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within tight touchdown dispersions.

I. Introduction

HE flight control system (FCS) in modern aircraft should be
§ A designed for adequate performance and stability under both
pormat and failure conditions (such as control surface failures).
Control reconfiguration in the face of such failures can be classified
into two broad categories: 1) reconfiguration based on fault detection
- isolation and accommodation [1], and 2) reconfiguration based on
online learning of the system dynamics and using it in an adaptive
4 controller. The main disadvantage of the first approach is that it can
§ handle only anticipated abnormalities/failures. The second approach
| has the advantage that it has the potential to handle unanticipated
sbnormalities/failures as well. Neural network-based controllers [2—
§] are particularly suited to the second approach because of their
| ability to learn online. They have thus become very popular. Before
| describing the proposed method, a brief review of neural network-
based controllers for aircraft is given.
| Pesonenetal. [2] present an adaptive neural network controller for
lngitudinal dynamics of a general aviation aircraft. The baseline
| controller is an inversion-based design, which achieves control
{ decoupling between velocity and pitch attitude. The inversion
{ controller incorporates a priori knowledge of the aircraft dynamics.
1 Adaptive neural networks correct modeling errors in this controller
,’bY modifying the outer loop proportional integral derivative
Jf ‘mmands. A main limitation of this approach is that it does not
4] Present any architecture for trajectory following as only the pitch rate
{ &d velocity loops are designed (i.e., innermost loops). Ferrari and
f Stengel [3] proposed a nonlinear conirol system comprising a
{etwork of networks which was taught by a two-phase learning
e
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This paper presents an adaptive backstepping neural controller design for aircraft under control surface failures.
The control scheme uses radial basis function neural networks in an adaptive backstepping architecture with a full
state measurement for trajectory following. The requirement for stability is separated from the network-learning
part. This allows us to use any function approximation scheme (including neural networks) for learning. For the
radial basis function neural networks, a learning scheme in which the network starts with no neurons and adds new
neurons based on the trajectory error is developed. Stable tuning rules are derived for the update of the centers,
widths, and weights of the radial basis function neural networks. Using Lyapunov’s theory, a proof of stability in
the ultimate bounded sense is presented for the resulting controller. The fauli-tolerant controller design is
illustrated for an unstable high performance aircraft in the terminal-landing phase subjected to multiple control
surface failures of hard over type and severe winds. The design uses the full 6-degrec-of-freedom nonlinear aircraft
model, and the simulation studies show that the above controller is able to successfully stabilize and land the aircraft

procedure realized through a novel training technique and an
adaptive critic design. This technique requires a significant design
effort for linear controller design as well as training the networks.
Calise et al. [4] developed a direct adaptive tracking control scheme
for reconfigurable flight control for tailless aircraft using neural
networks and applied it to design the CAS (control augmentation
system) of an X-36 aircraft under control surface actuator failures.
Adaptive backstepping (Krstic et al. [5]) is a well-known design
technique which can be applied to control nonlinear uncertain
systems. More recently, Hovakimyan et al. [6] consider adaptive
output feedback control of uncertain nonlinear systems, in which
both the dynamics and the dimension of the regulated system may be
unknown. However, it is assumed that the relative degree of the
regulated output is known. They show that it is sufficient to build an
observer for the output tracking error in case the states are not
available for feedback. The error signals are ultimately bounded as
shown through Lyapunov’s direct method. It is assumed that for the
outputs considered, the zero dynamics of the system are stable. The
theoretical results are illustrated in the design of a controller for a
high-bandwidth attitude command system for an unmanned R-50
helicopter. The neural network representing the approximate inverse
dynamics must be trained offline.

In the recent work of Shin and Kim [7], an adaptive controller
based on neural networks, which compensates for the effects of the
aerodynamic modeling error, is proposed and subsequently applied
to a full dynamic model of an F-16. The major component of the
control signal is generated by an inversion design, which is made
robust by a neural network, which corrects for the modeling error.
The neural neétworks require gradients of the preceding network
outputs with respect to some of the state variables increasing
complexity of the controller. A different approach is taken to the
problem of control design for nonaffine plants in Boskovic et al. [8].
They differentiate the system equations and show that it is possible to
synthesize a controller for the resulting higher order system, which is
affine in terms Qf the derivative of the control signal. However, a
drawback of -this approach is that the class of nonaffine models
considered contains unknown parameters that appear linearly as

“products with the nonlinear terms. Further, it is assumed that the
nonlinearities themselves are known perfectly and introduced in the

update rule for the uncertain parameters.
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Recently Ge and Zhang [9] developed an adaptive controller for
single input/single output (SISO) nonaffine nonlinear systems using
multilayer neural networks. When the system states are not available,
they show that it is possible to design a high gain observer to obtain
them. Their controller with suitable update rules results in all signals
being ultimately bounded. The system is assumed to have a strong
relative degree less than its order and its zero dynamics are stable.
The key assumption used by them is that the plantinput gain does not
change sign and is bounded. The assumption that zero dynamics are
stable may not be generally true for nonlinear systems and limits the
application of this approach. In this paper we show how by using
some of the same assumptions it is possible to use adaptive
backstepping and overcome the limitation in [9].

Bugajski and Enns [10] have used the backstepping approach for
nonlinear dynamic inversion control. A feature of this®pproach is to
do away with the demanded derivative of the state at each step of the
dynamic inversion process and replace it with a signal proportional to
the error in the state. The nonlinear dynamic inversion is made robust
by these proportional feedback gains. This removes the problem of
high frequency signals arising out of numerical differentiation
propagating down the neural network controller and causing
undesirable actuator saturation. The approach requires that the
control designer separate the plant dynamics into “fast” and “slow”
time scales. The stability of the system depends on achieving
adequate separation in the time scales. However, under large changes
in the aircraft dynamics, the feedback gains of the system may not be
sufficient to stabilize the system because the inverse dynamic model
of the aircraft is not adaptive. Higher gains could be used to offset

this, but may excite high frequency unmodeled dynamics in the
plant.

It is to be noted that in all of the above control methods some
a priori knowledge of the plant is needed. This is introduced in the
form of an approximate inverse in the case of Calise et al. [4],
Hovakimyan et al. [6], and Pesonen et al. [2]. Ferrari and Stengel [3]
directly absorb the linear controller into the neural network during
the offline training. In the case of Shin and Kim [7] plant knowledge
is introduced as an affine approximation used to compute the
pseuidocontrol signal in the backstepping process. In Boskovic et al.
[8] this takes the form of perfect knowledge of the nonlinearities
appearing in linear combination with the unknown parameters.
Furthermore, in all these approaches the underlying neural network
structure is fixed a priori and does not vary during the adaptive
control phase. This may tend to make the size of the network large.
One approach to tackle this issue is the variable structure neural
networks of Liu et al. [11], where the number of basis functions can
be either increased or decreased with time. The algorithm makes a
compromise between orthogonality and smoothness when adding or
removing a neuron. A different approach is taken in Lu et al. [12]
where aneuron is added based on the novelty of the incoming data in
the input space.

