consistent
with having n as small as possible. The resulting least

squares estimate is,

+ = CHBT] g. (2-4}

iS5



There are two immediate prohlems with this technigque.
One is the ill-conditioned nature of the PSF matrix. We may
not be able to invert L[Hg;l. The second problem, also a
result of this ill—-conditionedness, is that inverting C[Hg{l
can really amplify the noise term: yet if L[Hgtl is not ill-
conditioned this is one of the most straightforward methods
for restoring an image.

In minimum mean square error (MMSE) filtering a
solution is found to minimize <+the difference between the

eriginal object distribution + and the vrestored object

distribution +. lLet the total errar of estimation. & be
defined by
e =f~ £ (2-5)

The MMSE criterion tequires the total error of estimation to
be a minimum over the entire ensemble of all the possible
images. Since this error, &, could be a positive or negative
quantity, consider the positive quantity £Te. The criterion
then is +to minimize <+¢the expected value of £T¢. Assuming

that a linear estimate exists, i.e. £ = [L1g, the following

MMSE restoration filter results:

[L] = [R,1CHgr1  ([HgILR;1lHg{1T + R 1T . (2-&})

One drawback occurs in the low signal to noise ratio

(SNR) cases, when the résult is not good. Several reasons

14



are paossible for the inadequacy of this filter at laow SNR.
The MMSE estimate is based on linear assumptians, even
thaugh nanlinearities exist in the recording and human
visual systems. Secondly, MMSE is not the criterian the
human visval system wvuses for low noise situvations: MMSE
appears much too smooth. Finally., MMSE assumes a stationary
model, which is not sufficient to model the degradation.
Homomorphic +Ffiltering was originally proposed by
Stockham, Oppenheim: and Schafer [41] in the area of digital
signal processing. It was later extented to two—dimensional
applications by Cannon [&]. This technique maps the image
signal from the original space +to another space with
desirahle properties for easier manipulation. The
assumptions and model remain the same for this approach.
The criterion. however 1is different. Power spectrum
equalization is uvtilized here. This means a linear operator
L] must be found, such that when this [L] operates on g,
the result is an image £ with a power spectrum equal to the
poweT spectrum of £ This leads to an inverse filter

described by,

1
Py Cu,v) 2

IL(u, v} = | ———e . (2-7%
Pj (u,v)

It should be noted that this technique specifies only the
magnitude of the filter. It is generally assumed that the
phase is either zerao or previously given.

All three of these filters work Teasonably well when

17



there is a high SNR. In fact, they all converge to the least
squares filter. The advantage of one method over the other
in this situation will depend on the amount of a priori
information. Homomorphic F;Itering can construct the
information needed for restoration from the degraded image
itself, by estimating g, and g,. MMSE requires the most a
priori information, while the least squavres approach is
samewhere in between.

With respect to visuval quality, homomorphiec filtering
produces the best results- for medium to low SNR. Least
squares and MMSE are both much worse. All these <techniques
are +fairly straightforward and the number of computations
are considerably reduced when Fourier techniques can be
applied. However, this greatly restricts the class of images
to which these techniques can be applied. What happens if
the distorting process is not space—~invariant? This
question leads us tao ¢the second group of restoration
techniques in this category. the ane ¢that considers the
human viswal characteristics.

The algebraic techniques allow one +to use a more
general class of images to be processed. The assumptions
for this category of images are: (1) only signal
independent additive noise will be considered. (2) The
detector response will again be assumed to be linear. (3}
However, in this case it will be assumed that the distorting
process c£an be spatially-variant. All filters developed in

this section will be derived by a least-squares Lagrangian

i8



approach.

The image formation model is now.

g = CHI# + n. (2-8)

An objective function, W(f) is defined as the function which
specifies the criterion for the restoration technique being
developed.

The inverse #filter requires the minimization the narm
of the difference between the 1image and the reblurred

ob yject. The obgjective function becomes.,

W(f) = Hg — CHIfUZ, (2-9)

Solving for the estimate § yields,

£f = (CHI*TCHDYT [HI T g, (2-10)

where the superscript * denotes the caomplex canjugate. It
is assumed that [H] is not singular. In the case of a
spatially invariant image formation system [H] this is the
least squares case of the last section. It bhas the same
problems as the least squares filter in either case.

Since it 1is often the case that [H] may be singular,
one would like to design a filter which has more control
over the restoration process, i.e., one which places some

constraint on the design procedure. If we have some a priori

12
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knowledge about £, for instance we might know that £ is a
smooth function, then an additional constraint could bhe
added to minimize a roughness measgre. such as the norm of
the second derivative (or in the case of discrete images,
the second difference). In general we minimize the norm of a

linear operation on £, C[QIf, subject to the usual conditions

on the noise. I# the norm of the noise is known or
measurable, then we minimize HNEQIFN2 subject to
g - EHIfNZ = unu?. In this case:; the objective function is

W(R) = NCAIFNZ = AClg - CHIFNZ - unu?). (2-11)

The constrained least squares estimate (Hunt (211} is
§ = (CHI*TCH1 + ¥C[Q1I*TL@1y' [H1I*Tg, (2-12}

where ¥ = 1/)\.

The constrained least squares restoration is a +fairly
general approach +to restoration. This rtesults from the
general nature of the function [G], which can represent a

number of possible constraints. Some of these include.

€@ = [1I1 which 1leads €0 +the pseuvdo—inverse filter;
£@3 = finite difference matrix which, as discussed sbove
gives the constrained least squares filter, [Q] = eye model,

which leads to restoration from a visuval perception point of
view, and ([Q1 = Cg,3 V2 g, 12 yielding the parametric

Wiener filter.



One other type of filter is the maximum entropy filter
(Frieden [12]7), which is based on madeling the object as a
probability density function. I# £ is normalized tao unit
energy., then each £ can be treated as a probability. One
Teason this approach is so appealing is that it guarantees
positive values in the restored image.

The objective function for the derivation of the

.maximum entropy filter is

W(e) = £#Tin & - a{llg — CHIfNZ- UnN22, (2-13)

After taking the partial derivative and setting it equal to

zero we obtain,

In £ = =1 - 2\[H1"T(g ~ [HIF). {2-14)

It should be noted that this is a nonlinear sclution. This
problem is in general very difficult to solve. One approach
to solving equation (2-14) 1is to linearize 1it. This
simplifies the soalution, but it also reduces the
effectiveness of the filter.

The following restoration technique is based on the
application of recursive estimation to the problem of image
restoration (Aboutalib, et al. £13}. A number of peaple
have done work in this area with promising results, and it
is on <this +theoretical development that the restoration

filter proposed in this thesis is based. The development of

21



this method will be explained in considerable detail. Again.
it is assumed that the recorded image 1is defined by the
brightness +function g, and the abject plane brightness
function is £.- In the case where the point spr2ad function
is assumed to be space invariant, we can represent g by the
following equation:

e Tq

g(i,yr = % . T h(g.m)f(i-q, j—m) + n(i, j). (2-15)
q==3 m=-Y_

The noise is again assumed to be additive, white, Gaussian
noise. 8$:8 2 0 is the vertical extent of the blur, h is the
point spread function, and xq.Pq >2 0 1is the herizontal
extent of the blur along horizontal line i-q. It is 4&ssumed
that h(k,~xq) = 0 for S8<qg6. Let us make the following
transformation of variables to ease the ensuing development.
Let g =3¥q F Pq and use the notation Tam = h(q.m—xq).

Equation (2-13}) becomes

e Bq
g¢i, )} = L z rqu(i—q.J-xq—m) + n(i, §). (2-16}

q=8 m=0
The image intensity can be written in terms of the
horizontal shift operator, DPF(iIJ) = $(i, jJ—-p?l. The

contribution to g{i, j) from the object line i—q is,
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D4,. ... %1 D¢ql

gq(i.J) = Erqo +1‘q1 adq
F(i—q.J+Pq) + n(i, J§). (2-17)
Define a function af the delay aperatars,
- o
H (D) = 7o +7g, D+.....+rq¢qD q for 3£q<6. The tatal

contribution from all the $+6+1 object lines is then

e
gCi, ) = I H(DIf(i-qu g+T ) + n(i, g). (2-18)
q==3

I+ L= max{Pq: —-3<q<0) is the maximum degree of
anticipation of the blur over all contributing lines and

£0i, §) = colLf(i=0, g, £Ci=0+1, §)y. .., £0i+0, g1 . (2~19)

We can write the vector of causal moving average operator

polynomials as,

H(D) = coIEHe(D)H6_1(D)...H_5(DJ ’ (2-20)
and the delay matrix as
M(D) = diag(D + B 1...+D ). (2-21)

The system equation now becames,

gCis 3> = HT(DIM(DI£Ci, y+L) + ni, J), (2-22)
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for i, = 0,1,....,N-1.

Note that the problem is faormulated such that the blur
is multi-input. In addition, £(i, g+l) = D g(i:J)* is
composed of object intensities from each of the S+a+l lines
contributing to line i. Thus., £{i, y+1} is a vector that

scans the obgject plane. Now., define

sl{i,J ) = M(DY£(1, j+L). (2-23)
The system description is

g€ir 3) = H'(D)s(i, 3} + nti, g), (2-24)
where s(i.y) 1is +the input vector, uT(D) is @ multi-input—

single~output causal operator. Under this formulation, the

system admits a recursive realization as follows:

x(is g+1) = Ax(ic g} + Bsli. 4}, (2-25)
glisgd = STxi, g3 + 4 s5Cis g) + nlisg) (2-24)
for i,§j5 =0,1,+. ..,~1, where n(i, jJ) is white with EEnl = O

and EEn2] = ¢2.

Under the assumption that the object plane may be
modeled as a zero—mean, two-dimensiaonal stationary random
field, with a known correlation +function, a difference

equation model can be developed which, when driven by white

naise, praduces an owutput whose statistics match the



statistics of s(i, J). This is represented by
z(i, y+1) = Pz(i, })} + Qu(i, j). (2-27)
s€i, J) = Tz(i, §), {2-28)

where ELul = 0 and ELuu’l = R.
The degradation model can now be augmented with the

ch ject maodel to yield the following composite model:

wli, j+1) = Awli, j)} + Buli, §), (2-29}
gli, g = cTwli, j) + ni, j), (2-301
where wT(i, §) = CxTCi, y)2"¢i, 33, and

A= [ABT] B=[0] T =rcT d'T.
oP e}

The best linear minimum variance estimate w(i, jij) of
wl(i, §) can now be developed based on the observatioans
€g(i. &), €=0....., 37 The fallowing Kalman filtering

equations result,

Glis gly) = €I = 20 cTIABCL, g=11g~1) + 20 0gli. y),  (2-31)

2ly) = P(y)clcTP(ydc + o217, . (2-32)

P(y+1) = ALI - &(5)cT3IP( )AT + BRB', (2-33)
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for i,y = O, 1,....N~1, and with w(0) = w,, P(O) = PF,. PCg?
is defined as the estimation error covarince matrix and £
is the Kalman gain vector. The best linear minimu@ variance
extimate of s(i, j) based on the observations g(i, t) for

‘b-—-o:l'...:‘j is
sCisg) = CO TIGlgt ). (2~-34)

s(i. j} = M(D}£(1, j+L). as before.

