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Adaptive Non-Separable Wavelet Transform via

Lifting and its Application to Content-Based Image

Retrieval
Gwénolé Quellec1,3, Mathieu Lamard2,3, Guy Cazuguel1,3, Member, IEEE, Béatrice Cochener2,3,4,

Christian Roux1,3, Fellow, IEEE

Abstract—We present in this article a novel way to adapt a
multidimensional wavelet filter bank, based on the non-separable
lifting scheme framework, to any specific problem. It allows
the design of filter banks with a desired number of degrees of
freedom, while controlling the number of vanishing moments

of the primal wavelet (Ñ moments) and of the dual wavelet (N
moments). The prediction and update filters, in the lifting scheme
based filter banks, are defined as Neville filters of order Ñ and N ,
respectively. But, in order to introduce some degrees of freedom
in the design, these filters are not defined as the simplest Neville
filters. The proposed method is convenient: the same algorithm
is used whatever the dimensionality of the signal, and whatever
the lattice used.
The method is applied to Content-Based Image Retrieval (CBIR):
an image signature is derived from this new adaptive non-
separable wavelet transform. The method is evaluated on four
image databases and compared to a similar CBIR system, based
on an adaptive separable wavelet transform. The mean precision
at five of the non-separable wavelet based system is notably
higher on three out of the four databases, and comparable on
the other one. The proposed method also compares favorably
with the dual-tree complex wavelet transform, an overcomplete
non-separable wavelet transform.

Index Terms—multidimensional wavelet, non-separable
wavelet, lifting scheme, wavelet adaptation, CBIR

I. INTRODUCTION

Over the last decades, the wavelet transform has been widely

used in many applications for its flexibility: in particular, it is

possible to adapt the wavelet basis to any specific problem.

However, its use has usually been restricted to 1-dimensional

signals, or to separable wavelets and separable subsampling

lattices in the case of multidimensional signals. Multidimen-

sional non-separable filter banks have been studied since 1988

[1], [2] and the particular case of multidimensional non-

separable wavelets since 1992 [3], but they are not widely used

yet, because of their complexity. Using separable wavelets

and lattices is convenient for both designing the filters and

computing the wavelet transform of signals, but it may be a

limitation for some applications. In this article, we propose a

generic method to adapt the wavelet transform to any specific

problem, in a multidimensional non-separable setup. For this
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purpose, we propose to implement the wavelet transform using

the lifting scheme.

The lifting scheme has been proposed by Sweldens in 1996 to

generate second generation wavelets [4]. The lifting scheme

has many advantages over the previous approaches. In particu-

lar, all the interesting properties of wavelets, such as biorthog-

onality and regularity, are defined by linear relationships be-

tween the filter bank coefficients. As a consequence, it is easier

to design wavelet filters. Moreover, unlike usual wavelets,

checking those properties does not involve computing the

Fourier transform of the wavelets. As a consequence, wavelets

can be designed on arbitrary lattices. Multidimensional sec-

ond generation wavelets have been adapted to non-separable

lattices in 1995, on a sphere [5], [6], and in 1997, on the

two-dimensional Quincunx lattice [7]. It has been generalized

to any lattices in 2000 [8]. Since then, most research works

on wavelets are focusing on their extensions, such as the

morphological wavelets [9], the curvelets [10], the bandelets

[11] or the contourlets [12]. The proposed adaptive non-

separable wavelet transform could be applied to some of these

extensions.

Typically, the wavelet filter coefficients are designed in order

to satisfy the biorthogonality condition and to maximize the

regularity of both the primal wavelet (used for analysis) and

the dual wavelet (used for synthesis) [13], [8]. However, it

is possible to use some design degrees of freedom to adapt

the wavelet to a particular problem. Several separable wavelet

adaptation methods have been described in the literature [14],

[15], in particular for second generation wavelets [13], [16].

In [14] and [15], several procedures are proposed to design

wavelets, with a desired support and number of vanishing

moments, that approximate a reference signal up to a desired

scale. In [13], a general wavelet design framework is proposed

that allows the creation of scale- or space- dependent wavelets,

for instance; it has been applied to tune wavelets in order to

optimize a high level criterion: the classification performance

of a microaneurysm detector in eye fundus images [17]. In

[16], lifting structures are proposed that makes it possible

to choose between different update filters, the choice being

triggered by a local gradient of the image. A second generation

wavelet adaptation procedure has been proposed in 2002 for

two-dimensional non-separable wavelets, on the Quincunx

lattice [18], [19]. In that method, based on [8], the lifting

scheme’s prediction filter can be tuned by setting a multiplier

between two predefined filters. A nice property of that method



2 IEEE TRANSACTIONS ON IMAGE PROCESSING

is the ability to adapt the wavelet, while preserving a desired

number of vanishing moments. However, to our knowledge, no

general second generation wavelet adaptation procedures have

been presented for multidimensional non-separable wavelets.