Recently, we presented preliminary results for developing an
online backstepping neural controller for handling actuator failures
during the landing maneuver under severe winds [13]. In this, we had
considered only the aircraft longitudinal dynamics and the failure
was in the elevator (both left and right). Stability results were
presented for this controller. In this paper, we extend the above
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results to the full 6 degrees of freedom nonlinear dynapy,
(including both longitudinal and lateral dynamics) and show thatg
online backstepping neural controller can be designed with Stable

adaptive tuning rules for trajectory tracking control of alreryh |
executing a landing maneuver under control surface actuator Tailygg :

(elevator and ailerons). Both single and double actuator Stucky,

failures have been considered. e C

The architecture of the proposed backstepping neural controllg
shown in Fig. 1 and is called adaptive backstepping neural Control,
(ABNC). It can be seen from Fig. 1 that the scheme has four neyy
networks in a cascade. It is noted that Johnson and Kannan [ig
proposed a cascade structure for adaptive control of helicopters, Ty
number of neural networks required depends on the relative degreej
the output (i.e., the number of times the output is differentiateq,
make the control input appear in the equation). All the networ
receive the aircraft state vector as input apart from their individy
inputs. Network NNI is innermost’ and produces the elevay,
aileron, and rudder control signals. The cascade terminates in NNy
whose input is the desired aircraft output we wish to control durig
the landing phase (here, altitude and cross track deviation). Thisise |

integrator backstepping process and is described in detail in Sec. 1 i
The individual network leams the inverse nonlinear dynamics of §

each stage. The parameters of each of the neural networks are adapte
by using suitable error signals derived from Lyapunov’s theory. T
stability proof presented here guarantees the ultimate boundedness
all signals in the closed loop system.

This paper is organized as follows. Section II presents i
adaptive backstepping neural controller design. The implement
tion and update rules for the parameters of the cascaded neunl

networks are presented. The assumptions used to derive the result §

are discussed and a theorem on the stability of all the signals in e

ABNC is stated along with a discussion on the significance of the §
design gains. The proof of the stability theorem using Lyapunot{

arguments is given in the Appendix. A description of the aircraft

model and the landing task along with the requirements oif

touchdown dispersions (called “pill box™) is given in Sec. I

Performance evaluation of the ABNC for the landing task withad |-
without failures is presented in Sec. IV. The conclusions &}

summarized in Sec. V.

II. Adaptive Backstepping Neural Controller Desigh |
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In this section, we present the design methodology for the adaptive |
neural network aircraft controller using the backstepping approach §
The integrator backstepping design technique was proposed by g
Kanellakopoulos et al. [15]. Before discussing the controller desigh }

a brief description of the aircraft model is given.

A. Aircraft Equations of Motion

In this paper, we shall follow the formulation of the equation’ o |

motion as given in Bugajski and Enns [10]. They are
j: = f(x" ll)

where the state vector is
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Fig. 1 Adaptive backstepping neural controller architecture.
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e output is 1 = [B » &k v]f €R'andleR'. feR'" The
components of the state vector retain their LlSL.lal meaning [10]. The
t control vector & consists of the el;vagor, Fhe aileron, the rudder, and
he throttle in that order. The objective is to design a controller to
} ack a given smooth reference trajectory Y, w{ith bounded errors
1 ysing state feedback. In shorthand vector notation Eq. (1) can be

pwritien as

X, =F(p.q.r,a,B.V,h,6,5,)
X, =Fy(p.q.r, 11,0, B, v,V h,u) )
X:;:FS(p’q’r*M’a:ﬂvy’V9h18=6p) X4=F4(X,)/,V)

i should be noted that the uncertain terms in Eq. (2) are due in the
1 jerodynamic force and moment coefficients. Further, the throttle 4,
+ o thrust 7 mapping appearing in these equations is also assumed to
e uncertain. The dependence of the aerodynamic and thrust force
and moment coefficients with respect to the elements of the control
vector is assumed to be nonaffine.

B. Controller Design Methodology
' Equation (2) can be written implicitly in terms of x and u as

hi(xuX)=X,—F (x,u)=0

hy(x,u, 5(2) = Xz — Fy(x,u) =0

hy(x, u,j(3) =X;—F;(x,u)=0
hy(x,X,) =X, — Fy(x) =0

©)

. Assumption I: The Jacobian matrices

aF] (x, Ll)
9(84,9,.6,)

an(x, .72'3)
¥(p.q,1r)

3F3(x, M)
(.. 5,)

8F4(x, lt)
a(x v

1 bave nonzero determinant for all (x,x) € U, where U € k' is a
Ffompact set,
L Assumption 2: The desired trajectory and the corresponding states
A continuous first derivatives ¥, x¢ € C! and these derivatives
tbounded [3,4,6,7]. Also, the desired trajectory itself is bounded.

Nonlineqr Dynamic Inversior. (NDI)
Tht? functions Ay, ..., h, in Eq. (3) are the implicit form of the
q”agons of motion. Using the implicit function theorem on these
Utions, there exist functions K;, i = 1, ..., 4 such that

PASHILKAR, SUNDARARAJAN, AND SARATCHANDRAN 837

v = Ky(X,. V)
(1@, SP]T = K:(p.q.r.B. X,.v. V. h8)
(p. g, 17" = K> (X, pc. By, V. how)
[65.8,.8,]T =K (p.g,r.a. BV, b, X, 5,)

The above equations represent the exact inverse functions of
Eq. (2). The controller consists of evaluating the above multivariable
vector functions starting from K, through to K in that order to obtain
the various control signals (u). The functions have to be evaluated
with the desired state derivatives X . i=1,...,4. The desired state
vector is partly obtained from the output vector ¥ and from Eq. (4).

As discussed in [10,16], the NDI controlier consists of evaluating
the inverse functions K; by setting the desired state derivatives equal
to signals proportional to the state trajectory error. Toward this end,

we define the pseudocontrol variables v;, i = 1,...,4.
Uy —'Flel U4 “P4€4
Vi=|vn |=| -Te | Vo= v | =| —Tses
U3 —Tie; 3 —Tses
Uy —r7€7
v ~I'pe
V3 — Vg — “Fgeg . V4 — 1o - 1010
Ve —Tyeo Uy =Iey

, ®)
where I'; are the gains to be designed and e; are the components of the
error vector

e; =x; — x4, i=1,...,11 (©)

This ensures that the states converge to the desired values and the
controller is robust to external disturbances. We denote this
controller by :

[X*, V*]T =K,(V,, V) ‘
[*, e, 851" = Ks(p,q, 7. B, Vs, v, V. 1. 8)
P, q* )T = Ky,(Vy, .0, By, V, hw)

62,85, 8 = K\ (p.q.r ot B, V., V1, 6,)

)

The-asterisks on the left-hand sides are used to indicate that these
controls are obtained by evaluating the exact dynamic inverse
functions.

The robustness of the NDI controller described above depends on
the gains I'; and an exact knowledge of the system inverse dynamics
in Eq. (4). In pgoblems where the plant dynamics is uncertain, large
gains may be required to maintain stability of the NDI controller
under rapid changes in the plant (e.g., partial loss of control
effectiveness). The robustness of the controller can be enhanced if an
online learning process is introduced. In this paper we show that
neural networks can be used with suitable tuning rules to obtain a
controller robust to large changes in the plant. It is also shown that a
neural network-based fault-tolerance controller can be designed
without the need for a fault detection and identification (FDI)
scheme.” The stability of the neural network controller is
demonstrated using Lyapunov’s theory. The first step consists of
replacing functions in Eg. (7) with neural network function
approximators.