This method is a good way to restore images which are
of relatively low contrast. Unfortunately, when there is a
lot of spatial activity in the image the filter cannot keep
up with +the «changes in the image.” The rtesult is then an
undesired smoothing of the edges. The advantages of ¢this
method. though, are that it is quite easily implemented via
a digital computer and there is the ability to model the
ob ject plane statistics.

The second category of image restoration techniques is
based on a subjective criterion. The initial work has been
done by Anderson and Netravali [2]1. The basis for this
approach is that the restored images will be for human
viewing, so one would like to utilize those properties of
the human visval system (HVS) which are engaged in
discerning information and rTemoving noise from an image.
The assumptions for this restoration pracedure are: (1) tﬁe
recorded image is simply the sum aof the original abgject and

white Gaussian noise, specifically,
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gli, g}y = €1, ) + ndli, 3); (2-35:

and (2) n is a zero—mean., white, Gaussian noise source
independent of £ and of unknown but constant variance v, -

To develap the procedure first construct a measure of
the spatial detail in an image (Netravali and Prasada E£3%91).
It is known that at sharp transitions in image intensity the

contrast sensitivity of the HVS decreases with the sharpness

of the %ransition and increases exponentially (within
limits) as a tunction of spatial distance from ¢the
transition. This information is wused to define the

following measure of spatial detail, called the masking

function:
i+k  g+v i, 3> - (p. gl

M, (i, g) = E z Cc [lmii"l + Imiihll. (236}
p=i—-k q=j-7

where (i, j} — (p,qlll denotes the Euclidean distance between

b

points (i, j) and (p,q); m. ' and m are the vertical and

ij
horizontal slopes of the image intensity at (p.q).
respectively; C is a constant controlling +¢the vrate of
exponential decay of the effect of a transition of image
intensity on its neighbors; and k and + are cﬁnstants
controiling the size of the relevant neighborhood around

(i, §).
The second step in this procedure is to determine the

relationship between the visibility of noise in an image and

the masking function. This rtvelationship is knouwn as the
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visibility function and gives the relative visibility of a
unit noise added to all points in a picture where the
measure of spatial detail. Mkr: has a certain wvalue. The
visibility function is determined by a number of subjective
tests. Test images are computed and stored. The masking
function M, is computed +for each pixel of the original
image. A masking value ¥ and a noise power V  are chosen.
Ta each pixel of the original image whose masking value M.
is in the range [Y¥ — aAy/2,¢ + a¥/21, where Ay is a small
increment, white Gaussian noise of power V is added. The
test image so obtained is characterized by the values ¥ and
V., - Far each ¥ at which we wish to measure the visibility
£(¥):, three test images with noise powers Vn1 'vnz'vﬂa are
generated. ' .

A sub jective test is pe%formed under which the
experimenter randomly selects a test image %to which he adds
Just enough white noise ¢o vreach a point of subjective
equivalence between the two pictures. I+ Vw1.Vw2. and V;s
are the equivalent white noise powers selected by the
sub ject corresponding tc test images which have vn1,vn2.vn3

amounts of noise, then, assuming proportionality, the

vigibility function is defined as

1 v -+ -+
V() = el T2 2, (2-37)
A" I'I1 + n2 + n3

where ¥ is the masking value and V  is the noise power. The

vigihilitu function decreases with respect to its argdment
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because at higher masking function values we add noise tao
fewer picture elements and the perception af noise at
picture points having higher masking value is decreased. The
visibility function is used to determine the coefficients of
the restoration filters. Two types of +$filters were
develaped, the S—type filter and the SD-type $filter.

The S—type filter computes a lacal average of (2q+1)

neighboring elements,

a; Zgy - (2-38)

This #filter was chosen because the af

can be changed foav
each §k according to the visibility function. The a‘s are
;ubJect -to the wusual constraints on filter coefficients.,
i.e., a 20, for i = -q»...:.q and a'u = 1.

The variance of the noise in the image g(i,y) is v,
assumed constant over the entire image. The amount of naise
remaining after the filter is applied is var {s) = VnQTQ.
We can define v, = a'a as the relative amount of noise
passed by the filter. As we have noted previously, ¢€he
application of an averaging filter to an image results in
some blurring. Since it is important that this blurring be

kept to a minimum, a measure of this blurring is defined and

is called the spread,

w, = £ a?i? = a'ga, (2-39)
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where § is the spread matrix.
The requirements for the #ilter weights a are that
they have goad noise suppressing paower but a small tendency

to blur. These are opposing goals. Consequently. the

ob jective function is defined as follows:

Jea) = av, + (1 - x)w, = aTfa«l + (1 - x)Sla, (2-40)

30

subject to uTa = 1. Using Lagrangian methods we obtain the

salutian,

a = Mal + (1 - «)837" u, (2-41}
where A\ is adjusted to ensure that uTa = 1. « is a tuning
parameter whose value varies from O to 1. As « changes the

tilter changes fraom a sharply peaked +Ffilter to a flat,
equally weighted averaging filter.

Thus far, in the description above, a tunable #ilter to
be applied %o a neighborhood of a given pixel has bheen
canstructed. The visibility function is now used ¢to tune
the +#filter wvia the parameter «. It is assumed that the
visibility function has been scaled so that f(0) = 1. Let Q
be the number of elements in the two—-dimensional filter, and
then chaase a number g, (1/Q) £ g < 1, a constant far a
given image, which determines the amaount of noise passed by
the filter in a perfectly flat area of the image. That is,

set x so that
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v, = # (2-42) .
at a pixel where M = 0 and #(M) = 1. In areas that are nat
flat choose « such that

v f(M) = g (2-43)

This fule is applied at every pixel and results in uniform
sud jective noise visibility. If v, is permitted to rise in
busy areas. the spread goes douwn, proaducing a sharper

filter. To allow for this variability., we introduce anather

tuning +factor ¥ ¢o contral the way in which the filter

respands to the visibility function. Equation (2-43) now
becomes
Y -
v, £ (M) = g - (2-44)}
This restoration method 1is based on a measure of

spatial detail that corresponds to that of the human wvisual
system. In addition, two numbers, g and ¥, were chosen to
give control of the overall amount of filtering and ¢to
regulate the degree of adaptivity, respectively. It would
be desirable if in addition this procedure could recognize
when the filter overlaps a prominent edge and would
automatically reduce the overlapping filter weights. This
would reduce the distorting influence of a nearby edge and

hence preserve edge sharpness. This leads us to the second



type of filter, the SD—type Ffilter.
The SD—type filter is a distortion—-penalizing +filter.

so it is necessary to define a measuvre of distortion,

q
d, = © (z,, = z%a? = aTpa, (2-45)
i=~q
where D is the distaortion matrix. The abjective function

faor this method is,

J(a) = av, + (1 - «X(w, + 6d,?

= a'fal + (1 — x)(S + €D)1la, (2-46)
subject to a'u = 1, and using © as a tuning parameter.

It is readily seen that D represents a penalty applied
to a When a overlaps an edge, there is a large difference
between the bhrightness at the center of the filter and the
brightness at a point across the edge. The penalty is then
large forcing the coefficient a to be small.

In review, it should be noted that the main feature of
these +filters is that they are applied locally under the
direction of a local fidelity criterion based on
psychovisual principles. The S—type filter is ¢tractable and
convenient, but has a3 tendency to blur at prominent edges.
This problem is accounted for in the SD-type filter and
leads to better restoration. Unfortunately the price for

this improvement is paid in am increased number of
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camputations.

In comparing the results of the restoration techniques
in categories one and two., we must remember the ~Fundamental
differences in their original objectives. The category one
techniques are based on the philosophy that images can be
improved by designing a filter which inverts the distortion
in the system. If there is noise in the TrTesponse, the
inversion 1is done subject to minimizing the norm of the
neise. Category two techniques design the restoration
filter, for removal of noise only, under the assumption that
images will be wused for human viewing. Therefore, the
restoration filter is designed to choose the same desirable
features in an image that the "human visual system would
choase.

There are important aims in the techniques of both of
the catagories. Attempting to invert the distortion present
in the system is a logical approach. In light of the fact
that images are generally utilized by human viewers, taking
into account certain aspects of the human visual system is

desirable.
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CHAPTER 3

AN ADAPTIVE NONLINEAR KALMAN-TYPE FILTER

I. Introduction

This chapter presents the theoretical development of an
adaptive nonlinear Kalman—type filter to be utilized for the
restoration of t{two-dimensional images. This development
proceeds in a step by step fashion, solving several of the
preblems inherent in the approaches currently used for the
restoration of images.

One such problem is the necessity of using the receiver
characteristics in the design of the restaration filter +for
the general madel given in figuvre 1.1. Since the receiver
for many images is a human observer, it is desirable ¢to
utilize the properties of the human visuvual system 1in
designing a better image restoration procedure. In the
present work, the response of the human visual system to the
additive white noise present in an image is used in the
development of the adaptive nonlinear Kalman—type filter for
the system described by equation (1-1).

Another problem results from the assumption that the
ob ject plane distribution function + is usually
characterized by a single wide—sense stationary Markav
process. If there is a large spread in the amount of spatial

activity, this ¢tends ¢to yield an autocorrelation function



which has less resolution than 1is needed to characterize
sharp edges. This problem is solved in the present work by
partitioning the object plane into regions according to
local spatial activity.

This partitioning also helps in reducing the large
effort associated with the calculation of the restoration
tilter. Spectral factorization 1is necessary foar the
determination of the coefficients in the difference
equations of the dynamic model used in the derivation of the
restoration filter. The necessary operations are performed
on much smaller matrices in the present approach.

Twe problems are encountered in the implementation of
the adaptive nonlinear HKalman—type Ffiltering algorithm
developed here. The first problem arises from the fact that
the Best choice for the previous state vector for the pixel
(i, }} need not be the one associated with the pixel (i, j—1).
This is apparent at the boundary between %fwo regions. Pixel
(i, y~1) may be in a region whose autocorrelation function
differs widely from that of the region to which pixel (i, j)
belongs; thus utilizing the state vector at (i, j—1) as the
one previous to the state vector at (i, j) may give poor
results. This makes it necessary to determine a procedure
for selecting among the previously processed pixels, one
whose state should be used as the previous state vector. In
the present work, this problem is solved by using a nearest
neighbor criterion to determine the best selection of the

previous state in the recursive restoration algorithm.
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The second problem encountered is the lack of good
initial condition information for the starting points in the
Tegions. This problem is overcome by employing a two-—
dimensional interpolation (smoothing) scheme to obtain
better estimates of the initial state vectors.