In this article, we propose to extend the generic method

proposed by Kovacevic and Sweldens [8], in order to make

it adaptive, while preserving its genericity: we don’t make

any assumptions on the dimension and the lattice, and the

lifting scheme prediction and update filters are designed freely.

So, unlike [16], [18], [19], the shape of the wavelet can be

freely designed, in an automatic fashion. Unlike [14], [15], the

wavelet adaptation procedure is independent of the criterion to

optimize. Unlike [17], a desired number of vanishing moments

can be preserved. And finally, unlike [13], [14], [15], [16],

[17], the adaptation is performed for multidimensional non-

separable wavelets, and it is not restricted to the Quincunx

lattice, as opposed to [18], [19].

When designing a lifting scheme filter F (either a prediction or

an update filter), by Kovacevic and Sweldens’s method [8], all

the design degrees of freedom (nF degrees) are used to make

the first nF moments of the corresponding wavelet vanish.

This is done by defining F as the simplest Neville filters of

order nF , with a given shift. In order to make the method

adaptive, we propose to define each lifting scheme filter F as

a Neville filters of order nF , but not the simplest: we use n′
F

additional degrees of freedom to build a more complex Neville

filter. Tuning these Neville filters, we can generate wavelet

decompositions better suited to any specific application. Note

that Neville filters, in conjunction with Lagrange interpolation,

have been used to design a non-adaptive wavelet family [20],

also related to the one described in [8]. In the method we

propose, the design degrees of freedom that are not used

to make the first wavelet moments vanish, are tuned to

optimize a high-level criterion. Typically, for a compression

application, this criterion would be the signal-to-noise ratio;

for classification, it may be the accuracy; and for information

retrieval, it may be the mean precision.

The amount of signals of various dimensions, stored in mul-

timedia databases for many applications (medicine, defense,

weather forecast, news, etc.) is increasing exponentially. In

order to make the most of the available data, for data mining

or information retrieval, it is necessary to develop efficient

multidimensional signal processing tools. In this article, we

also propose to apply our novel wavelet adaptation method

to Content-Based Image Retrieval (CBIR) [21]. The goal of

CBIR is to retrieve, from a database, images that are similar to

an image placed as a query. Previously, we proposed a wavelet

based CBIR system involving wavelet optimization [22]. The

wavelet basis was searched within the one-dimensional lifting

scheme framework: the wavelet functions were supposed sep-

arable; as a consequence the optimal wavelet decomposition

was applied to the rows and columns of images independently.

In this article, we propose to search for an adapted non-

separable wavelet basis, within the two-dimensional lifting

scheme framework, for image retrieval. Note that, using the

proposed wavelet adaptation method, the generalization of

image retrieval in higher dimensions (2D+t, 3D, 3D+t, etc.)

is straightforward. To our knowledge, multidimensional non-

separable filter banks, with a varying number of degrees of

freedom, have never been applied to CBIR.

The article plan is as follows. Section II presents multireso-

lution analysis in a multidimensional framework and section

III presents the lifting scheme. Section IV summarizes how

wavelets are designed in [8], and discusses the implementation

choices we made. Section V explains how we propose to

adapt the wavelets, while preserving a certain amount of zero

moments. Some examples of multidimensional lattices are

presented in section VI. The method is then applied to CBIR,

in section VII, and we end up with a discussion in section

VIII.

II. MULTIRESOLUTION ANALYSIS

A. One-dimensional Multiresolution Analysis [17]

A multiresolution approximation is a nested sequence of

linear spaces (Vj)j∈Z. The approximation of a function f ∈
L2(R) at a resolution 2j is defined as the projection of f on

Vj . (x 7→ Φjk(x) =
√

2jΦ(2jx−k))k∈Z,Φ∈L2(R) is a basis of

Vj , j ∈ Z, where Φ, called the scaling function, satisfies the

refinement relation of equation (1).

Φ(x) = 2

∞
∑

k=−∞

hkΦ(2x − k) (1)

The difference between two approximations of f , at resolu-

tions 2j and 2j+1, is given by the projection of f on Wj ,

the orthogonal complement of Vj in Vj+1. (x 7→ Ψjk(x) =√
2jΨ(2jx − k))k∈Z,Ψ∈L2(R) is a basis of Wj , j ∈ Z, where

Ψ, called the wavelet function, satisfies the refinement relation

of equation (2).

