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Abstract-Adaptive nonlinear filters previously reported often employ
truncated Volterra series and have a finite impulse response (FIR). This
paper introduces a nonlinear state-space structure for adaptive nonlinear
filters. The adaptive filters are recursive and thus generally have an
infinite impulse response (IIR). They are expected to be useful for many
applications and are especially attractive for those with long memories
where adaptive nonlinear FIR filters are too expensive to use. Efficient
methods, which significantly reduce computation for gradients, have
been developed to facilitate further their application in real-time signal
processing. Numerical simulations have been performed to demonstrate
the properties of the proposed algorithms.

I .  INTRODUCTION

A significant amount of research has been reported on adaptive
nonlinear filters [ l]-[ 16]. Those previously reported are often, directly
or indirectly, based on Volterra theory and have finite impulse
responses. They can be considered as extensions of adaptive linear
FIR transversal filters to nonlinear problems. Adaptive nonlinear
FIR filters share advantages and disadvantages with their linear
counterparts. The problem of computation cost in the case of adaptive
nonlinear FIR filters is much more serious than that in the case of
adaptive linear FIR filters since their cost increases superlinearly,
rather than linearly, with system memory length.

The computational disadvantage of adaptive nonlinear FIR filters
can be easily shown by a simple example. Consider a nonlinear
first-order physical system, with quadratic nonlinearity:

YPP) = cP+&) (1)

where xP and yP1 are the state variable and the output variable,
respectively.

The parameters used in the simulations were aP = -0.9, bP = 0.8,
Ppl = 0.01,  pp2 = 0.03, and cp = 1. The ratio of the mean square
of nonlinear component to that of the linear component of the sys-

tem output, E
(

(0.01x; + 0.03uxP)2)/E((-0.9xp  + O.~U)~), is
-2ldB for a Gaussian white input with a unit variance. An adaptive
Volterra FIR filter was used to identify the system described in (1).
Three tests were performed with different filter orders and the results
are presented in Table I. For more details of the tests, the reader is
referred to [ 16].

In Test 3, for example, the adaptive filter performed 7.84k mul-
tiplications per sample, which is computationally demanding. It is
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challenging to implement such an adaptive filter on a digital signal
processor. For example, a Motorola DSP56001 chip can perform
10.25 million multiplications per second. It is able to perform 232
multiplications per sample at the 44.1 kHz compact-disc rate, or 1281
multiplications per sample at the 8 kHz speech rate. A single chip
clearly cannot handle the computation load required by the adaptive
nonlinear FIR filter in this example (tests 2 and 3) even at the speech
rate. Convergence was also slow and final MSE was only fair in this
example.

It is well known that adaptive linear IIR filters have a potential
computational advantage over adaptive linear FIR filters. Similarly,
we can expect that an adaptive nonlinear IIR filter is potentially more
economical than an adaptive nonlinear FIR filter. Very few results
have been reported on adaptive nonlinear IIR filters in the context
of signal processing. An adaptive nonlinear IIR filter was presented
in [ 14] using the Volterra series with a bilinear structure. Adaptive
nonlinear recursive state-space (ANRSS) filters, first introduced in
[ 1 5 ]  [ 16], are more general in form than the adaptive nonlinear IIR
filter in [ 14]. To make comparison between an adaptive nonlinear FIR
filter and an ANRSS filter, numerical tests, corresponding to those
in Table I, have been performed and the results will be presented in
Section IV. These results indicate that for the first-order example, an
ANRSS filter is able to match the reference physical system perfectly,
with 0.4% of the computation required by the adaptive nonlinear FIR
filter per iteration and with 6% of its convergence time.

One potential application of ANRSS filters is echo cancellation
in telecommunications systems. The most notable sources of non-
linearity include the D/A converter [8], [ 11] and the line driver
[11] at the transmission end. Since the linear part of the channel
is often better approximated by a pole-zero model [2], the echo
channel may be modeled as a nonlinear memoryless system followed
by a linear dispersive system described by an IIR transfer function.
Another potential application is identification and linearization of a
loudspeaker, which is discussed in detail in Section IV.