The solution aof these problems has resulted in the
develapment of the present adaptive nonlinear Kalman—type
filtering scheme for the restoration of images. The #our
primary improvements offered by the filter are:

(1). The use of the visibility function te incorporate
the properties of the human visual system as
receiver characteristicsi this is acﬁieved
by making the "effective" observation noiss
covariance depend nonlinearly on the state.

(2). The partitioning of the image into regions to
allow for more accurate modeling of the second
order statistics of the object plane
distribution function according to spatial
activity;

(3). The uvtilization of & nearest neighbor algorithm
to determine the best previous state at
boundaries and in regions of high spatial
activity; and

{4). An interpolation scheme for the
improvement of initial condition information.

In addition, our filter is capable of removing general

image formation degradations by taking into account the
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dynamics of the image formation system.

The following section establishes the validity of using
the autocorrelation function as a property far describing
the regions of the object plane. Next, a criterion function
is presented which partitions the image into regions. In
éddition. a scheme is developed for the implementation of

this partitioning proacess.
II. Image Partitioning adapted to Local Spatial Activity

Consider the problem o# characterizing the object plane
distributian function. In the previaus literature
(Aboutalib, et al. [11, Franks [?1, Jain [251, Nahi and
Assefi [371, Nahi and Franco (381, Woods aﬁd Radewan [601),
the ab ject plane distribution function £ has been
represented by a wide—sense stationary process whose

auvtocorrelation functian is of the following form
Ri(7:0) = Kyexpl - xirl - gleid, (3—-1)

where 7T and ¢ are horizontal and vertical displacements,
respectively. This may not always be the case and can 1in
fact lead ¢to undesirable results. In particular, it there
is large spread in the spatial activity content in the
ob ject plane. the constants K, ., « and B8 may wvary
considerably from one area of the image to another, where

spatial activity is defined as the rate of change of spatial
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luminance fram ane pixel to another. This is directly
relasted to the autocorrelation function through the
parameters « and §8. These two parameters specify the

average number of statistically independent luminance levels
in the horizantal: &« and the vertical., #8:. directians.
Then., i# the spatial activity is high: « and 8 will be
greater than when the spatial activity 1is low. In what
fallows, an attempt is made to categorize the information in
the object plane in such a way that regional autecorrelation
functions can be used in lieu of one global autocorrelation.

It 1is necessary to guarantee that we have a meaningful
set aof features to be used to describe the information in
the object plane. Severai types of Ffeatures may be
considered. These inciude spectral, textural and contextural
features. Spectral features describe the average tonal
variations in the various bands of the spectrum. Textural
features Teveal the spatial distribution aof tanal
variations, and contextural features are thase which yield
information obtained #rom the regions surrounding an arvrea
being analyzed.

The problem at hand then is to find a property R; such
that an image can be partitioned into regions Qp for p =
1,....k. Each region Qp is to be restoved utilizing this
property Ry to yield an eptimal restoration procedure.

One class of features particularily suited to recursive
estimatian techniques is that of spectral features. These

are often represented in terms of the autocaorrelation ar
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spectral density to yield information about the statistics
of an image being restored.

Since the autocorrelation is dependent on the spatial
activity of the area, it is reasaonable to choose the regions
Qp based on the amount of spatial activity in the image.
There are a number of ways to partition £ based on the
amount of spatial activity. 'Qne is to wutilize a bank of
bandpass filters and separate the image strictly by the
spatial frequency content at each pixel. Another approach
is to use a function based on the amount of spatial
activity as defined by the slope information at +the pixel.
This type of measure corresponds closely to the information
represented by <¢the autocorrelation function and will
therefcre be used. It has already been shown, in the
preceding chapter., that the masking function is indeed a
measure of the spatial activity in a neighborhood of a
pixel.

Consider the masking function introduced in Chapter 2.

i+k J+r Wi, g)—-Cp. g

My Cisy) = I I ¢ Cimi" 1+ Im" 13, (3-2)
p=i—k gq=y-r

where HCi, j) — (p,q)l is the Euclidean distance between

points (i, 3) and (p,qgq}; mﬁv and mﬁh are the vertical and
horizontal slopes of the image intensity at (p,ql); C is the
constant <controlling the rtate of exponential decay; and %k
and v are the constants controlling the size of the relevant

neighborhood around (i, j)l.
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I+ the constants k and r are equal to zera:, we have a
measure of the spatial activity in the horizontal and
vertical directions.

Ry

Mgg (is g} = tm;" 1 + Im (3-3)

i
It is desirable to extend this measure of spatial activity
te include slope information in the immediate neighborhood
of a given pixel. The immediate neighborhood of a pixel 1is
assumed €o include its eight nearest neighbors. Equation
(3-3) is generalized to include information about the slapes
in the four directions defined by these eight neighbors,

i.e. 0, 435, 90, and 135 degrees. Define

Mgli, §) = K, g P (3-4)

d=
where m““m ’ for d = 0,....3 represents the slope
information in these four directions. m“° corresponds to
the horizontal slope m“" and mﬁm& tha2 vertical slope mﬁ" of
equation (3-3). The subscript g is used to indicate the

generalized slope information at a pixel and K, 1is a
constant used for scaling.

A thresholding operation is used to segment the rtange
of values of the measure of spatial activity Mg such that
the image will be divided into regions Qp, p = 1,2,....k.

The region (Qp is chosen if
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apoy < Mglis ) < ap (3-5)

where a, 1is chosen subjectively depending on the range of
Mg, the number of regions desired and the «class of images
being considered. The ¢thresholds are chosen sa that
partitioning the image into vregions is based either on equal
segmentation of the range of My or more generally on an
nanuniform segmentation of Mg. The nonuniform segmentation
ailoms for more discrimination in heavily concentrated
regions aof spatial activity.

Once the image is divided into appropriate regions. the

recursive filter is designed to meet the specifications of

-

each region.

III. A Scheme for Two—-Dimensional Piecewise Recursive

Estimation

Consider the following discrete image formation sgsfem:
The image plane distribution function g which is the output
of the system modeled in figure 1.1 is known. The input to
the system is £, the object plane distribution function.
The system is assumed €o be linear with impulse response h.
The output is added to a white, Gaussian noise %o form g.

The input-output equation is given by:
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e T
g¢i. ) = % I h¢(q,m}f(i—q, J—m} + n(i, }), (3-6)
q=—3 m=-xq
for i = Q,1,....M—-1, J =0,1,...,N-1, 8,6 _>_ 0 shows the

vertical extent of the blur, and Vq' P’y =20 the horizontal
extent of the blur along the object horizontal line i-q.
The image g is an MxN array of pixels. The problem at hand
is in general one of inverse filtering, that is, given the
output of the sustem g and the system impulse response h, to
find an estimate of the input f.

In the method proposed in the present wark, the model
in figure 1.1 1is modified slightly to acceount faor the
statistical nature of the object plane distribution function
£. It is assumed that £ is generated by passing white noise
sources through a bank of linear systems, whose impulse
Tesponses are b, for p = 1.2,...,k, such that the object
plane distribution function & is compased oaof a set of
disjaint regions. Each of these regians is characterized by
a zero—mean two—dimensional:. stationary random field with a
known autocorrelation function. This is depicted in +figure
3~-1. A difference equation model 1is developed for each
region Q, such that when the input is a white naise source
the oautput aof the system has statistics that match those of

the pth region of £#. Such a model is given by

zplis g+1) = @pzplisg) + Spuplis g, (3-7)

FCis ) = Tpzplisg), (3-8)
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b1(ic J)

bz(i' J)

byCis J)

byCisry) =

£¢i, 3y =
h(i, 33 =~
n(i, §y -

g(i, )y -

n(i, 3}

f(i,J):. . g€i., j}

Linear system generating the object
distribution function £(i, j}? from a white
source at the input.

gb ject plane distribution function.

Image formation system impulse Tesponse.
Additive white noise source.

Received distorted image.

Uniagn of disjaint vregians.

Figure 3.1
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far p = L,2,...:k: 1 = 0,...0M=1, §J = 0,....N-1, and where
ELu(i, y?1 = 0 and ECuli,, yduli.mg,¥ 1 = RpA(i1-i2)A(J1-J2).
The E€{z > = 0 and E{_z_pgp} = K.

Equation (3-4) defines the input—auput relétiunship far
the image formation system depicted in figure 3-1. It is
necessary now to arrange equation (3-6) such that a
difference equation model.. such as described by equations
{(3-7) and (3-8} will result faor the image formation system.
In a manner similar to that of Aboutalib, et al. [13., the
following development evolved.

Without 1loss of generality., it 1is assumed that

h(i,—xq) = 0 for -—3Lq<6. Define, g, = ¥ * Pq and use the

notation v = hi{g,m—¥ ). Equation (3-6) now becomes,
e Bq -
g(i, gy = 2 Z v fli-q. gy _-—m) + nli, §). (3-9}
qm q
q=-3 m=0 .

I+ we introduce the shift operator DPF(i.J) = £(i, yj—pJ), then
the contribution to g(i, j) from the object line i—-q is

gq (is y? = [ryy +7,

bq
Q1 D+:...I+T‘q¢q D 1

?(i-q,4+xq) + n(i, §3. (3-10}
Now if we define,

bq

Ho(D) = Toq+Tg; D¥r s #7gy DO, (3-11)

for —8<q<6, the total contribution from all the 346+1 lines
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is

e
g(i, j) = I Hq(D)F(i—q.J+xq) + nli, §). (3—-12)
q=-3

Let, L = max {xq; —-8<q<6}) be equal to the maximum degree of
anticipation of the blur over all the contributing lines.

We may then define the following:

6_1(5) NN H—S(D)] ’ (3-13}

H(D) = collH4(D) H

the vector of causal moving average operator polynomials.

Equation (3-12}) can be written as
glisg) = H(DIsCi, g) + nli, g, - (3-14)

where the vector s(isy) is now considered the input vector

to the system and is defined by:

s(i, j) = coI[F(i—B.J+xe),F(i—e+1.J+xe_1)
.....f(i+8.4+;_6)3. (3-15)
where #{(i, J} is defined by (3-7) and (3-8).
Since ﬁT(D) is a multi-input -~ single-quitput causal
operator, it admits a recursive realization (Z[E.E?,ETa of

the follgwing form

xCi, j+1) = AxCi, g} + Bs(i, y)» (3-16)



gCi, g) = Tix(i.g) + d'sCis ) + nlis gl (3~-17)

for i = 0,1,....M1, and § = 0. 1,...,N-1. The white noise
process is such that Eln(i, §21 = 0 and
E[n(i1.J1)n(i2.J2)J = 02A(i1-i2)A(J1—J2). The dimensiaon of A

is the minimum order of all state—-space realizations of

H(D). The parameter matrices A:B,c',d' are either space-
variant or constant depending on the nature of the
degradation.