2. RBF Approximation for the Inverse Functions

In this section, the procedure for approximating the desired inverse
functions K; using radial basis neural networks (RBFN) is described.
If the RBFN input vector is x, then its output y is

y=Wot D Wi y(x) = Wy + W - d(x) ®
i=1

In the above equations m is the number of nctrons in the hidden
layer, W,, is the network bias, and W, are the neuro. weights (W is the
vector of weights and @ the vector consisting of basis functions). The
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radial basis neural network has the Gaussian basis functions
"¢ = exp(—||lx — m;|*/o?). The quantities jz; and o, represent the ith
neuron center vector and its width, respectively.

Thus, the inverse functions in ‘Eq. (7) are replaced by neural
network stages to arrive at adaptive backstepping neural controller
architecture for uncertain systems (Fig. 1). The stages are
implemented as

AT = NNY(V,L V) = Wy + Wi Dy (V,, V)
[n?, o, Sﬁ]r =NN;(p,q,r.8,Vs5,y,V, 1,8 = Wm
+ Wids(p.q.r, B. Vs, v, V. 1, 65) |
(P! g "1 = NNy(Vo, o, By, Vo o) = Wy ©)
+ WDV, 1. By, V., 82, 8,)
(84, 84,847 = NN, (p, 4. 7,0, B, V., b, V., 8,) = W,
+ Wii(p,q, .0, B, V. 1, V1,8,)

where W, are estimates of the network bias terms, Wi are the
estimates of optimal RBF weight vectors, and ® ; are estimates of the
optimal radial basis function vectors. The quantities x*, 4, u?, o,
84, p?, q%, rd, 84,84, and 8¢ are time varying neural network outputs
* representing the desired intermediate control signals in the
approximating neural network cascade shown in Fig. 1. Tt is noted
that the neural network biases and weights in Eq. (9) represent
multivariable vector functions. Thus, each bias and weight in Eq. (9)
is a vector and a matrix, respectively. The update rules for these
networks must be designed in such a way that the system is driven to
follow the desired trajectory. The functions NN, represent the neural
networks arranged in a cascade. The sequence of evaluation starts on
the left-hand side from NN, and ends in NN, . The latter produces
the aerodynamic control vector § that drives the aircraft actuators. Itis
seen that the networks NN; and NN, require the aerodynamic
control deflections as input. This gives rise to an algebraic loop as
these controls are computed downstream in netwotk NN,.
Aerodynamic control inputs are delayed by one sample and used in
the neural networks (denoted by 62) for solving this problem. It is
assumed that if the sampling rate is sufficiently high, the delay will
not affect the network approximation process.

In this paper the radial basis function neural networks (RBFNN)
are used for approximation. Any other neural network can also be
used as the universal approximator. This will become apparent from
the theorem presented in the next section.

The optimal RBEFN represents the choice of network parameters,
which gives the lowest upper bound of the approximation error over a
suitable compact set. The optimal RBEN is related to the ideal
implicit inverse functions defined in Eq. (7):

[X*? y*]T - K4(V4’ V) = W04 + W£®4(V4s V) + N4,rm
) = [Xnnv ynn]T + N4.lm

(¥ e 81" = Ks(p,q.r. B, Vs, ¥, V. h,5)
= W03 + W§®3(P~ q,r, ﬂi V3v Y, V* h’ 5) + N3.nn
= [“nm Cpps 8pnu]T + N3.nn

*, ¢, 1" = Ky(Vy, o, By, V, by )
= W02 + qu)z(VZ’ . Q, ﬁ’ vV, h, u) + N2.nn
= [Puns Quns rnn]T + Ny (10

[65.6:.61 =K\ (p.q. 7,0, BV, 1, V,,8,)
=Wy + WITCDI(pv q.1,¢, :B’ V,h, Vlaap) + N],nn
= [8{1""‘ 53"1”' éﬂm]T + Nl,nn

where N,,,,i=1{1.2,3,4} are bounded functions, W, g .
optimal RBF weight vectors, W, are the bias terms, and @, the radi
basis function vectors. In Eq. (10) the quantities X, V> f,, o 3
5przn’ Pans Quns Vans 5amz5 aenn’ and 5nm represe‘nt the des' wdt
intermediate control signals, which will result whey i)
approximating neural networks in the cascade shown in Fig, |4
replaced by the corresponding optimal RBFN networks. Functio!'
Nipn. i ={1,2,3,4} are defined as :

(5: - 8[1!1!1‘ 5: - Smrn 8: -8

run)”

(P*_anq*“‘]nn”*‘r,,,,)T o
[n!,nn 77!1,!2:1]7‘ = " )T { 0

* * * il
(IL — Mg & — Oy 81’1 - 5;1141 .

(X* — Xnns }/* - yrm)T i

N],nn . ‘ iﬂutgr?i

N 2,nn liese 1

= 1ijers, a

N3.un ( LIC;S’SC

Nipn issun

Rt of

{heor

From the universal approximation property of the neural netword:cont

[16], one can conclude that the functions N;,, can be mudg in

arbitrarily small by increasing the maximum number of neuro isfyin
(Nmax) for each neural network NN, ..., NN, and proper selectin}:
of the corresponding network parameters. Because of the finie}
approximation error introduced by the RBFN, the system states vil}

only approach the desired states in an ultimate bounded sense. Thefn the

following shorthand notation is introduced: i the

fhich ¢

i

T ?' viw Fiy
(o4, 82.5) e
. : iP
[o o on]f=| Whatr) -
: (u' s O 78p)T i
x4y pn
ol
(?anns 5enn’ ‘Sran.)TT ( ,iﬂble
T pnn’ an’rnn i
Olan " Olinn = )
[ I‘ 11‘1 ] (“l})l’a"}198plln)T
(Xmu ymx)T
AGi=0; =01 i=1,...,11

Assumption 3: The desired trajectories can be achieved usifg¢]
control deflection # and states x within the set (x,u) € U. A

The above assumption implies that the ideal inverse furicl®
outputs x*, v*, pu*, &*, 8%, p*, g*, r*, 8%, 8%, and &* are bounded
because the functions N, ,, are also bounded (from the unive
approximation property) for a suitable neural network size (Nosh.
this implies that the optimal RBFN outputs are bounded. Fron
Assumption 2, it follows that the time derivatives of the ideal impl®
inverse functions x*, y*, u*, o*, &%, p*, ¢*, r*, &, 8, and &
bounded. Because the approximating optimal RBFN network 1$ a9
a smooth function of its arguments, the time derivatives of U¢

optlmal RBEN outputs (an }}rznv /:l‘nnv d{nnv 5pnnv i’um va’ T 5"":"