In exchange for greatly improved efficiency, ANRSS filters have
(in common with IIR adaptive filters generally [19],  [20]) more
complex mathematical behavior: there may be local minima, and
either the filter itself or the overall algorithm may go unstable.
For nonlinear systems, there is the additional complication that the
best efficiency is obtained only when the mathematical form of the
nonlinearity is known in advance. We believe that this trade-off is
favorable for ANRSS filters for real-time applications involving “fine-
tuning” or tracking of the parameters of systems with well-understood
physics. An example is real-time modeling of loudspeakers, where a
low-order recursive model with a small number of weak nonlinearities
is well accepted, but where the exact values of the physical parameters
vary slightly between loudspeakers and over time and temperature.

II. FILTER FORMULATION AND GRADIENT COMPUTATION

Suppose a physical system is described by a nonlinear recursive
state-space equation of order np :

+(k + 1) = APzp@) + B+(k) + gP (pP, u(J+&)) @.a)

YP@J = &@J + +@L (2.b)
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where Ap is the system feedback matrix, BP is the system input
coefficient vector, xP is the state vector, gP is a nonlinear function
without linear terms, and pP is a vector of coefficients for the
nonlinearity. The order of the system and the form of the nonlinear
function gP are assumed to be known. The exact values of Ap, BP,
Cp, and pP are not known. The nonlinear function gP is assumed to
be a truncated multi-dimensional Taylor series without linear terms
and its coefficients are the elements of pP. Thus, the function is
differentiable with respect to both xP and pP.

An ANRSS filter employs the structure of the physical system in
(2) and adapts its coefficients A, B, C, d, and p to minimize the
mean square (MS) of the difference between its output and a desired
signal. The parameters can be updated in a way similar to that for
the well-known LMS algorithm:

where the vector w includes all the coefficients to be adapted, p is
the step size, and e is the error signal, the difference between the
desired signal and the filter output.

The gradients of the adaptive filter output with respect to an
element of C and the feedthrough coefficient d can be easily written
as

where xZ is the ii/~ element of the state vector x. If the gradients
of the state vector x with respect to the elements of A, B, and p
are defined as

Wkl&(k) = p,QJk) = T ax(k),and l&(k) = -
1_7 z apt ’

where CL*] is the element on the i t h  row and the jth column of the
A matrix, bz and pz are the ith elements of B and p, respectively,
it can be shown that the gradients of the adaptive filter output with
respect to these filter coefficients can be written as

where Cl (Q Qt (W
following equations:

and HZ are computed recursively from the

Qz(k + 1) = AQL(k) + e&u(k) + ag(p’$&x(k)’ Qz (‘4

Hz& + 1) =

where eZ is a vector with unity in the ith element and zero in others.
Comparing (4), (5), (6), and (7) with (2), it is seen that the gradients
are computed with systems very similar in structure to the adaptive
filter itself.

Stability is a challenging issue for adaptive nonlinear IIR filters. In
the following, some qualitative discussions are given for an ANRSS
filter. Small step sizes can be employed to reduce the chances of
instability. During adaptation, if the adaptive filter were to enter an
unstable region, its output would become large and so would the
MSE. A gradient-based adaptation algorithm tends to force the system
back to the stable region. Small step sizes can normally prevent the
system from getting too deep into an unstable region. The chances
of instability can also be reduced if the starting point is chosen to
be close to the optimal point.

Even with infinitely slow adaptation, the stability of a recursive
nonlinear filter may be difficult to guarantee. In the important
case, though, where a physical system is being modeled it may be
possible to derive constraints on parameters from physical passivity
considerations. In modeling a loudspeaker, for example, the original
system is inherently passive. More generally, local stability of an
adaptive nonlinear IIR filter may be verified by testing the stability
of a linear model obtained by truncating a Taylor expansion of g
around its operating point [ 16], Monitoring this “stability” would be
expensive in general, but is trivial for important special cases such
as first- and second-order systems.

As for adaptive linear IIR filters, ANRSS filters may sometimes get
trapped in local minima. A general solution of this problem cannot be
readily obtained, but a good starting point can minimize the chance
of getting into a local minimum.

III. RE D UC TIONS IN GRADIENT COMPUTATION

From the above discussion, we know that one gradient filter with
complexity similar to that of the adaptive filter itself is needed to
adapt each element of A, B, or p. This demands a substantial amount
of computation. Two methods of reducing the computation will be
discussed in this section.