The degradation model described by (3-16) and (3-17)
can be augmented with the object plane model (3-7) and (33—

8), to yield the composite model for the entire system shown

in figure 3-1.

gp(i.3+1) = Apgp(i.J) + Bpgp(i.J). (3-18H
gli, J¥ = g:_qp(i.‘j) + nli, 2, (3-19)
for p = 1,2,...,ky i =0 ...:M=1 and j} = 0,...,N-1. The

noise source statistics are as given and ¢the vector
g:(i,J) = Eif(i.g) LL(i:J)} is the state of the system with
dimension defined by the dimension of x(i, j) and Lp(i:JL

The matrices A, B,, and g; are determined as follows,

Ap=[A Brp] Bp=[0] '
o e, S,
T =€t d'T1 1 (3~20)
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With the system model described in equations (3~18) and
(3-19), it is desired to derive a class of optimal
estimators which yield a linear function of the observation
image as its estimate. From this model, we wish to find an
estimate of the n vector w,(i, j+1) denoted w, (i, j+1) which
is a linear function of the observations g(i, 0} ....g{i, ),
and is constructed with 1least mean square evraor oaof the

region Qp. This is accomplished by minimizing

ECw i, g+1) = @ ,Ci, g+133  Cw pCis g+1) — @, Ci, g+13 13, (3-21)

We can write,

wolis g#1) = «(is g)glis y), (3-22)

where «f(i,j) is a (n x j+1) coefficient matrix and §(i, 3} a
(j+ill-vector of the observations g(ir0),...,g<i, §).

By substituting (3-22) into (3-21) and differentiating
with respect to the elements of the matrix «(i, j) yields a

set of equations:

ECw, (i, y+1) — & (i, g+121§T (i, m) = Os (3-23)
for m = O0,1,....). This is commenly known as the
orthogonality principle. It states that the linear estimate

ép(i.4+1) which minimizes the gquadratic cost given by (3-22)



is such that the estimation error [w (i, y+1) - wpli, y+121 is
uncorrelated with every observation g(i,0),....g(i, ).
The inverse filter that results from this formulation

is %he piecewise Kalman filter:

wolisgty) = [I = g (ellagdo(is y=11y-1)
+ g (J2gli, g2 (3-24)
Foly) = Pyl LeiPp (e + 0217, (3-25)
Pply+l) = ApLI — gy (y)clIPp (24, + ByRpBy» (3-26)
far p = 1,2,...:,k. The coefficient matrices A and B are
the system coefficient matrices fram equation (3-20) and €,
is the coetfticient vector fraom (3-20). The vector gpl(y) is

the Kalmaw +Ffilter gain wvector and P p(J) is the error
caovariance matrix for region k. The estimate of the input

is derived from the estimate of the state vector by

s€is ) = [0 Tplw (i, yly), (3-27)

where T is the parameter matrix from equation (3-7).

Equations (3-24) - (3-26}) are the two-dimensional
Kalman filtering equations for each region ;. This filter
is applied to the two—-dimensional output signal g, and the
output of the filter will be a best linear minimum mean
square error estimate of the input signal £ restricted to
the region Q.

The coefficient matrices in equations (3-24) - (3-26)
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are specified in equation (3-20). The A, B, ¢¥, d7 are
determined by spectral factorization of the distortion
modeled by the system impulse_response h. These remain the
same in each region. The coefficient matrices Qo Tp + Sp
are dependent on the autocorrelation functians pertaining %o
each region Qp. It has been shown (Franks (91} that for a
stationary random process ¥ the autocorrelatian is

R(7) =A £ T,PCm 7)), (3-28)
m=0

where v, = ECfaf qpmd, and

A=ECf2 1 and ELF,]

n
©

P{m,T) is the praobsbility that paints t and &+ are in
intervals m apart. I+ it assumed that {f,) is a wide—-sense

stationary sequence in the regions chosen then,

Rp(7,0) = Apexp(—=Appl7l — A, lol). (3-29)
The constant Ay is proportional ta <+the variance and
th and Av, specify the average number of statistically

independent luminance levels in a unit distance along the

horizontal and vertical directions. Alternatively, the
correlation is characterized by the parameters
Py = expt—khpTeJ and p, = exp[—xvagl which are the

correlation coefficients of the luminance levels of adjaeent
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picture elements when the picture area is quantized into
small squares of dimension T,. For our images Te = 1 and

the correlation coefficients can be calculated as.,

P= By = E{¢(x, - NICx L, — M. (3-30)
~(7'2 o2
It has been pointed out that, in general, the

assumption of wide—sense stationarity over the entire image
is not true. but it will be seen that assuming regional
wide—sense stationarity leads %o significant improvement in
the estimate. Once the autocorrelation +functions of the
regions are determined, the appropriate recursive filters
can be designed using these auvtocorrelation functions and
the appropriate weighting calculated for the additive noise.

It has been shown by Nahi and Franco [38] that under
the assumption that the autocorrelation can be represented
by equation (3-29), it is straightforward to obtain the

coefficients &,S, T in equations (3-7) - (3-8):

Qp = -thl (3-311}
Sp = (2 Mhpy*% (3-32)
T, Tp = Hs (3-33)

where the kmth element of H is hym = exp{=XAyplm—k)). The
ob jective af this -procedure is then %o design regional
Kalman filters based on the statistics of each of these

regians.



IV. Visibility Adapted Observation Noise Model

We assume that the image formatiaon system is
cantaminated by white Gaussian aobservation noise with zero
mean and variance ¢? . Anderson and Netravali [2] and
Netravali and Prasada [39]1 incorporated the visibility of
the noise with respect to the hwman observer in the
construction of their restoration filter. In what follows.,
we use a similar criterion in our restoration procedure.

We note that the use of the visibility criterion by the
above authors was for the case in which the disturbance was
caused by additive noise anly. Our restaration procedure
using the criterion takes intoe account, in addition to
additive noise, the presence of motion blurs. The
application of such a visibility function to the general
image faormation modél is determined herve.

The visibility function as derived by Anderson and
Netravali [2] is a measure of the visiblity of the noise in
an image to the human viewer. It is dependent on the amount
of additive noise present as well as the masking +function,
which 1is the response of the human visual system to the
spatial activity in the image. That is, at sharp
transitions in image intensity, the contrast sensitivity of
the human visual system decreases with the sharpness af the
transition and increases exponentially as a function of the
spatial distance from the transition. The masking functien

does indeed rtTespond in suwuch a manner, as is shown by
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equation (3-2).

The +following procedure, presented in more detail in
chapter &, is wused for determining the form of the
visibility function. First, the masking function My, (*,*)
is computed fer each pixel (i, )); then a masking function
value ¥ and a noise power V, are chosen. To each pixel of
the original image whose masking function My, is in the

range L[¥ — ay/2.%¥ + ay/21, where ay is a small increment,

white Gaussian noise of power V"iis added. For each value
of M, three test images with noise powers V,, . v"z' V“a are
generated.

A subjective ¢test is performed under which the

experimenter rtandomly selects a test image to which he adds
Just enough white noise +to reach a point of subjective
equivalence between the test image with noise power V,, and
the image with additive white noise of power Vw,. The
result of these tests is the visibility function given in

equation (2-37) and quoted below

Vey)

i
[
<
+
<
+

(3-34}

The resulting curves which express a relationship between
the visibility of the naoise and the masking value as
published by Anderson and NMetravali [21 have the general

farm of
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VM, Cia gD} = Ajexpl—k My Cis g))y  for OLM,, (i, DEP (3-35)

Agsexpl(—koMy, (i, 322}, for PLM, (i, ) (3-34}

where ky and k, are constants dependent aon the slopes of the
curves and P is an appropriate positive constant.

Recall the piecewise Kalman Filtering equatians (3-24)
- {(3-26). The statistics of the noise are wutilized in
(3-25) in determining the amplification factor for the
filter. The variance ¢2 of the noise is the term that
represents the additive noise present in the system. In
what follows. it is weighted by the visibility +$function +to
“ad just the restorafion filter according to the visibilitg of
the noise by the human observer.

First, the wvisibility +function 1is scaled so that in
areas aof no spatial activity. i.e. where the masking
funetion is equal to zero, the variance of the noise is
exactly equal to ¢2. In such regions, the human aye is most
sensitive to additive noise; therefore as much noise as
possible is Temoved. In a region of high spatial activity,
the relative visibility of the noise is less than one. In
these rtegPfons the filter can pass more noise until its
sub yjective visibility is equal ¢o that in the spatially

inactive regions. The naoise variance becomes
c2(i, g) = o2 VM, (i g (3-37)

The rtesult is that the piecewise Kalman filtering equations



now adapt to the noise as observed by the human receiver,
and accovrding to (3-37) this variance depends nonlinearly an
the state. Hence, even though we use the basic Kalman
filter equations, the overall filter structure is piecewise
and nonlinear.

There is one significant problem with the utilization
of the above procedure as it stands. Since it 1is assumed
that only the distorted image is available for use, it is
true and is indicated by Andersaon and Netravali [21, that
there 1is a marked reduction in the quality of the restored
image when the masking {functian 1is determined fram an
already noisy image. This problem is overcome in the
present work by the development of a difference estimation
operator to be used-in the calculation of the slopes in the
masking function. The difference estimatian operator #for

the one—~dimensional case is.

- x+tur, X
D(x) = 1 I g(u} - 1 z glu)l. (3~-38)
Wy U=X Wy, U=x—w,

This operator windows lengths w and w Jjust before and
after x,» then averages g over the windows and takes the
difference of the averages. This provides us with a mare
accurate measurement of the slope in a noisy image. For the
two—dimensional case the directional difference estimation
operators can be defined as.

~ xZ""ul X2
Dy(xy0%x5) = 1 T glxyru) - 1 z gi{xy,u), (3-392

wy UYU=X, W, USX; =W,

94



~ X4 +V1 X1
Dh(X1JX2) = 1 I glu:, xp) =~ 1 z gl{u:sxqd, (3-40)

vy USsXy V, USXy—V,

where wqy, w, and v,;: vy define the extents of the window in
the vertical and horizontal direcions: respectively. In
general this difference estimation operator can be used to

determine the slope information in any direction.