Semns Ornn) are bounded. Thus, using the shorthand notation ¥
Eq. (12) ‘

|xxd[ —<— xi,md’ lo-i.nnl = Ui,rm ‘di.nnl = Cimd (13)

i={1,...,11}

For a given Ny, tuning rules for the individual RBFN in the ABNC
scheme described below will ensure that the approximate netwan
parameters approach their optimal values. Using the short
notation in Eq. (12), the network update rules are given in terms o
rate of change of the network output:



'fﬂﬂ A A A € Q-0
Hl==18a An Anl-lea |- Q0
P Ay Ay Ay e Q303

] L Jd Les] L i

- - M r ™ - =3
G4 Ay Ags Ay €4 Q04
b | =] D Ass Asg || es | —| Q505

& | | Aes Aes Aes | Les] | Q06 ]

7 ] Apr Agg Ay € Q; -0y
Go| =] No1 A Ny || eg | —| Q03

1 6o L Agr Aoy Ago | [ &g | | Q-0 |

-d;o :_[Alo,xo A10,11:|.|:e10 [Qi0- 010
G Ao A ey Q- oy
(14)

ote that the network update rule is not specific to the radial basis
 junction type of network. We shall discuss the actual implementation
 of these rules in terms of the network parameters (biases, weights,
 onters, and widths) in the next section. The ABNC scheme has been
E shownl schematically in Fig. 1.

i Assuming that all the states are available for feedback, the main
E esult of this paper can now be stated as follows:

} Theorem I: For the system (1) with Assumptions 1-3 satisfied, let
’ ihe control scheme be implemented as Fig. 1, network update rule

it siven in Eq. (14), and there exist gains T';, A;;, and §; all positive

D}

B;>1, F;> 7
en the trajectory (x, i) of the system remains in the compact set U
d the tracking error converges to a neighborhood of the origin
hich depends on 0; g, G s N, and i = {1,..., 11}. The quantities
5, F;, and D; depend only on the gains and certain constants
E(constructed in the proof).

1 Proof See the Appendix.

i={1,...,11} (15)

. Tuning Rules for RBFN

| In the previous section, ABNC architecture was developed with
Fuable tuning rules as in Eq. (14) in terms of the estimated outputs o7,
fi={1,...,11}. In this section, the implementation of these tuning
fnles for a RBFN approximating the inverse functions are presented.
g the RBEN, the centers, width, and the weights are adjusted
1 adaptwely Further, the number of neurons is allowed to grow with a
§ep on the maximum number and no pruning of neurons is done.
Equann (9) differentiated with respect to time gives
>mg‘

4 O’,~=.Vg[~~w,~, l:{l,,ll} (16)
et where
dof
e Ve =1y - 1,261, /6% - Wiy - (x = )T, 260 /63 - Wy - || x
naf P
Fror = Pa
np'
5 o R . X .
153& % L2y /6% - Wi (x = fig)”, 2¢ik/&?k Wi lx = G lP1”
of 17
e

on i s the gradient vector of the ith network with the second subscript

’ ning over the number of neurons (1,...,m). The parameter

tOI‘ W; = [WOII’ ity I‘Lzli ity - “/lk /*‘Lzlu htk] consists .of the

blases weights, and center widths. Using the matrix

, (1. seudomverse of the gradient vector, one may obtain the rate of

£'nge of the RBFN parameters from the rate of change of the
aptive controls oy, i = {1,..., 11} as

W =[VE] 6, i={l,...,11} (18)

: here [I* denotes the pseudoinverse.

| tnerally, when using a RBFN for control only the weights are
e adaptively and the number of neurons, the centers, and the
: S are fixed “a priori.” Recently, Lu et al. [12] developed a RBF

i
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called MRAN in which the neurons are allowed to adaptively grow as
well as to be pruned based on certain criteria. In this paper, pruning of
neurons is not used but growing is used with an upperlimit. When the
number of neurons reaches this limit, no more neurons are added but
the updates of the parameters are carried out.

All'signals in the controller are ultimately bounded and approach a
compact set which depends on the network approximation error. To
prevent loss of stability when the trajectory enters the compact set a
standard solution is to apply a dead zone [17]. As the network learns,
the approximation error reduces. Hence, the dead zone is larger
initially (&) and subsequently reduced to a lower value (&,5,). The
instantaneous value of the dead zone is given by e=
max(€yax - "\ Emin)» Where n is the iteration count and the rate of
change r € (0, 1). The control law is implemented in discrete form.
The computations to be performed by the controller are given below:
Begin

Compute the RBF network output

Compute the dead zone threshold &

if |lell > € then

Update the network parameters using Eqgs. (14) and (18).
if m < Ny then
Add a neuron at the current location with fixed overlap (« ) to
the nearest neuron in input space (see [12] for details).
End

End
End ‘

1t is important to choose the inputs to each of the cascaded neural
networks carefully. Thus, for example, for the g, network instead of
using {v, &, g} as inputs, we give

1 y Cma Crnq ¢
— . , - a’ — .
CjSCCmSe ] C/nSe CrnSezV 1

where Cysp0 Cp» and C,,, are the usual aecrodynamic derivatives.
This amounts to using the terms of the linear inversion controller as
inputs to the neural network. These derivatives are to be evaluated at
a nominal starting flight condition and remain fixed during
simulation. This is a natural scaling rule for the aircraft controller.

D. Choice of Design Gains

In this section, the significance of the two-component update rule
derived for RBFNs is highlighted. For the first neural network, the
gains to be tuned are T}, Q,, A, i = 1,2,3, j = 1, 2, 3. The control
loop between networks NN1-NN2 is opened and three step inputs
separately, namely, (p?, ¢?, r?) are injected. The gains are designed
based on the time response to these inputs. Diagonal entries of the
gain matrix multiplying the trajectory error (A;;) primarily affect the
speed of response, while the gain multiplying the output term (Q;,
i = 1,2, 3) affects the stability of the closed loop. The gain T;, i = I,
2, 3 is the backstepping correction as discussed in Sec. ILB.

To analyze the combined effect of NN1 and NN2, the control loop
is broken in Fig. 1 between the networks NN2, NN3 and a step
demand in angle of attack is injected to the network NN2. If the outer
loop speed of response and overall stability needs to be improved, the
inner loop must be of sufficiently high bandwidth. Tuning of the
other Joops can proceed on similar lines. A detailed procedure to
select the gains based on the time response is given in [18] and the
final gain values are given in Tables 2 and 3.

Remarks: The ABNC design proposed in this paper delinks the
requirement of stability from the type of neural network. The update
rule is specified in terms of the output. This allows for the use of any
function approximation scheme in place of the neural network,
provided such a scheme has the universal approximation property.
Another advantage of the separation of stability from the function -
approximation is that the neural network growing and pruning can be
optimized without bringing in any requirements from the stability
point of view. This allows us to build up a neural network by online
learning starting from zero neurons. We have used the matrix
pseudoinverse for obtaining the network paramete: ate in Eq. (18). It
is well known that the matrix pseudoinverse generazs the minimum
2-norm solution to the overdetermined svstem of Ea. (18). This
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ensures that the -uallest control deflections consistent with the
desired state derivatives will be generated by each of the neural
networks NN1-NN4. If a particular backstep does not involve any
uncertainty, the exact analytical inverse may be used [e.g.,
¥, = sin™!(h,/V)c]. The design method applies to systems that may
have unstable zero dynamics or may be a nonminimum phase. If the
network adaptation rate is sufficiently fast, the neural network can
learn to provide control to stabilize an unstable aircraft and also
tolerate large changes in dynamics like hardover single elevator
failure. The upper limit to the adaptation rate is determined by the
actuator bandwidth and the sampling rate of the digital
implementation. The lower limit can be chosen for a desired closed
loop performance.