3.1 Keeping the Input Coefficient Vector Fixed

The computation can be reduced if adapting B can be avoided.
There is a way to do so if it is known which terms of BP are zero
and which are not, and the differences between BP and B just result
in scaled states and coefficients. This idea is best explained with an
example. Suppose the physical system concerned is a second-order
system described by

x&k + 1) = u~~~x~~(k)+u~22~~2(k)+b~2~(k)+p~2~(k)x~~(k)

(9)

yp = cplxp@) + +sw(k) + &u(k), (101

where all the coefficients are unknown. Let us first assume that both
elements of the input coefficient vector BP are nonzero. For given
BP and B, there exist two nonzero scalars Cal and a~, which relate
BP and B:

bl = albPl, b2 = wbP2. (111

Next, multiplying both sides of (9) by CY~ and both sides of (10) by
CX~ and performing some simple algebraic manipulations, we arrive at

xl(k + 1) = UHX@) + ul2x@) + blu(k) +p&k)&(k) (12)

xz(k + 1) = a2lxl(k) + azzxz(k) + b2+) + p&+c@) (13)

y = cm(k) + cm(k) + Wk), (14)
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where

y,for i z land 2, all =
a1

Xt = aixpi, ci =
ai

Upll, a12 = up12 -
a2

(15)

a22 = ap22, a21 = up21 -Ta2 d  = dp,pl = $-&,Pz = PP~%
a1

The new system described by (12), (13), and (14) is obtained by
scaling the original system. This scaling maintains the structure of
the original system. From (15) and (16), we know that the a’s must
be nonzero. Hence, if some elements of BP are zero (or nonzero),
the corresponding elements of B must also be zero (or nonzero), as
suggested by (11).

Therefore, to use an adaptive nonlinear filter to match a physical
system described by (8), (9), and (10), we can set the input coefficient
vector of the adaptive filter to be a constant vector with the same zero-
nonzero pattern as that of the physical system, and the adaptive filter
can just adapt the feedback matrix A, the output coefficient vector
C, the feedthrough coefficient d and the nonlinear coefficients p to
match the physical system, resulting in a scaled system model. The n
gradient filters for the input coefficient vector B are then not needed.
It can be shown that this is generally true for the case where the
nonlinear function vector gp (pp, u(k), zp (k)) is an n-dimensional
Taylor series without linear terms. A direct-form equation is an
example where the zero-nonzero pattern of the input coefficient vector
is known.

In practice, B would be set to estimates from the physics of the
nonlinear system. This can provide a good starting point and avoid
some numerical difficulties arising from scaling. Further, adapting B
and C simultaneously would result in difficulties in convergence due
to redundant degrees of freedom.

3.2 The Approximate Stochastic-Gradient Method

The technique of gradient approximation has been widely and
successfully applied in many practical optimization problems [ 18],
This technique can be applied to the ANRSS filters to reduce
computation. If the system is weakly nonlinear (the magnitude of
the signal from the nonlinear part gp of the physical system is much
smaller than that from the linear part Apzp (k) + Bpu (k) ), we can
compute the approximate gradients for filter coefficients by neglecting
the nonlinear part, thus considering the gradient filters as linear.

When neglecting the nonlinearity, the gradients for A and B of
an ANRSS filter can be computed like those of an adaptive linear
recursive state-space filter [ 17].

Fi(k + 1) = ATFj(k) + Cxj(k) (171

and

Q(k + 1) = ATQ(k) + C@), (18)

where the ith elements of Q(k) and Fj (k) are ~3y(k)/%~ and
ay( k)/aaij. One gradient filter is able to generate gradients for all
the elements of one column of matrix A, and one gradient filter
for all the elements of B, resulting in a significant reduction in the
computation. Evaluation of the gradient for B is also discussed here
since it may sometimes be necessary to adapt B. The approximate
gradient for p can be computed from

Although the nonlinearity is ignored when approximating gradi-
ents, it is still used for computing the adaptive filter output. If exact

MSE
dEB
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-0 10000
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Fig. 1. Convergence curves for the first-order example. (a) Adapting linear
coefficients only; (b) approximate stochastic-gradient method.

gradients for all coefficients adapted are used, the method will be
referred to as the stochastic-gradient method. On the other hand, if
approximate gradients for all coefficients other than C are used, it
will be referred to as the approximate stochastic-gradient method.
As for C, the exact gradient is easily available and therefore always
used. The approximate stochastic-gradient method is only suitable
for the case of weak nonlinearity, say where the signal power in
nonlinear terms is less than 10% of that in linear terms. If the
nonlinearity is strong, gradient accuracy will be degraded and the
full stochastic-gradient method should be used instead.