V. Determination of the Previous State Vector hy a Nearest

Neighbor Criterion

The adaptive nonlinear Kalman—type filtering equations

as derived in section III are given by,

BoCisgfy) = LI - g0 lepIAplpCis y=11 =13

+ 8,052g0is g), (3-41)
B,04) = PolgdelepPplyde, + 02171, (3-42)
Pply+l) = ApLI — go( 2c 1P, (4)Ap + BpRpBp. (3-43)

A problem can still exist in the implementation stage
of the procedure. In each region, the Kalman filter is
implemented so that the current pixel (i, j) is dependent on
the state veetor of pixel (i, y—=13. At the boundary bethen
two regions this <can lead to pobr results. Pixel (i:J—ii
may be in a region characterized by significantly different
statistical information. This is seen by the illustration

in figure 3-2.
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Line X X X X X X |
i1 X x|+ + + <+
Region 1 2 X X X+ + =+ Region 2
a X X x x|® +
Figure 3-2

Consider the x’s to denote pixels in eone region and the +'s
to denote pixels in a second region. I$# scanning is being
done on row 3 and an estimate is being calculated for the
c%rcled pixel, the previaus state Far() is in the.qther
regiaon. If the autocorrelation function #for region 1 is
significantly different than the auvtocorrelation function
for region 2 this leads ta a poor estimate +far the state
vectaor of (D. In this case, it would be desirable tao
determine which one of its other neighbors would be better
suited for the previous state.

The second case where better previous state information
may be needed is in regions of high spatial activity. There
are two possible explanations for this result. Since the
image ta which one has access is a degraded image. some gof
the significant edge information may be 1lost by the
degradation process. It is possible that edges are smoothed
ta such an extent that these areas appear to have a3 lower

amount of spatial activity than actually exists. Secondly,

56



it is possible that in regions of high spatial activity an
autocorrelation function of a different form thanm shown in
(3-34) should be wused. In either case, use of a nearest
neighbor c¢riterion to choose the best previous state
improves the quality of the restored image.

It 1is proposed that wunder these two conditions one
should consider all of a pixel’s previously processed
tlosest neighbors when determining which pixel should be
used as its previous staté. The neighborhoad to which a
pixel belongs 1is defined as those points surrounding the
pixel encased by any m x n window. In each rvegian the
Kalman filter is implemented in whichever manner one
chaooses, i.e. left to right, top to bottom, etc. Note é;at
the implemantation procedure tends to bias the estimation in
one direction, therefore it may be desirahle to scan in the
reverse direction in a second pass. For the purpases oaf
this develaopment it 1is assumed that the Kalman filiter is
implemented from left to right and the previous state for
pixel (i, ) will be obtained from pixel (i, j—1). Hawever,
in regions of high spatial activity or at the boundary of
two regions, each pixel in the desired neighborhood will be
checked. As an example choose a 3 x 3 neighborhood. It 1is
shown in figure 3-3 that <there are four pixels in this
neighborhood whose state vector has previously been

estimated.
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Figure 3-3

For pixel <+ at (i, j) the four nearest neighbors for which
state vectors have been previocusly calculated are (i, 3—-1),
(i-1, y—13., (i-1, §)¥» and (i-1, j+1). Note, that as shown in
figure 3~4 it is possible for a given pixel, denoted 1, to
be he previous state for the next pixel in row 2 and for
pixel 2 in row 3. In this eventuality the two paths'from 1
do nat intersect. In fact, it is clear that this procedure
generates a tree of pixels whase vertices are certain pixels
and the edges are strings of subsets of the remaining

pixels.

Line
1 X X X X
2 +, +

Figure 3-4
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In regions of high spatial activity, one expects to see
relatively large differences in intensity wvalues. I+, for
one of the reasons previously mentioned., the auvtocorrelation
information is not exact, the adaptive nonlinear Kalman-type
filter may not be able to follow these changes in intensity.
For this reason, it is desiréble to choose that neighbor
which most <closely matches the pixel in intensity and
spatial activity.

The fundamental question now becomes ane éf how to
choose the nearest neighbors for the previous state
infaormation. 0On what criterion is similarity measured Ffrom
ane pixel ¢to another? The criterion function used far the
nearest qeighbor»decision will be based an the spatial
activity information of the pixel‘s neighbors as well as the
intensity levels. This is natural because the praoperty with
which each region was originally classified was determined
by the amount of spatial activity. In addition, it 1is
important +to also maintain a consistency in the intensity
levels. This is of considerable importance at the edge of a
Tegion where there is a significant difference between gray
levels on either side of the edge. Any of a number of
measures of similarity could be used to determine a pixel’s
nearest neighbor. Define the similarity measure as ¥, then

all of the following are possible measures:

(1), ¥ (RLi, g3 FCEY, 7)) = €0, y) = £Li* g7y 1?

+ IMgli, ) = Mgti‘, 3212, (3-45)
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(23, ¥ (FCi, 3 €17, 37)) = IMg(i, ) - Mg(i’.J’)lz. (344}

(3. ¥R(F0L g #OL7 572 = Kol 01, JIMg01, §)

= f0if g MMgli‘ g 2L, (3-47)

where Mg is the spatial activity at pixel (i, ) as given by
equation (3-4}. The #first two functions ¥ are metric

distance measures between two pixels. ¥, is a measure of the

&0

distance in slope information and the intensity between tuwo.

pixels, while ¥, is a measure of the distance with respect
to slope only. ¥; is a measure of the difference in product
of the slope information and intensity between two pixels.
This is the measure chosen in the present hmork in the
application of the nearest neighbor criterion. The measure

¥3 can be interpreted from the following point of view
ID(E20x, y)) 1 = 28(x, Y (BF(xs y)/8x)2 +(BE(x, y)/B3y) 2 V2. (3-48)

¥, is therefore a measure of the slope of the intensity
function squared. This indicates that in regiaons of high
intensity the slope information is more heavily weighted
than in regions of low intensity.

The resulting adaptive nonlinear Kalman—-type +Ffiltering

equations are



&1

@Wolis gly) = EI — goCygdcilAplioCis, gl g
P P ] P

+ Balydglisgd, (3-49)
#ply) = PptyicplehPplydc,y + 2177, (3-50)

Pply+l) = Ap(I - g,¢ )ehIPpCy)AD + ByRpB,, (3-51)

for p = 1,2,...,k and (i, y#) is the position of the pixel
that is used far the previous state information. A block

diagram of the whole system is shown in figure 3-5.

VI. Interpolation Procedure for Initial State Determination

The final question that arises 1is, how can the
estimates of the initial points of a region be improved 1if
insufficient initial condition information is available?
The problem is compounded if there are a great number of
regions and no a priori information about the initial
states.

The solution proposed +for improving the initial
estimate in each region is by implementing a twe—dimensioaonal
interpolation scheme for the initial points in a region.

Consider the following model:

" wli, g+1l) = Aw(i, §) + Buli, §), (3-523

g€i,3) = c¢Twl(i, g} + dn(i, ). (3-53)

It is assumed that scanning will be done across each row

with the observations g(i,m) for m = 0, 1,...,} given. The
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prablem is to determine the best linear estimate of wl(i, y—p?
for p>0. Let wus denote the estimate of wl(i,j-p) as
Q(i.{—le). The praoblem aof finding the best linear estimate
af w(i, j—p) is one of determining the set of constants

a(i.,m} for m = O, 1,...,Jj such that:
@ei, g=ply) = ati,migli,m), (3-54)
which minimize the cost function:

ECw(i, j—p) - Q(i,J-le)JTQ[g(i,J—p) - Q(i.J-plj)]. (3-535)
for any pasitive definite matrix Q. I+ we substitute (3-04)
into (3-95) the result is,

ECwli, y=p) — ali.m)gli,.m>17@Q
Cwli, y=p) = ali, m¥gli, my1. (3-56)
Minimization of (3-56) requires differentiating (3-56) with
respect to the constants a(i, j) and setting the resultant
equal te zero. This yields the following equations.
ECw(i, j~p) — wli, j=pl PIgT¢i,m) = 0, (3-57)

for m = 0,1,...., . As in the one—dimensional case this

equation may be interpreted as an orthogonality condition.
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In a fashion comparable to that in two—dimensianal Kalwman
filtering: we would like to find a recursive technique for
implementing the interpoiation scheme. The recursive

formula for interpolation is given by,

Wi, g=ply) = K (i, g=p+17y) + L wl(i, y—p+1). (3-58)

In equation (3-58), w(i, j—p+1) is the one—stap
prediction of w(i, j—p+1) wusing the observations g{i.m),
m=0,1,...., j—p, with (i, j~p+1) the optimal previous state,
and w(i, j—p+1ij) is the Jj—1 optimal interpolation given
g(i,m), m= 0,1,....,)-p. We now need to find the necessary
constants K and L to satisfy (3-568). If "we substitute

(3—-58) into (3-57) we get,

ECw(i, y=p) — K @i, y—p+1t)

- L wl(i, j=p+1)1§7¢i,m) = 0, (3-59)

for m=0,1,...,y. Since w(i, j~p+1ly) is assumed to be the
optimal ,estimate of wl{j—p+1) given gli,m), m = O:.1,...., 4,
then it must satisfy (3-57). Now. substitute this into (3-

59,

- L @i, y=p+1)1§T (i, m) = O, (3-60}

for m = O, 1,...., . In order to solve for the coefficients K



and L consider the original system formulation in (3-53).
I+ it is assumed that A 1is a nonsingular matrix (3-60)

becomes:

ECA  wli, y=p+1) - A~'Buli, j=p) — K wli, y=p+1)

- L &Ci, y—p+12I3 Ci.m) = 0, @ = 0i....4 4. (3-61)

Now if we make a change.of variables, W =w — @ and then

e

add and subtract the term [A™' - KID(i, j-p+1) to (3-60) the

result is,

ECCA ' = KIZ(i, y=p+1) + [AT'= K — LIG(i, y=p+1)
- A"Bg(i.J—p)}ﬁr(i.m) =0 m=0,....J. (3-62)
4
Since we know that Q(i;J—p+1) is the one-step
prediction of w(i, j—p+1) wusing observations g(i.m), m =
O,...,4—-p and that Q(i,J—p+1|J) is the J=1 optimal
interpolation given g(i,m), m = O,..., J—-p, consider dividing

(3-62) intoe two parts. One part for m

0,....4~p and the

other part for m = y—p+1,....}§. First take m = 0,..., J—p.