E. Application of ABNC Controller to a Linear System

The properties of the ABNC controller are illustrated by applying
it to linear short-period dynamics of the aircraft used in this paper.
The aircraft dynamics for short period is of the order of 2. The linear

model can be written as
a| | —0.6485 0.8883 o
g| ] 0.8122 —0.6491 || ¢

L [00470 ~0.04707[ 3,
17134 —1.7134 || &,

For this simplified example, there are two states (angle of attack and
pitch rate in units of radians and rad/s, respectively), two control
inputs (left and right elevator in radians), and the desired output is the
angle of attack. This aircraft model is described in detail in the next
section. Itis unstable in pitch. The neural network controller is shown
in Fig. 2. The controller tracks the reference angle of attack. It is
noted that the first network NN1 in this figure represents the inverse
dynamic model of the pitch rate equation, while the second network
NN2 corresponds to the inversicn of the angle of attack equation.

! A simulation of the controller is performed with a series of
periodic bidirectional angle of attack command pulses («,) as input
for a total time period of 500 s. The pulses are passed through a first
order filter with cutoff frequency 2.5 to generate a smooth command
signal. At300 s, the left elevator control surface actuator is failed and
the control surface is held at a hardover position of ~10 deg. The
actual and desired angle of attack signals are shown in Fig. 3a. The
left elevator failure introduces a bias in the aircraft signal after 300s.
This is because the ABNC by itself does not provide for an integral
effect to ensure steady-state tracking. Examination of the update rule
shows that it involves only a signal proportional to the trajectory error
(i.e., proportional feedback). It is possible to improve the response by
introducing an integral error term. This is accomplished in the full
ABNC controller used for the trajectory following described in the
next section. The RBFNN neural network update rule is enforced at
each instant of time. This rule ensures stability even when there are
no neurons because the bias of the neural network is free to vary. This
is confirmed by an examination of the neural network parameters for
NNT1 in Fig. 3b. Itis seen that initially the bias of the network changes
rapidly, while the other parameters show much less variation. Near
150 s, the repeated periodic input reinforces the learning and the
neural network parameters appear to be converging. Simultaneously,

the bias parameter variation reduces and it appears o converge
new value. At 300 s when the left elevator fails, there is g g
change in some of the parameters. ]
At 50 Hz, the neural network parameters of both NN 1 and N,
updated. In Fig. 3¢, we find the plot of the multi-input/single-oy
neural network function NN2 corresponding to neural negy,
parameters at the time instants of 0, 150, 250, and 500 s 7
function has v,, @, and §2 as input arguments and produces g, g
output. In the figure, we show the dependence against v,, they
collapsing the dependence with respect to the other two parame;
on the same plot. It is seen that the primary dependence is o
because the scatter in the plot with respect to the other parameter
not significant. At 0 s the NN2 is essentially zero. At 1505y o1
network bias has changed from zero as required by the Upd:ﬂ
rule (15). Some scatter is seen, representing the variation with respy ! °\
to the input arguments «, §2 around zero value of v,. As discusg
before, the network parameters at 250 s appear to converge to valy o
corresponding to the no elevator failure condition. A plot of the Ny
function at this time shows that it passes close to the origin. Newr(y
origin, it appears to approximate a linear function. The 500 s N
parameter values correspond to the left elevator failed case. Tig
approximation to a linear function is more prominent in the plotofg
NN?2 function for 500 s. Assumption 1 requires that the derivative
q. with respect to v, does not change sign. In this aircraft short-perio§
example, NN2 appears to approximate this slope.
Therefore, one may conclude that the neural network leamig
takes place over a larger interval of time and is reinforced by repeat
application of the similar control inputs. The stability of the ABNE
controller is guaranteed by the update rule aiid thus does not deperd
on the network-learning rate. A proper choice of network growif
criteria will result in optimal network learning.

0.2

F. Extension to Systems with Multiple Redundant Controls

Theorem 1 has been proved for a system with essentially threef
aerodynamic controls (elevator, aileron, and rudder) and one throtﬂf‘ 3
control. Henceforth, we refer to this as the similar surface redundaty-
control (SSRC) implementation. The aircraft model used b
redundancies in the form of left elevator-right elevator and kfif
aileron-right aileron combinations. If the redundancy is limited '§
the use of the same surface to overcome failure, for example, &
elevator to be used for right elevator failure and vice versa, then ¥
results of Theorem 1 are applied as follows. First the gains &
designed for the left elevator and right aileron control surfaces.
left elevator control signal computed by the ABNC is g
identically to the right elevator actuator because the elevators ha
identical effect on the flight dynamics. In the case of the single ﬁﬂ?
control signal computed by the ABNC, it is given directly to the 2
aileron actuator and with a sign inversion to the left aileron actual
This is because left and right ailerons have opposite effects O
lateral-directional dynamics. This strategy assures us that the 'Am\
will achieve fault tolerance irrespective of whether there is 25/
surface failure (left or right elevator or left or right aileron)
multiple dissimilar control surface failure (left elevator and
aileron or left elevator and right aileron or right elevator 2 :
aileron or right elevator and right aileron). This method will not W i :
for the case of two similar control surface failures (left and I
ailerons). ’

+ +
| —
aq V2 qd vy
o | NNZ ge | NN
— e
s
___.»‘

Failures

e Actuator
!

Fig. 2 ABNC scheme for control of linear short-period dynamics.
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Fig. 3 a) Command and aircraft response of ABNC

(linear short-period dynamics). Left elevator hardover failure to —10 deg at300s.b) NN2 network

parameters of ABNC (linear short-period dynamics). Left elevator hardover failure to —10 deg at 300 s. ¢) NN2 network function (linear short-period

dynamics). Left elevator hardover failure to —10 deg at 300 s.
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In this aircraft, the elevators can be used in differential mode (i.e.,
similar to the ailerons) to achieve control in the lateral axis. This
means that it is possible to handle two aileron failures using the
healthy elevators. Theorem 1 can be extended to apply to this case.
We sketch the modifications in the proof here. We first note that if all
the redundant controls are considered separately, the control vector u
will expand to contain five aerodynamic controls and one throttle
control. The function F, in Eq. (2) will now be a dependent on these
tontrols. A unique inverse function K in Eq. (4) will not exist, as
there will be multiple control inputs satisfying the given value of X,
However, this situation can be handled by requiring that in addition

§ Dbachieving the desired value of X 1, the inverse function K, must
felsult in a set of control deflections that have minimum 2-norm. As
i discussed before, the matrix pseudoinverse can be used for this
§ Pwpose. Our neural network implementation described previously

1 ““Dk"-ments this in the update of the network parameters (18). The
- Maining development of the proof can then be handled as discussed

§ “the Appendix.