IV. NUMERICAL EXAMPLES

Two examples are shown to illustrate the utilization and perfor-
mance of the adaptive filters proposed. The first example is the same
as the one for adaptive FIR filters in Section I. The second example
is identification and linearization of a loudspeaker model.

4.1 Example l-First-Order System

The input coefficient vector BP of the first-order example in (1) has
a known zero-nonzero pattern: the only element is always nonzero.
Hence, the adaptive filter input coefficient b was fixed at unity and
other coefficients were adapted. The physical system in (1) was used
as the reference system. The adaptive filter updated its coefficients
u, c, pl , and ~2, with initial values being zero. The step sizes were
/.~a = 0.0005, pc = 0.01, and pp = 0.0005.

To show the effect of adapting linear coefficients only, a test was
run. Curve (a) in NN was from this test. The MS error could go
down to only about -15dB.

The approximate stochastic-gradient method was simulated next.
The convergence curve is depicted in Fig. 1 as curve (b), which
shows that the MSE was reduced from OdB to -1OOdB after lk
iterations. Two contours have been drawn in Figs. 2 and 3 for the
linear and nonlinear coefficients to show the performance surface and
the adaptation behavior of the algorithm. Small step sizes were used
so that the adaptation paths are smooth. It is obvious from the contour
plots that the paths are generally normal to the contours, which is a
characteristic of the steepest descent algorithms.

The stochastic-gradient method (without approximating gradients)
was simulated next and very small differences between the results
of the approximate stochastic-gradient method and the stochastic-
gradient method were observed. The convergence curve and adapta-
tion paths of the approximate stochastic-gradient method are slightly
less smooth than those of the stochastic-gradient method since the
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Fig. 2. Nonlinear state-space filter for the first-order example.
/&I = 7x10e5, pC = 7~10~~.  Approximate stochastic-gradient method.

0 0.0101 0.0203 0.0304 pl 0.04

Fig. 3. Nonlinear state-space filter for the first-order example.
pP = 5~10~~.  Approximate stochastic-gradient method.

TABLE II
MAJOR RESULTS FOR THE FIRST-ORDER EXAMPLE USING

THE ADAPTIVE NONLINEAR IIR AND FIR FILTERS

Test MSE(dB) Multiplication/iteration Iterations
1m -300 33 5x 103

FIR (case 3) -38.2 7.a4.x l@ 8Ox lti
The number of mdtipkations per iteration given for the IR filter is for the futl stochastic-gradient method

nonlinearities neglected in computing gradients by the approximate
stochastic-gradient method create noise in gradient computation.

We are now in a position to make a comparison between the results
of the adaptive FIR filters and adaptive IIR filters on this first-order
example. The major results for the adaptive nonlinear IIR and FIR
filters are summarized in Table II. For this example, an ANRSS filter
is able to match the reference physical system perfectly, with 0.4%
of the computation required by the adaptive nonlinear FIR filter per
iteration and with 6% of its convergence time. For this example, the
adaptive IIR filter clearly outperformed the adaptive FIR filter.

4.2 Example 2-Identification and Linearization of a Loudspeaker

The nonlinear function gP of the physical system in (2) brings in
nonlinearity and causes distortion. The nonlinear term can be canceled

I 1

Fig. 4. The adaptive linearization scheme using the nonlinear state-space
filter.

out by subtracting an estimate of it from the right-hand side of 2(a).
The adaptive linearization scheme is illustrated in Fig. 4. The adaptive
filter based on the model in (2) estimates the nonlinear coefficient
vector pP and the state vector zP ( Jz), which, together with U( !c),
determine the estimate of gP.

The adaptive linearization process has two phases: first an identi-
fication phase, then a linearization phase. In the identification phase,
the output of the nonlinear function g of the adaptive filter is fed to
itself so that the adaptive filter is able to match the physical system.
In the linearization phase, the switch of Fig. 4 will toggle so that
-g(p, u(k), x(k)) is fed to the physical system and thus linearizes the
system. Note that switching out the nonlinearity makes the adaptive
filter linear and enables its states to trace the linearized system. The
term z-’ in Fig. 4 models the possible delay between the system
output and measured output.