EL(A™" —K)T(i, j—p+1) + [A ' = K — LIG(i, y~p+1)

- A 'Bu(i, y-p231§ i,m> =0, m = 0s..., y=p. (3-63)

By definition w(i, j~p+1} is the optimal estimate given the
okservations g(i,Q¥)...,gli, y—p?. Using the +fac% that

u(i, j—p) is independent of g(i,m) for m = O,1,....,j-p, and
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equatiaon (3-57) results in the following relatianship,

AT'-K-L =o0.

Now consider (3-62) for m = j-p+1l.,.... J.

-1

ELA™ - Klw(i, j—p+1)

~ A7'Buli, j~p21g (i, m} = O.

First, take the case when m = j—p+1. From

(3-53},

EXCA™" - KI(i, j—p+1) — A~ 'Buli, y—p)?

CLeTuwli, y=p+1) + d nli, yg=p+1217T = 0.

(3-64)

(3—-463)

(3-65) and

(3-64}

We know n is independent of W and uy, and since w is a linear

combination of g(i, j}.,

EXLA™ — KIW(i, g—p+123uT (i, yj—p+ldgc

- E{CAT'Buli, j-pd@T(i, y-p+12cd = O.

If we let, Efw(i, dw (i, y)1 = P(i, J), then

-1

EA~! - KIP(i, y—p+1)c

- ECA ' Bu(i, j-pluT(i, j—p+13c] = O.

From (3-52) and knowing that u is independent

(3-67)

(3—68)

of w and



ECuli, yj=plwTCi, y=p+1) = RB',

-1

{LA~' - KIP(i, j-p+1) - AT'BRBT>¢ = 0. (3-69)

Now take,

K = #(j~p). (3~70)

(3-70) is now satisfisd when

$(y) = A7'c1 - BRBTP (i, j+1)31. (3~71)

I+ (3-70) is +true then it will be shown that (3-56)

will hold for m = j—p+2,...,y. Fram (3-70} and (3-71),

A™' = Kk = AT'BRBTP (i, j-p+1). (3-72)

Substituting (3-72) inta (3-&45) requires that,

EXCATBRBTP ~'(i, y~p+1duli, j~p+1)

- A7TBu(i, y~p)rgT(isy) = O, (3-73)

for m = Jj—p+1,...., ). Now choose any value of m such as k so

that Jy~p+i €< k £ j. Then,

gli,m) = cTwl(i,m) + d nli,m). (3-74)



If equation (3-53) is solved for wl{i,m) with initial

conditions equal to w(i, j—p+1} the result is,
wl(i, m) = Nwl(i, j~p+1i) + FLul(i,m)1, for m> y—-p+l, (3-75)

where FL 31 is some function of ul(i,m). Therefore (3-73)

becomes.,

EEBRBTP™ (i, j=p+1)uw(i, yj=p+1)uwT(i, j—p+1INTc]

- ELBu(i, y=plwT(i, y-p+1INTcl = 0. (3-76)
If we summarize these results, we have.,

wli, yg=pip) = &(i, j—plwli, j~p+113)

+ EATY = @(i, g=p)I@Ci, j-p+i). (3-77)

and
(i, 4> = A'CI - BRBTP ™' (4, y+131. (3-78)

It should be noted that during the recursive estimation
procedure, estimates w(j—p+1) were determined along with the
values of P(i, j—p+1). It will be necessary to store these

valuyes to perform the interpolation.
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VII. Conclusions

The nanlinear adaptive recursive estimation procedure
is implemented by the two—-dimensional Kalman +$iltering

equations represented by:

EI-gp(gdcplApdy Cite, gol ju)

G plis g1y)

+ #p(3)gCi, g), (3-80)
Boly) = PplydepletPalyde, + 6217, (3-81}
PoCy+1) = ApLI = ol ichIPpCy)Ap + BpRpBp » (3-82)

where (i%*, j¥) 1is wused to denote the position of the pixel
that is wused for the previous state information. The
coeffients A p., Bp. QE are chosen to match the model of the
object distribution function and the degradation as
described by the image formation system. These coefficients

will be either constant or time—-varying depending on the

type of distortion present. The wvariance of the observation

&9

noise ¢2? is adapted at each pixel to account for the ’

response of the bhuman wvisual system to this noise. This
cauvuses the Kalman filtering equations to be nonlinear in
each region. A nearest neighber test is done prior teo
vpdating equation (3-80) to determine which of the
neighbors of a pixel should be used for the previous state
information. In addition, if insufficient knowledge of the
initial state is known then the two—-dimensieonal

interpolation scheme is implemented to abtain this



information.
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CHAPTER 4
EXPERIMENTAL RESULTS

I. Problem Formulation

The adaptive nonlinear Kalman—type filtering esquations

for two—dimensional signals are given by:

wolisr gty = [I ~ g (ydchIA @ i%, y%i )

+ @pCyrgli, gl (4—-1)

B0 = Polyie LehPplgdgyt 0217, (4-2)
Pply+1) = ApLI — @ )ctIPp( 2Ap + BpRpBp, (4-3)
where p = 1,2:,...:k. The coefficient matrices Ap, Bp r Rp

and ¢, are dependent on the structure of the image formation
system being modeled and (i#, j#) represents the pasition of
the pixel used #foar the previous state information. The

general procedure for the implementation of this restoratian

is described below.

_g Adaptive Nanlinear Kalman—Type Filtering Algorithm

Step 1. Calculate the masking function for
each image using equation (3-19).
Step 2. Divide the image into regions using the

divrectional derivative information given by
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(3—-24) through (3—-25).

Step 3. Determine the statistical infarmatian
for each regian accarding to (3-34).

a. Horizantal correlation coefficient, «p.
b. Vertical correlation coeffficient, g,.
Step 4. Using this statistical information calculated
in step 3 and known information about the peoint
spread function determine the Kalman filtering
coefficients Ap, Bp, ch.
Step 5. Implement the regional Kalman filtering scheme.
a. At each line i. scan line i+l to determine
which state vector and error covariance
matrices are to be saved and used as the
previous state information in line i. This
is done by using the nearest-neighbor
criterion in equation (3-43).

b. I# there is a lack of initial condition
information, implement the interpolation

scheme on the initial points in each region.

The implementation aof this adaptive nanlinear Kalman-—
type filter was performed on a DEC PDP 11/95% coaomputer. A
GENISCO Caolor Graphics Display System, supported by this
computer, was used to display the digitized images. All the
images used were previously digitized and contained 256
picture elements per lime and 25& lines per frame. The data

bases for the images in figure 4-ic and 4-1d were obtained
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from Bell Labarataries, Holmdel. New Jersey.

The form aof the autocarrelation function on each regian

R (7, &) = Apexpl-in, Tl — valcl3: (4-4)

for p = L,2 ..., k. Each Ap: X\py va are determined in step
3 ot the algorithm. The model for the distortion used was
consistent with that of Aboutalib, et al. £ti1. The
distortiaon is a model of the combination of horizontal
translation and vertical oscillatory vibration. This is one
of the many possible types of motion that occur in imaging
systems. The horizental translation is assumed to have an
extent of H pixels and the vertical vibration affects V

lines. The model for this type of distortion is given by

H-1 ¥
g{i, j) = L Z h{k.m}f(i-k, yj—m) + n(i, §J. (4-3)
k=0 m=0 :
The values of V and H used in the simulations are H =5 and

V = 2. It is also assumed that hi(k:m) = 1 far k = 0:1 and m

=0,...,5  Egquation (4-5) now becomes
i S
g(i, )} = I I fli-k:j—-m) + n(i, ). (4—63
k=G m=0

The noise 1is white, Gaussian with a mean of zera and a

standard deviation of 14. 142.



Recall that the difference equations #for the image

farmation system are given by

xCi, J*1) = Ax(i, ) + Bsli, ), (4-73

gCisyd = STxti, 4> + @lslis g) + nlis ). (a-8)

~ ~T

~ ~T
The coefficient matrices A, B, ¢, d are determined from

the equation (4-6)

0 0 0 0 O
A =lot o 0o o
0o 01 0 0
0 0 0t o
B =t-1000
[1 -1 00 Q]

c"=[10000] and 4T = [1 1].

The difference equations that represent +the object

distribution function formation are:

zoCis J+1) = @pzpli, g) + Spu (i, §), (4-9)

£0i, 43 = Tpzplis g), (4~10)

for p = 1.2,....k. The resulting coefficient matrices Q .
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S, T are determined from the wvalues af Ap, AR  + Ay in

equation (4-4).

Q@ = exp(—xhp). (4-113

s =21, (4-12)

ToTg = Hi (4-13)

where the elements of ﬁ are determined by

hym = exp(= Ay, Ck—m)). The composite model dynamic
equations are.

!p(i: J+ix = Apy_p(ia J} * Bpupli, g (4-14)

gli, gy = cpupli, gy + ndi, §i, (4—-15}

for p = 1.2.,....k. The coefficients for these composite

equations are calculated from the following relationships

Ap = |A B To| Bp =10

€p = [ET '_&_’TTp] . (4~16)

The coefficients in (4-16) are from equations (4-2}, (4-10).,
(4—-14), and (4-135).

In the masking function given by equation (3-2), ¢the
constant € = 0.35 and k = r = 1. The resulting farm of the

masking function is,



+1 J+i 1L, gy—C(p. qt h
Mer Ciag) =  E £ 0.35 Cimj (+im 11, (4-17)
i

Several different classes gf images were chasen to test
the validity of the proposed image restoration scheme. The
representative aof the first class of images is a simple
diagonal two—tone image shown in figure 4-1a. Figure 4-1b
is +the same image zoomed up by a factor of four to allow
claser examinatian of the effect of the distortion. The
zoom was performed on fthe upper left corner of figure 4-1a.
The second class of images is répresented by the woman shown
in figure 4-1c. The final class is that of written text and

is exemplified in figure 4-~1d.

{(a)
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(b)




hosen dot seq

(d)}

Figure 4~-1. Original pictures. The original pictures are
256x256 arrays of discrete points with each pixel linearly
quantized to 8 bits. The wvariance of each

image is;
(a) ¢2 = 2232, (c) o2 = 2694, and (d) ¢2 = 485.

The images of figure 4~1 were degraded wusing the
distortion described in equation (4-6) and the noise added
was white, Gaussian noise with a standard deviation of

14, 142. The degraded images are shown in figures 4-2a,

4—-2b, 4—~2c, and 4-2d. Again, the second image in figure 4-2

78



is zoomed by a factor of four. The degradation is clearly

seen in the zoomed portion of the image.

(al
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Figure 4-2. Images degraded with motion blur plus additive
white noise (¢2 = 200).

A second type of degradation is considered in order to
make another comparison with previously published results.
This degraded image is Fformed by simply adding white,
Gaussian noise to the original image. The noise was again
assumed +to have zero mean and a standard deviation of

14,142, The result is shown in figure 4-3.
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Figure 4-3. Image degraded with additive white noise (¢2 =
200).