The first set of three equations in the update rule (14) will be

. Suitably modified to generate the five derivatives from three errors.

Cordingly, gains A;;, i =1,...,5,2,3and 2, i = 1,...,5need

J?

£ “bedesigned for network NN1. In the remainder of this paper we
§ Yl refer (o the implementation with five aerodynamic control

faces ‘a5 the multiple surface redundant control (MSRC).

III. Aircraft Landing Task Under Elevator Failures

The aircraft model used in this study is that of a high performance
fighter aircraft. Details of the model can be found in [19]. The
longitudinal force and pitching moment coefficients for our aircraft
model are .

§
Cx = Cxla,8,) + AC,\'.LEF(l - %)

qc

+ WV ‘:CX;;(“) + ACy, Ler(®) (1 -

Buer
25

¢
+2 [czq (@) -+ ACz,1er(0) (1 -

Buee
25
Siee
25

C; = Czla,8,) + ACZ.LEF(l -

(19)

C, = Cysina + Czcosa

N
SLEF ;

= ] — —=
Cm Cm (0{1 Se) + ACm,LEF( 25

c
L%

oV [Cmq (G{) + ACHH].LEF (a) (1 _

S
25
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Z (Km)

Fig. 4 Landing trajectory.

It is seen that the aerodynamic terms are nonaffine with respect to
the elevator control surface deflection. The leading edge flap (LEF)
deflection is scheduled with angle of attack, dynamic, and static
pressure as 2.4751a — 9.05g/ P, + 1.45. For the purposes of this
study, the elevator control surface aerodynamic data have been split
into two parts corresponding to left and right surfaces using CFD
computations. The aerodynamic model also contains the ground
effects. The aircraft has two elevators with —25 to 25 deg deflection
range. The engine model (represented by a 5 s lag) completes the 6-
degree of freedom simulation. The aircraft has hydraulic actuators,
which drive the primary control surfaces that are modeled as first
order lags with a time constant of 50 ms. The rate limit for the
actuatorsis setat 60 deg /s. The controller update rate is set to 20 ms
(50 Hz).

The landing task to be executed by the aircraft is shown in Fig. 4. It
comprises six distinct phases:

1) Segment 1: Level flight at 600 m, heading —90 deg (from East
to West). Velocity is maintained at 83 m/s.

2) Segment 2: A coordinated right turn with bank angle 40 deg at
600 m to align with the runway 0 deg (heading North). Velocity is
maintained at 83 m/s.

3) Segment 3: A level flight at 600 m heading 0 deg (toward
North). Velocity is maintained at 83 m/s.

4) Segment 4: Descent on glide slope of —6 deg to altitude of
300 m

Table 2 Design gains for the SSRC

Joo

a3

Y (Km)

Wind Praofiles
600

500

400

=300

200
100 !
, U
0
45 0 5 0 5 10 15
uw, vw, ww (m/s)

Fig. 5 Wind profiles during landing.

5) Segment 5: Descent at glide slope of ~3 deg to 12 m.
Segment 6: Flare and touchdown. Velocity is reduced fio
83 m/sto 79 m/s during the flare. The flare segment starts when
altitude descends to 12 m. During this segment the desired altitud
follows an exponential model.

‘Table 1 Touchdown specifications (pill box conditions)

X distance 100 < x <30
Y distance ly|g5m

Total velocity Vy > 60 mfs
Sink rate h<10mfs
Bank angle ] < 10 deg

-
Network A Q T Emin Emax r..__=
NN1 -60 0 0 60 0.001 0.002 0.877 '
0 -7 0 37.8
0 0 =5 15
NN2 18 0 0 13.5 0.001 0.002 0.877
0 25 0 7
0 0 -1 1 _‘
NN3 12 0 0 7.5 0.002 0.003 0.877
0 15 0 16 0.5
0 0 1 5
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Table 3 Design gains for the MSRC

A 2 r Emin € max r Kp
60 0 0 60 ] 757 0.001 002 0.877 2.5
-60 0 0 60 S
7 =70 0 37.5 | 5
-7 =70 0 37.5 )
0 0 -5 5|
18 0 0 13.57] 757 0.001 0.002 0.877 2.5
0 25 0 7 4
0 0 -1 L] 5]
12 0 7.5 5 0.002 0.003 0.877 2.5
0 15 0 16 0.5
0 0 15 5 5

q  Tne aircraft is subjected to winds while flying this trajectory. The
| winds are a combination of Dryden turbulence along the x-body axis
and deterministic winds in the other two axes (Fig. 5). The sharp step
dunges in the v, (at 470 and 190 m) and w,, (150 and 90 m) are
articularly noticeable. These profiles represent large horizontal and
| ertical wind shears, respectively.

B The success of the landing mission is evaluated based on a
4§ successful touchdown in the landing pill box. The pill box conditions
1 . defined in Table 1.

i Multiple control surface failures of hard over type are studied in
ihis paper. A method to compute the feasible region within which
& qicessful landings can be undertaken with single or multiple control
& quface failures is described in [20]

IV. Performance Evaluation

4 In this section, results are presented which show the ability of

“§ ABNC design to meet the touchdown specifications in the presence

§ of failures. In the overall control scheme shown in Fig. 1, the tracking

§ command generator computes the reference command for cross track

{ deviation, altitude, velocity, and sideslip angle (y,, kg, V4, Ba). A

§ detailed description of the navigation algorithm used to compute the

-§ reference commands for the autolanding task can be found in [20]. In

4§ this study, the controller consists of three neural networks NNI,

§ ¥N2,and NN3 in cascade with the fourth neural network replaced by

1« analytic inverse. This is because in the equations motion of the

- faircraft [10], it can be seen that the equations for y, h are analytic and

i fdonot have any uncertainty in them. It is noted that the general proof

| fr, inSec. 11 does not require any of the dynamic equations to possess an

hen kg ialytic inverse. The final design gains are given in Table 2 for the
i SSRC design. Table 3 gives the gains for the MSRC design.

§ Simulations were conducted for SSRC and MSRC controllers

[ ubjected to left elevator—left aileron and left aileron—right aileron

| gﬂlll{rle scenarios. Figures 68 present the results and are analyzed in
’ L defan],
& Figure 6a shows the time history of altitude, velocity, sideslip, and
5 m §°0ss track deviation for the complete landing trajectory for both
) mfsf"0mal and failure cases for the SSRC design. The failure case
) m/s Oesponds to the left elevator stuck at —8 deg at 10 s and the left
0 &L f .lerop stuck at 8 deg at 8 s. From the altitude and velocity time
‘ I“§t0Hes, itcan be seen that the performance of SSRC under elevator
‘ fal_lure is close to the normal case, except for a residual sideslip in the
! aﬂur‘e condition. The result is a successful touchdown under failure
Aceting all the specifications.
Figure 6b shows the time history of the aerodynamic control
| Surfaces ag computed by the SSRC. It should also be noted thatunder
i el}o failure cage, the elevator deflections required to achieve the
i ding are fairly small. In case of the failure of the left elevator and
1 Cleft aileron to —8 deg and 8 deg, respectively, it is seen that the
F "Ity elevator (right) mainitains a deflection of about +6 deg and
B °ealthy aileron maintains a deflection of about —6 deg to offset
A °Piching and rolling moments of the failed elevator for most of the
£ COJeCtory. The right aileron saturation seen at 15 s is due to the
Mroller trying to correct the disturbance arising out of the failure
¢ maintaining the turn. The saturation at 100 s in the right