Ψ(x) = 2

∞
∑

k=−∞

gkΦ(2x − k) (2)

B. d-dimensional Multiresolution Analysis

For a one-dimensional multiresolution analysis, the refine-

ment relations involve downsampling by a factor of 2, denoted

↓ 2 (see equations 1,2). In higher dimensions (d ≥ 2)

the refinement relations involve downsampling by a dilation

matrix D ∈ Md(Z), denoted ↓ D, where Md(Z) denotes the

set of d-by-d matrices: Z
d 7→ D ·Zd + t, t ∈ Z

d. Equations 1

and 2 are generalized as follows:

Φ(x) =

∞
∑

k=−∞

hkΦ(D · x − k) (3)

Ψ(x) =

∞
∑

k=−∞

gkΦ(D · x − k) (4)

Let M be the absolute value of the determinant of D:

M = |det(D)|. The approximation of a function f ∈ L2(R
d)

at a resolution M j is defined as the projection of f on

the basis (x 7→ Φjk(x) = M
j
2 Φ(Dj · x − k))k∈Zd . The

additional information available in the approximation of f at

the resolution M j+1, as compared with the resolution M j , is

given by the projection of f on the basis (x 7→ Ψjk(x) =

M
j
2 Ψ(Dj · x − k))k∈Zd .
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The dilation matrix D downsamples Z
d in M exclusive and

complementary lattices. The columns of D (n0, n1, ..., nd−1)

are the basis vectors of the first lattice T0 : T0 = {D · k/k ∈
Z

d}. Lattices Ti, i = 1..M − 1, are translated from T0 by

a vector ti (t0 = 0): Ti = {D · k + ti/k ∈ Z
d}. Note that

different dilation matrices can lead to identical lattices.

By definition, if D is diagonal, then T0, ..., TM−1 are separable

lattices, otherwise they are non-separable lattices.

C. Recursive Signal Analysis

We want to compute the approximation and the details

at the resolution M j+1 of a discrete signal f ∈ R
Z

d

from

its approximation at the resolution M j . The coefficients of

the approximation at the resolution M j lie in the lattice

T
(j)
0 = {Dj ·k/k ∈ Z

d}. The coefficients of the approximation

at the resolution M j+1 lie in the lattice T
(j+1)
0 = {Dj+1 ·

k/k ∈ Z
d} and the coefficients of the details lie in the lattices

T
(j+1)
i = {Dj+1 · k +Dj · ti/k ∈ Z

d}, i = 1..M − 1. Initially

(j = 0), the coefficients of f lie in the lattice T
(0)
0 = Z

d.

For instance, a set of lattices is illustrated in figure 1 for

D =
(

2 2

1 −1

)

(hexagonal lattice in dimension 2): initially,

the basis vectors are ((n
(0)
0 )(n

(0)
1 )) = D0 = I2, then after the

first iteration, they are ((n
(1)
0 )(n

(1)
1 )) = D, finally after the

second iteration they are ((n
(2)
0 )(n

(2)
1 )) = D2.

n
1

(0)
n

1

(2) n
0

(1)

n
0

(2)

n
0

(0)

n
1

(1)

Fig. 1. Recursive signal analysis (for an hexagonal lattice in dimension 2).

The lattice T
(0)
0 is represented by squares, the lattice T

(1)
0 is represented by

gray squares.

III. THE LIFTING SCHEME

In 1996, Sweldens introduced a convenient way to satisfy

all the desired properties of wavelets by reducing the problem

to a set of simple relations between the wavelet and scaling

filter coefficients, namely the lifting scheme [4]. Using the

lifting scheme, it is possible to generate any compactly sup-

ported biorthogonal wavelet, with a compactly supported dual,

which ensures that decomposed signals can be perfectly recon-

structed. A filter bank was proposed in the one-dimensional

case to implement the lifting scheme [13]. It defines two linear

filters, denoted P (for prediction) and U (for update).

The multidimensional lifting scheme is illustrated in the case

M = 2 in figure 2 (it simply generalizes the one-dimensional

case [13], replacing ↓ 2 and ↑ 2 by ↓ D and ↑ D, respectively)

and in the general case in figure 3. Filters Pi and Ui,

i = 1..M − 1, are prediction and update filters, respectively.

x

D

D

D

D x+

z

U U PP

z

−

+−

+

−t t

Fig. 2. 2-band lifting scheme with t0 = 0 and t1 = t.