The masking +function is determined +for each of the
images in figure 4-2 according fo step 1 of the algorithm.
The values for k and r, the coefficients that determine the
size of the neighborhood were both set equal %o ane. The
masking values are then used accaording to equation (3-20) to
determine ¢the visibility function, which in turn is used to
weight the variance of the noise in the HKalman filtering
equations. An example of the masking function for figure 4-

ib is shown in figure 4-4.



Figure 4.4, Masking function for figure 4-2c with k=r=1.

Each of the images is divided into regions in step
the algorithm. All of the images were divided into
regions in this step. In addition, figure 4-1b was
tested for the case in which it is divided into
regions. An example of the tesults of dividing figure

into two regians is shown in figure 4-5.

2 of

two
also
five

4-1ic
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Figure 4-3. Figure 4-2d divided into two regions.

The results of determining the statistical informatien

in step 3 of the algorithm are as follows:

Figure 4-la: R; = 1848. 7exp(~. 12171 - . 1221le¢l),
Regions = 2 Ry = 1990. lexp(—. 436171 ~ .4264lc1).
Figure 4-1c: R, = 2682. lexp(—. 108171 - . 160%9ic1i),
Regions = 5 Ra = 314 6exp(—-. 1994171 - .3106&61Ic1),



Ry = 393. 53exp(—. 47031r!| — .3826ic¢!l),
Ry = 219.45exp(—.  &512171 — .&084ic¢1),
Rs = 1221. Zexp(—-. 72417l -~ . &F6ic!),
Regions = 2 Ry = 2667. Rexp(—. 02731711 — .01%1llicl).,
R, = 54%.%F8exp(-. 412171 ~ .39%4tcl).
Figure 4-1id: Ry = 673.Cexp(~. 1017 — . 1271c1),
Regions = 2 Ry, = 795. 25exp(—. 8S6IT7iI — . 701211},

From these autacorrelation functiaons +the appropriate
values were determined for the coefficient matrices Ap: Bp.
g; . The actual filtering procedure is now implemented and

the results are presented in the next section.

I1I. Results

In order to compare the results of the adaptive
nonlinear Kalman—type filtering algorithm with the existing
state of the art, the results at several different stages of
the ¢iltering process are presented. A calculation af the
average cummulative mean square error between the griginal
image and the restored image was determined to give same
quantitative assessment of the improvements. 'The errar uas
determined as follows:

N-1 M-1

Error =8%= 1_ £ I [#(i.g) - £Ci. 12, (4-17)
NM i=0 4=0
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where N is equal +to the array size in the horizontal
direction and M is the array size in the vertical direction.
For thesa images, M = M = 20564.

Figure 4-6 shows the first stage in the réstoration
praocedure. This is the implementation of the Aboutalib, et
al. 21 algorithm. It should be noted that this figure
demonstrates twa of the problems that exist when an image
has large differences in intensity levels. The filter does
not respond as quickly as the intensity levels change and
therefore the edges are not restored ta their original
sharpness. In additian. when there is a sudden change 1in
intensity ar there are poor initial conditions, a ringing is
present while the filter attempts to adapt to the new
conditions. The errar that 1is present in this restored
image is 3570. 9.

Figure 4-7 1is the result of adding to the first
procedure the adjustment in the noise wvariance via the
visibility function. As is expected the edges are sharper
than those of figure 4-4&. The error., however, has only been

reduced. It is equal to 1994, 55.
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Figure 4-6. Restored image of figure 4-2c wusing the
Aboutalib, et al. U1l algovrithm.

Figure 4-7. Restored image of figure 4-2¢ wusing the
visibility function.
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The nanlinear adaptive Kalman—%uype *.ltering algorithm
is now implemented wish the numbewr of tegions equal ¢to two
snd the result is shown in +figure 4-8, The image is
improved and the overall error is reduced considerably to
795. 24. The edges in figure 4-7 are still not as crisp as
one might hope for. An improvement is made by adjusting the
number of regions to a more nearly optimal number Ffor £his
image. The result of changing the number of Tegions from
two to five is shown in Figure 4-9, The edges in this
figure are crisper and the restored image does match the

original more closely as the error is now equal to 653. 2.

L
4

Z

Figure 4-8. Restored image of +figure 4-2c wusing the
nonlinear adaptive Kalman—type filtering algorithm with the
number of regions equal to two.



Figure 4-9  Restored image of figure 4-2c using using the
new algorithm with the number of regions equal to five.

The results af restoring figure 4-1d with the Aboutalib
et al. £11 algorithm results in figure 4-10. The error is
1409, 2. Mow implementing the new restoration scheme on this

image yields a restored image with an error equal to 725. 95.

The restored image is shown in figure 4-11.

8%
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Figure 4-10. Restored image of figure 4-2d wusing the
Aboutalib, et al. [1] algorithm.

2 glven trans
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Figure 4-11. Restored - image of figure 4-2d using the new
algorithm with the number of regions equal to twe.



Finally, to get a better idea of what is actually
resulting in the restored image at an edge, consider figure
4-12a and 4-12h. Figure 4—-12a is the rvesult of applying the
nonlinear adaptive Kalman filtering algorithm to the
distorted image in +figure 4-2a. If we examine the zoamed
configuration, it is seen that the edge has been improved.

althaugh it is still not pertect. The error for this case

is 100.87.

. ot LA (9 A0 I OEIAAMT AR T U 000 Db 038 0504 L4300 D000 0403000 Db ab 01 bt a0 LDt 00 B B
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(a)
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(h)

Figure4-12. Restored image aof figure 4—-23 using the new
algorithm with rtegions equal to two. Part (b) is zoomed by
a factor of four.

The #final comparisaon was done on the results of
restoring figure 4~3. This is the case where the image was
degraded only with additive noise. Figure 4-13 shows the
result of applying the restoring filter to figure 4-3 if it
includes just the adaptation to the noise via the visibility
function. The result is fairly noisy and tie edges are

somewhat blurred. The evrror is 3534.5. The result of



restaoring this same image with %he adaptive nanlinear
Kalman—type filter is shouwn in figure 4-14. The image was

divided into five regions for this test and the resulting

ervrar was 837. 01.

Figure 4-13. Restored image of +figure 4-3 with the
visibility function.
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Figure 4-14. Restored image of figure 4-3  with
algorithem and the number of regions equal to five.
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CHAPTER 3
CONCLUDING REMARKS

A ne@ recursive technique is presented in this
dissertation for the restoration af images degraded by
general image formation distortians and additive white
noise. A vector difference equation model 1is wused ¢to
represent the degradation in the image ?ormation system.
This type of description is easily adapted to @ variety of
applicatians where degradation oaccurs. The difference
equation coefficient matrices [A: B, cT, d'1 can be either
constant or space-variant. Difference equation models are
also used ta characterize the object plane distribution
function. The object plane is partitioned into regions
based on the amount of spatial activity in the image.

It is shown that each of the regions can be wuniquely
characterized by the second order statistics of the region.
The obgject plane distribution function fp(i., y? for the pth
region is generated at the autput of a linear system whose
impulse respaonse 1is determined by the avtocoaorrelation
function characterizing the regian. The input to this
system is a Gaussian, white noise saource.

The above two difference equation models are cambined
tg +faorm a composite system of difference equations for each
region.  Recursive estimation techniques- are applied %o

these composite difference equation models and the result is

S



2 nonlinear adaptive Kalman—?gpe filter described by the

equations

wali, yty) = I = dpCg2cplApup(ise, gl g3ty
+ 404390, g, (S5-1)
Pply+l) = AplI = gl lcplPp(ydAp + BpRpBp: (5-3)
for p = 1.2,.. ..k, w (i, jI1}) is the state vector, and Ap,

Bp. Rp g; are the coefficient matrices specified by the
image formation system degradation and the statistics of the
input object plane distribution function. The wvariance of
the additive noise is represented by o2 and Pp(y) is the
estimation error covariance matrix.

I+ the images fo be restored are to bhe used by human
agbservers it 1is desirable to account for the human Jisual
system as part of the receiver characteristics. This is
accomplished by weighting the statistics of the additive
white neise by a wvisibility function. The wvisibility
function 1is a subjective measure of the wvisibility of
additive noise in an image by the human visual system. The
variance of +the observaftion noise ¢2 is adjusted at each
pixel during the implementation of +the filter making the
scheme nonliinear in each region.

Two additional Features are added $o the adaptive

nonlinear Kalman—-type filter to account for inadequacies 1in

the implementation phase. It is shown that it is not always

24



2?7

desirable to choose the state vector of pixel (i, )—-1) as the
previous state wvector for pixel (i, j). A nearest neighbor
criterion is proposed to determine which one of the state
vectors of a previously processed pixel shouwld be uvsed as
the previous state vector.

Finally, if there is insufficient information about the
initial conditions for the state vector Qp(i.J) or the error
covariance matrix Pp(j), an interpolation scheme is proposed
to improve the estimates of the first points in a region.
In summary, +the adaptive nonlinear Kalman-type filtering
scheme developed in the present work offers four primary
improvements:

(1). The use of the visibility function to

incorporate the properties of the human visual
system as receiver characteristics.

(2). Partitioning of the image to allow for more
accurate modeling of the second order statistics
of the object plane distribution function.

(3). A nearest neighbor algorithm is vutilized
to determine the best previous state at the
boundaries and in regions of high spatial
activity.

(4). An interpolation scheme is provided for the
improvement of initial condition information.

Implementation of this adaptive nonlinear Kalman—type
filtering scheme was successful. Three types of images were

used in the testing procedure, a simple geometric #figure,



the face of a woman, and the image of a written text.

The cumulative mean square error,tg, calculated for the
images testored by the adaptive nonlinear Kalman—type filter
showed improvement over the images restored by the previous
recursive tetoration schemes. Employing such an algorithm
on the degraded imagé of figure 4-2c yields a value of 59.25
per pixel for 5' . The restoration of this same image
using the new adaptive nonlinear Kalman—type filter with the
number of regions equal to two yields 28.2 per pixel for

€. Changing the number of regions to five reduced the
error to 25.5 per pixel for €.

The result of restoring the image of written text in
figure 4~2d with the new filter is also encouraging:; the

error is 26.9 per pixel. The lowest error is seen in the

98

restored image of the simple geometric image in figure 4—

12a. The error was only 10 per pixel. This is to be
expected as there is wvery little spatial activity in the
image.

It is apparent from these results that this method of
image restoration provides encouraging results. It aiso

produces a general formulation so that it is easily adapted

to a large variety of images.



X

10.

i1

12.

Bibliograph

Aboutalib, &, M. S. Murphy, and L.M. Silverman, "“Digital
Restoration of Images Degraded by General Motion
Blurs, " IEEE T. gn Automatic Control,
AC-22(3):294-302, June 1977.