elevator and right aileron is due to an encounter with the change in
side gust. Subsequent saturations are due to the updraft and
downdraft encountered during the severe microburst encounter.
Figure 7a shows the time history for the complete landing
trajectory for both normal and failure cases for the MSRC
implementation of the ABNC. The failure case is identical to that for
the SSRC in Figs. 6a and 6b. It is seen that the overall trajectory in the
case of the MSRC is similar to that for the SSRC results except that
the dip in velocity at 25 s is more prominent for the former. Figure 7b
shows the control surface deflections due to the MSRC. The result is
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Fig. 6 a) Landing simulation of the SSRC network under no failures
and with left elevator and left aileron failed to —8 degat10sand8degat
8 s, respectively. b) Control deflections of the SSRC network with no
failures and with left elevator and left aileron failed to —8 degat10sand
8 deg at 8 s, respectively. ’
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Fig. 7 a) Landing simulation of the MSRC network under no failures
and with left elevator and left aileron failed to —8 degat10sand8 degat
8 5, respectively. b) Control deflections of the MSRC network with no

failures and with left elevator and left aileron failed to —8 degatl0sand
8 deg at 8 s, respectively.

.

similar to that for the SSRC, except that the healthy (right) aileron
and healthy (right) elevator saturations are of longer duration at 25 s.

The MSRC implementation has the ability to handle both left and
right aileron failure. This is not possible with the SSRC. This is
demonstrated for the MSRC in the simulation plots shown in Fig. 8a,
where the left aileron is failed to 8 deg and simultaneously the right
aileron is also failed to —10 deg at 8 s. It is seen that the MSRC is
able to handle the two-aileron failure case. The ability of the neural
network to apply differential elevator control to achieve fault
tolerance in this case arises from the off-diagonal entries in the gain
matrix (Table 3).

V. Conclusions

An online learning neural network controller design method called
adaptive backstepping neural controller is proposed for reconfig-
urable flight control systems in the presence of large changes in the
aerodynamic characteristics and also control surface failures. The
neural controller uses adaptive backstepping and builds up a radial
basis neural network starting from zero neurons. Using Lyapnov’s
theory, tuning rules for all the parameters of the RBEN are derived
and a proof of stability in the ultimate bounded sense is given for the
" ABNC. The stability update rule is not specific to radial basis
function networks. It can be used for any other neural network
satisfying the universal approximation property. It can also be used
with other function representations like polynomials or splines.

PASHILKAR. SUNDARARAJAN, AND SARATCHANDRAN
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Fig. 8 a) Landing simulation of the MSRC network under no failin
and with left aileron and right aileron failed to 8 deg at 8 s and —10 d
at 8 s, respectively. b) Control deflections of the MSRC network with
failures and with left aileron and right aileron failed to 8 deg at8s
—10 deg at 8 s, respectively.

Application to the trajectory control of an unstable ajrcraft i landi
phase with control surface failures under severe winds is used
demonstrate the ability of the ABNC to stabilize the aircraft 2]
achieve tight touchdown specifications. The above desi]
methodology has been extended to provide a complete Fault-tole
controller design for aircraft with multiple redundant controls.

Appendix

Proof of Theorem 1: ‘
Lyapunov’s theory is used to prove the result. The equations
rate of change of error for the system in Eq. (2) are derived ﬁl'Sf-
illustrate the development for the first and fourth equations in the

W

result. Differentiating the first and fourth equations in Eq. (6)¥
respect to time we have
. . . . A
éy=f—xf €y = fo— ¥ (
One may expand the first and fourth functions in Eq. (2) as aTﬂb;
series about the applied control and use the mean value theore”
obtain

S1="Fim +by-Aci + by Aoy + bys - Aoy

Ja=Fann + bas - (Doy + €)) + bys - (Acs + ¢5)
+ by - (Aog + ¢3)



by are the derivatives of the functions f; with respect to the

' mgred (I;ODUOlH 0, j={l...., 11}. The shorthand f; ,, represents
Sie ctions /i evaluated at the optimal desired controls o7,
11' Substituting Eq. (A2) into Eg. (A1) and using

=v) + v+ by - Aoy + by Aoy + by - Acy,
i =fim—v)—Tie,+ by - Aoy + by - Ao,

L by A0y X

= (fom = V4) T Vs +byg - (Aoy + ¢;) + bys - (Aos + e;)

+ by - (A0 + €3) = i = (fi —Tyey + by

(Mg +ey) + bys - (Aos + &) + b46 (Aog + e3) — &
(A3)

FollOWiﬂg this procedure, one obtains the rate of change of error
aquations as

é,'=fi/m -V~ Fiei -4

Z} 1b - Aoj, i=12.3
L, ,, (AU +eps), =456 (A4)

+ Z/ by (Aoj+e;3), i=7,8,9

1o by (Ao +ejs), i=10,11

Expanding Eq. (2) as a Taylor series about the ideal inverse control
siven by Eq. (7) one obtains

fl,nn -V = fl,nn —fT = bT] *Moan + bTZ * N2, —+ bT3 * 3.0

f4,,m =V = f4,rm —f:: = bjd, *N4.nn + b:5 * s nn + bZé * N6,nn

il J (A3)
Fulere bj; are the derivatives of the functions f; with respect to the
R desired controls 0j,j ={1,...,11}. The shorthand f} represents the
funcuons f, evaluated atthe 1dea1 inverse desired controls x*, y*, u*,
.8, 0%, ", r*, 83, 65, and 6F. As b?; are continuous functions, they
areLipschitz on the compact set Q C U. Because the ideal neural

ework weights and basis functions are bounded, its output is
tounded and there exist constants a; ;, ¢; ;. such that

&S vil <{aviabal + @ lal + ags o) + s, |
tarsalxel +aigilxo] + x|+ eler | + ¢pa e
tegales] +aond - m o+ {ag x|+ aig0lm| + a) sl
taisalxs| + @y galxel + ajgalrol + apyalxn | + cpialel
teiaale] +eisalesl +aioa} - m + {ayaln | + appslx|

g T ausalnl +arsals| + agesle| + a5l

| tanslral+epsled + crpalel + epasles] + ayga) -

1f4nn = U] = {agaalxal + aysalxs| + asgalxs| + asgalx]
T augalxel + agalxn | + canales] + cysales|
teipales| + angad - ny + {as a5l + agssls|

W T Queslxs] + aggslog| + agg sl + ag sl

ok T Cagslea] + cyssles| + cypsles| -+ asost - s

tagaglxs] + agselvs| + A4.6.61%| + asg.6)xs

T a4 6| + agpi6len | + casgles] + casles]