The linearization scheme can be applied to a loudspeaker system.
Assume that the nonlinearity of a loudspeaker is due to its suspension
system. A loudspeaker can be modeled as [16]

!I@) = wv~@~ w
where gp (pp7 4k)) = IW& (~)+PG& V4 mbp =b-w~~d~-
An estimate of the term -gP (pP, sP (k))/l+,~  is required to add to the
input signal u(k) to cancel out the nonlinearity of the original system.

Identification and linearization of a loudspeaker has been sim-
ulated. The parameters of the loudspeaker model were chosen as
uPl = 0.3, uP2 = 0.2, pPl = 0.006, pP2 = 0.03, ZQ,Z = 0.6, a n d
cPl = 1. That pP2 was chosen larger than pPl was to be consistent
with the fact that the cubic term is dominant in the suspension
nonlinearity. The adaptive filter input coefficient vector was set to be
a constant vector (0 1)‘. The adaptive filter updated its coefficients
~1, u2, ~1, ~2, and cl, with zero initial values. The step sizes were

Pa = 0.02 for ul and ~2, pP = 0.001 for pl and pi, pC = 0.02
for cl. The delay in the air path was chosen as 50 sampling periods.
In practice, this delay can be measured by feeding an impulse signal
to the loudspeaker or using an adaptive linear transversal filter to
estimate it. It is also possible to cascade an adaptive linear transversal
filter with an ANRSS filter to perform on-line estimation of the delay.
The interaction between the two cascaded filters may influence the
convergence of the system, but we chose to leave that as an issue
for future research.
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Fig. 5. Convergence curves for the loudspeaker example. The lower curve
is for the case where the filter’s model is the same as tbat of the system’s.
The upper curve for the case where the filter’s model is not exactly the same
as that of the system’s. In both cases, the approximate stochastic-gradient
method was used.

Both the stochastic-gradient method and the approximate
stochastic- gradient method were run. The convergence curves of
the two methods are similar, with differences of a few dB in the final
stage of the runs. Only the curve for the approximate stochastic-
gradient method is shown here in Fig. 5 for identification up to
3 0 k  iterations. The linearization took effect at 1Ok iterations. The
nonlinear distortion was reduced from -3dB to -310dB This
distortion reduction is so good that it can only be achieved in
simulation, and some factors, such as measurement noise and model
mismatch, will degrade the performance in a practical situation.

It is interesting to see the performance of the algorithms when the
model is not exact. Suppose that a loudspeaker also has a nonzero
quartic term in the nonlinear feedback term, that is gP (pP, q,(k))
= P@$&) +P&G& (q+Pp3x$ (k),  but the adaptive filter just has
a cubic feedback nonlinearity with g(p, z( Ii)) =pl XT (k)+p~x? (k).
For a numerical experiment, the parameter pPa was chosen to be
2 x 10e5. Other parameters were the same as before. The convergence
curve is plotted in Fig. 5 for the approximate stochastic-gradient
method. The adaptive filter worked well and reduced MSE to about
-90dB a residual floor determined by the term in the loudspeaker
which was not modeled by the adaptive filter. The nonlinear distortion
was reduced from about -23dB to -49dB

V. SUMMARY

ANRSS filters have been introduced in this paper, which are
computationally more attractive than adaptive nonlinear FIR filters
for some applications. To take advantage of ANRSS filters, one
has to have some knowledge of the system: most importantly its
mathematical structure. Knowledge of the estimated values of the
system parameters can be used to improve the filter performance.
These requirements are practical since the physics of the system is
normally understood and existing identification techniques can be
used to verify models and to obtain initial parameter estimates.

Efficient adaptation algorithms have been developed for ANRSS
filters. It has been shown that the input coefficient vector need not be
adapted if we know the zero-nonzero pattern of the input coefficient
vector of the physical system to be matched. The gradients of the
adaptive filter coefficients can be efficiently computed by neglecting
the nonlinearity in the system in the case of weak nonlinearity.
Although the nonlinearity is neglected when computing gradients,
it is still used to evaluate the adaptive filter output. The approximate
stochastic-gradient method performed quite well in our simulations.
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