Anderson: 6.L., and A.N. Netravali. “Image Restoration
Based on a Subjective Criterion, " IEEE T. on

Systems, Man and Cybernetics, CMS—-6(12):845-853,
December 1976.

Andrews, H.C., "Digital Image Restoration: A Survey."
Camputer, 7(35):36—45, May 1974.

Andrews, H.C., and B.R. Hunt, Digital Image Restoration.
New Jersey:Prentice-Hall, 1977.

BJdrikis, Z.L., "Wisual Fidelity Criterion and
Madeling, " Praoc. IEEE, &Q{(7):771-77%9, July 1972.

Cannan. T.M., "Digital Image Deblurring by Monlinear
Homomorphic Filtering, " Ph.D. thesis, Computer
Science Department: University aof Utah.

Salt Lake City, Utah, 1974

Cole, E.R., "The Removal of Unknown Image Blurs by
Homomorphic Filtering. " Ph.D. thesis: Department
of Electrical Engineering, University of Utah,
Salt Lake City, Utah, 1973.

Ekstram, M. P., "Numerical Image Restoration by the
Method of Singular—-Value Decompostion.” Proc.
Seventh Hawaii Intl. Conf. on Systems Science:
Honolulu, Hawaii, 13-15, Janvary 1974.

Franks, L.E., "A Model for the Random Video Process".,
BSTJ, 45(4): 609-630, April 19266.

Frieden, B.R., "Restoring with Maximum Likelihood and
Maximum Entropy, " JOSA, 62(4):511-518, April 1972.

Frieden, B.R., "Image Restoration by Discrete
Deconvolution of Minimal Length, " JOSA,
&4 (3): 682-486, May 1974.

Frieden, B.R., and J.J. Burke, "Restoring with Maximum
Entropy II: Superresolution of Photographs of
Diffraction~Blurred Images." JOSA,
62¢(10):1201~1210, October 1972.

97



13.

14,

13.

16.

17.

18.

12,

20.

21.

22.

23.

24,

235.

100

Galdmark, P.C., and J M. Hollywaad. "A Neuw
Technique for improving the Sharpness of
Television Pictures, " Proc. IRE, 39:1314-1322.

1951,
Graham; R.E., "Snow Removal — a Noise-Stripping
Process for Picture Signals." IRE T an

Information Theory, IT-8:129-144,
Octaber, 1962.

Gray, R. M., "Toeplitz and Circulant Matrices:
A Review, " Report SU-SEL-71-032:;Stanfard Univ..
California, 1971.

Habibi, A., “"Two~Dimensional Bayesian Estimate of
Images, * I1EEE Proc. 60(7):878-883,
July 1972

Harris, J.L.: "Image Evaluation and Restaoration. "
JOSA, 56(3):567-574, May 19266.

Helstrom: C.W., "Image Restoration by the Method of
lLeast Squares, " JOSA, 957(3):297-303,
March 1967.

Huang:, T7.8S.. "Image Enhancement: A Review, "
Opte—~Electronic. . 1:49-99, 1969.

Huang, T7.S5.; W.F. Schrieber; 0O.J. Tretiak., "Image
Processing, " Proc: IEEE, 59(11):1386—-1408,
November 1971.

Hunt, B.R., "The Application of Constrained Least
Squares Estimation to Image Restoration by
Digital Computer, " IEEE T. on Camputers,
C-22(9):805-812, September 1973.

Hunt, B.R., "Digital Image Processing." Proc. IEEE,
&6304): &93-708, April 1975.

Hunt, B.R.., "Bayesian Methods in Monlinear Digital Image
Restoration., " IEEE T. on Computers,
C-26(3):219-229, March 1977.

Hunt, B.R.. and H.J. Trussell, "Recent Data on Image
Enhancement Programs, "™ Proec. IEEE,
61¢4): 466, April 1973.

Jain, A. K., "A Semicausal Model for Recursive
Filtering of Two—-Dimensional Images." IEEE
T. on Computers, 26(4):343-350, April 1977.



26.

27.

29.

29.

30.

31.

32.

33.

34.

35.

36.

37.

101

Johnston, E.G.. and A. Rosenfeld. "Geometrical
Operations on Digitized Pictures, "™ in Picture
Processing and Psychopictorics, (B. 5. Lipkin and
A. Rosenfeld, eds.), pp. 217-240, New York:
Academic Press, 1970.

Keshavan, H.R., and M. D. Srinath, "Interpolative Models
in Restoaratieon and Enhancement aof Moisy
Images., " IEEE T. on Acoustics, Speech, and
Siqanal Processing, 25(&):525-534, December 1977.

Kondo, K. Y. Ichioka, and T. Suzuki. “"Image Restoration
by Wiener Filtering in the Presence of Signal

Dependent—Noise. "™ Applied Optics, 16(9):2554-2558,
September 1977.

Kovasznay, L.S.G., and H. M. Joseph. "Image
Processing., " Proc. IRE. 43:540-570, 1955.

Krishnamurthy, E.V.: "Recursive Caomputation of the
Pseuvudo—Inverse for Applicaions in Image
Restoration and Filtering, "Univ. af Maryland,
Computer Sciences Tech. Report Series - 9580,
September 1977.

Levi, L., "On Image Evaluatiaon and Enhancement, *
Opt. Acta, 17(1):59-74. January 1970.

Limb, J.0., and C.B. Rubenstein, "On the
Design of Quantizers for DPCM Coders: A
Functional Relationship Between Visibility,
Probability and Masking.," IEEE T. gan
Communications, COM-26(5):573-578., May 1978.

MacAdam, D.P.., "Digital Image Restoration by
Constrained Deconvolution., "™ JOSA, &0(12):
1617-1627, December 1970.

Martelli, A., and U. Montanari, “Optimal Smoothing in
Picture Processing: An Application to
Fingerprints, " Proc. IFIP Congr., Booklet
TA-2, 86-90, 1971.

Merserau, R., and D. Dudgeon, "Two—-Dimensional Digital
Filter, " Proc. IEEE, 63(4):610-6423, April 1975S.

Nahi, N.E., Estimation Theory and Application,
NMew York:R.E. Krieger Publishing Ca.. 1276&.

Nahi, M. E., and T. Assefi, "Bayesian Recursive
Image Estimation,®” IEEE T. on Computers,
C-21(71:734-738, July 1972.



38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.

102

)

Nahi. M.E., and C. A. Francoa. “Recursive Image
Enhancement — Vector Processing." IEEE T. on
Cammunicatiaons, COM-21(4):305-311, April 1973.

Metravali. A.N., and B. Prasada; "Adaptive Quantization
of Picture Signals Based on Spatial Masking. "
Proc. IEEE, &5(4):536—-548, April 197S.

O‘Handley, D.A., and W.B. Green. "Recent
Developments in Digital Image Processing at the
Image Processing Laboratory at the Jet Propulsion
Laboratary, " Proc. IEEE, &4&0(7):821-828, July 1972.

Oppenheim: A. V., R. W. Schafer, and T.G6G. Stockjam, Jr..
"Nonlinear Filtering of Multiplied and Convolved
Signals, " Proc. IEEE., 96(8): 1264-12%1,

August 1968.

Phillips, D. L., "A Technique for the Mumerical
Solution af Certain Integral Equations of %the
First Kind, " J. aACM, 9:84-97, 19462.

Polak, E.. Computationsl Methods in Optimization,
New Yark:Academic Press. 1971. -~

Prewitt, J. M. 5., "Object Enhancement and Extraction.”
in Picture Processing and Pschapictorics,
(B.S. Lipkin and A. Rosenfeld, eds. ), pp. 75-14%9,
New York:Academic Press, 1970.

Richardson, W.H., "Bayesian—Based Iterative Method
of Image Restoration." JOS4, 62(1):55-5%9,
January 1972.

Robbins, 6.M.:. and T.S8. Huang. "Inverse Filtering far
Linear Shift-Variant Imaging Systems,” Proc. IEEE,
&0(7):862-872, July 1972.

Roetling:, P.G., "Image Enhancement by MNoise
Suppression., " JOSA, 60(&):867-8469, June 1970.

Rosenfeld, A., and A.C. Kak, Digital Image Processing.,
New York:Academic Press, 1976.

Rubenstein, C.B., and J.0. Limb, "On the
Design of Quantizers for DPCM Coders: Influence
aof the Subjective Testing Methodalogy.,™ IEEE T.
on Communications, COM-26(35):565-572,
May 1978.

Sawchuk, A. A, "Space-Variant Image Motiaon
Degradations and Restoration." Prec. IEEE,
&0(7):854-861, July 1972.



S1.

93.

o4,

°5.

S4.

S57.

58.

99.

&0.

103

Sawchuk. A.A., "Space—Varaint System Analysis
of Image Motion, " JOSA, 63(7):1052-1063.
September 1973.

Sawchuk: A.A., "Space-Variant Image Restaration
by Coordinate Transformation." JOSA,
&4(2): 138144, February 1974.

Slepian:, D.:. Linear Least—Squares Filtering of Distarted
Images, " JOSA, 57(7):918-922, July 1967.

Stockham, T.6., Jr., "Image Processing in the
Cantext of a Visual Madel., " Proc. IEEE,
60(7):828-841, July 1972

Stockham: T.6.. Jr., R. Ingebretsen, and T.M. Cannon,
"Blind Decanvolution by Digital Signal
Processing, “ Prog. IEEE., &3(4): 679692,

April 19735.

Thiry, H., "Same Qualitive and Quantitive results on

Spatial Filtering of Granularity.," Applied Optices,
3:39-43, 1964.

Troy, E.B., E.S. Deutsch, and A. Rosenfeld, "“Gray-Level
Manipulatiaon Experiments for Texture Analysis,"

IEEE T. on Systems, Man, and Cybernetics,
SMC-3(1):21-98, Januvary 1973.

Twomey, S., "On the Mumerical Salutiaon of
Fredolm Integral Equations of the First Kind by
the Inversion aof the Linear System Preduced by
Quadrature, ® J. ACM, 10:97-101, 1963,

Twomey, S., "The Application of Numerical Filtering
to the solutiaon af Integral Equations Encountered
in Indirect Sensing Measurements," J. Franklin
Inst., 297:95-109, 1946S5.

Woods, J.W., and C.H. Radewan, “Kalman Filtering in
Two—-Dimensions, " IEEE T. on Information
Theary, IT-23(4):473-482, July 1077.



	Iowa State University
	From the SelectedWorks of Sarah A. Rajala
	June, 1979

	Adaptive nonlinear image restoration by a modified Kalman filtering approach
	tmpo4QGEY.pdf