T Capgles] + agoe) - M6 (A6)

e, = SUP,eq|Minl, i = {1,...,11}. Note that the function f,
lsodepe

; nds on the control vector . From Assumption 3, the control
| s required to complete the desired maneuver are bounded
Su,). T herefore, in Eq. (A6), this dependency is absorbed in the
Stans 4.1 =4,5,6[13]. The terms with ¢; jxle;| appearing on
rlght*hand sides of Eq. (A6) arise due to the dependence of b}; on
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As a consequence of Assumptions 2 and 3 it is seen that the

reference commands generated by the cascaded neural networks are
also bounded provided the weight update rule results in a stable
system (to be proved later in this section). This taken with Eq. (6)
gives

[x:] < d; - le] + diys i={1,..., 11} (A7)
From Egs. (A6) and (A7) one can write
fian =il {Cpilei] + Craleal + Cyyles| + Co s les|
+ Croiles] + Cioaleol + Crypalen| +Croyt-m
T{Cialel] + Cranlea| + Craales] + Cisales| + Cgales|
+ Croaleol + Cipaley |+ Croat-m+{Cyislel
+ Ciasleal + Ciaslesl + Cyssles| + Crgsles] + Crosles)
+ Cruslenl + Crost-ns
Wann = val = {Caqalea] + Cysales| + Cagaleg] + Cogales]
+ Cogaleol + Cynialen| + Capa} -y + {Cygsley]
+ Cusslesl + Cugslesl + Cogsles| + Cagsles| + Cayyslen|
+ Cuost s + {Caasles| + Cysgles| + Cuggles]
+ Cugeles| + Cagsles| + Copigler] + Cagsl - 16 (A8)

where the C; ; , are related to the a; Jko Cijk> and d; ;. Equations for
the rate of change of error similar to Eq. (A3) and the mequahtles
similar to Eq. (AS) are obtained for each of the 11 equations in (2).
After this we are ready to consider the stability of the system.

Consider the candidate Lyapunov function

It 9
s A
,le«AUn):Z(e'-I'—U) (A9)

Vie,, Aoy, ... 5

i=]

This function is radially unbounded. Taking its derivative along

the error system for Eq. (2), one obtains

1
V= Z(é; -€;+ Aoy - Ady) (A10)

i=1

Apply the update rule (14) to the above equation after noting that
AG; =06;— 0 i=1,.

, 11 and use Eq. (A4). This results in

3 3
V=Zl:€:< i,nn—vi_Fet_)-C?-i-zbij'Agj:)

=1 j=1

— Aoy - (Q O+ Gy + ZAU )}

j=1
6

6
+ Z[é’i ‘ (fi;nn — v = Te; — i + Zbij (Ag; + C‘j—s))

i=4 j=4

6
- A(T,- : (Qiai + O.Fl"mz + ZAU ' cj)}
j=4 ‘
9
+ Z[ei ' ( inn

9 . \
v; — Fie,- “‘-i'f'[ + Zb” . (AGJ + (:'j_3))
i=7 j=7

2
_ AO'I- . (Q,’U; + O",-‘”" + Z A” - ej)]

=1
1l

1
+ Z[@i : (fi.nn — v~ e, — i + Z by - (Ao; + 6’1-3))

i=10 . . =10
11
- AO’,’ . (Q"O'i + O"i,m, + Z A;/ ° e/)]
j=10

(All)

We take absolute values on the right-hand side of Eq. (Al1),
substitute equations similar to Eq. (A8) for the entire systém, and use
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Eq. (12). This gives us terms like C-e?, C-le;|, —|0; ]| Acy],
i*loillAay, C-lejlle;l, and C-le; HAUI The last three terms
are simpliﬁed using the inequalities C-ab < C*- a*/4 + b* and
—C-a(a+b) £ —C-la|(la| — |b|), where a, b are real numbers
and C is a positive constant.
After collecting like terms and using the bounds given by Eq. (13),
Eq. (A11) can be rewritten in shorthand as

11
V<Y =Bi-e}+D;-|Ady| - lei] + E; - |e;| — | Agy]

i=1

(F;-|Aoy] - Gy) (Al2)
where
Drzlbii—/\iili i=1,...,11
Gi:Qf'Ui,nz+Ui,nld7 i=1,,1]
Z]— glﬂj 771
Ei=xi.md+ 2624 o " 11 i=1,...,11
Z;"? io,j 77} B. =
21510 Cio * 1) ¢
Fy=Q) — (byy — App)* /4 — (by — Ay3)*/4
—(bia — Ay)? /4 — (bsy — Ap3)?/4
F3=Q5— (b3~ A31)2/4 ~ (b3 — A32)2/4
— (bss — A45)2/4 — (bga — A46)2/4
Fs = Qg = (bys — Ass)?/4 — (bgs — As)?/4 By =
= Qg — (byg — Nea)* /4 — (bss — Ags)?/4 -
Fr;= Q7 - (b87 - A73)2/4 - (b97 - A79)2/4 Bg

- (b78 - A87)2/4 - (b‘)S - A89)2/4

Fg= Q¢ — (bgp — A97)2/4 — (bgg — A9s)2/4

Fiy= Qm - (bn.m - A10,1|)2/4

Flu=8 - (bl().ll - A11,10)2/4

1l
By =Ty — chl,ll,i i

-PI"—‘

3 8 2
—;Cu,rm— g(zcjn 77:)

3
B2=P2_ZC2.2.1"77:‘_8_

o

i=17

1(< 2
7 (Z(Cm,i +Cori) - 771')
i=1

BS_FB ZCE”H N —

6
1
BSZPS“ZCS.S,:"’T:'"7_Z
=4

ATCHANDRAN

1 2
-3
j=I

(Z(cﬂ, +Cyy)- ,,)l

i=1

(2 cuen)

1=

1
T

6 6
1
B, = P4“ZC4,4,i'ni_8‘ZZb221‘i
i=4 i=4

3

2

=1

(Z JuS.i T 77:+1753+J) p
. |

2

=4

1

4

(

6 3
Fs—zcs,é.i'ﬁi—G—— Z(
i=4 j=1
5 : 2
Z(Z( 61+C611) 77)
J=

9 2
(Z(Cm; + Cy6i+ Cogi) - 77)

) 2
(Cysi+ Csai) 'h)

3

Z I8

M+ bosﬁ)

4=-s~
EN
-

-hl»-d

=

B=T; 2677, = 10——Zb
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9
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2
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i=7
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1—4
3
%Z(ZC‘IB{ 77:+ZC911' i)
i=1
1< 2
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j=1 \'i=1 i=10
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i=10 110

B

oy

4>;~

i=10 =1 \i=1 .
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ZZ(Z ll.i’ni) —Z,Z(ch.xl,i"?f+b"'3*’
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1
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with achoice of gains I[';, A, and ; such that Eq. (15) holds, we

 pave
i

j=1

E; /4 _ (|A0.|. /FA_D2./4___.ﬂ2__)2
B-1 ‘ Y JF-DYa

Gi/4 }

We find that the right-hand side of Eq. (A13) represents a hyper
llipsoid in the space of the error variables Agy, e;, i = {1,...,11}.
The conditicnt V < 0 holds outside of this ellipsoid subject to the
quirements given by the update rule (14) and Assumptions 1-3.
Further, the elfipsoid touches the origin of the error space. Therefore,
| ysdiscussed in [21], this proves the uniform ultimate boundedness of

 ll signals.
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