U

z M−1

M−1

−t

−t

t

tM−1

x − −++

z

z 1

P1
1

M−1

1
P1

D 1

xD D

DD

+

+

+

−

−

D

U U

U PM−1

z

PM−1

Fig. 3. M -band lifting scheme with t0 = 0.

Definition: let π(x), x ∈ R
d, be a polynomial in x, let π(Zd)

be the polynomial sequence on the lattice Z
d {π(k)|k ∈ Z

d},

and let Πn be the space of all polynomial sequences of degree

strictly less than n. A filter F is a Neville filter of order n
with shift τ ∈ R

d if Fπ(Zd) = π(Zd+τ) for each polynomial

sequence π(Zd) ∈ Πn.

A wavelet has n vanishing moments if and only if its scaling

function can generate polynomials of degree less than or equal

to n. This property is used to describe the approximating

power of scaling functions, or equivalently, the possibility to

characterize the order of isolated singularities. A sufficient

condition to guarantee that the first Ñ moments of the primal

wavelet vanish is that the prediction filters Pi are Neville filters

of order Ñ with shift τi = D−1 · ti [8]. And a sufficient

condition to guarantee that the N ≤ Ñ first moments of the

dual wavelet vanish is that the filters M ·Ui are Neville filters

of order N with shift −τi [8].

IV. BUILDING A NEVILLE FILTER

Kovacevic and Sweldens proposed to build the prediction

and update filters Pi and Ui, i = 1..M − 1, as Neville

filters [8]. A filter F is a Neville filter of order nF with

shift τF if and only if its impulse response {fk} satisfies
∑

k∈Zd f−k

∏d

i=1 kni

i =
∏d

i=1 τni

Fi
, for each

∑d

i=1 ni < nF ,

where ki (resp. τFi
) denotes the ith component of k (resp. τF )

and ni ∈ N is the corresponding exponent [8]. Consequently,

there are Cd
nF −1+d equations to solve.

Let Θ be a set of n points. In a one-dimensional space, there is

a unique polynomial of degree strictly less than n to interpolate

a function on Θ. In a d-dimensional space, d > 1, the number

n, such that there is a unique polynomial p of degree strictly

less than or equal to n (p ∈ Πn) to interpolate a function on

Θ, depends on the configuration of Θ. The following approach

is thus applied to find a set of points Θ [8]:

• the De Boor-Ron algorithm [23] is used to compute the

space ΠΘ of R
d polynomials in which there is a unique

interpolant for each function defined on Θ.

• the largest integer n such that Πn is included in ΠΘ is

looked for. The way we propose to test the inclusion

of Πn in ΠΘ is presented in appendix A, after a brief

introduction to the De Boor-Ron algorithm.
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• the neighborhood Θ is increased until the desired order

n is reached.

The neighborhood of τF is searched for in the span of an

invertible matrix T ∈ Md(Z) (T = Id or T = D, typically).

In our implementation of the method, we chose the matrix T
(either Id or D) that requires the smallest neighborhood ΘF of

τF so that ΠnF
is included in ΠΘF

, where nF is the desired

filter order, i.e. the number of wavelet vanishing moments. In

this way, the complexity of the wavelet transform algorithm

is reduced.

To compute the Neville filter, the following system has to be

solved:


















A =
(

∏d

i=1 kni

i

)

∑

d
i=1

ni<nF ,k∈ΘF

b =
(

∏d

i=1 τni

Fi

)

∑

d
i=1

ni<nF

A · F = b

(5)

The number of equations is e = Cd
nF +d−1 and the number

of unknowns in this system is u = |ΘF |, i.e. the size of the

support of F . Since ΠnF
is included in ΠΘF

, the uniqueness

of the solution is ensured (whether e is greater or less than u).

Since e and u are not necessarily equal, we propose to solve

this system thanks to the singular value decomposition of A
[24]: A = U · diag(wi) · V t, U ∈ Me,u(R), V ∈ Mu(R),
w ∈ R

u (U and V are orthogonal matrices). The solution of

this system is given by F = V · diag( 1
wi

) · (U t · b).

V. OPTIMIZING THE WAVELET FILTER

We have now seen how to design wavelets with a maximum

number of vanishing moments. In this section, we propose a

novel solution to adapt the wavelet to any specific problem:

we introduce additional design degrees of freedom to modify

the Neville filter.

To adapt a filter F (either Pi or Ui, i = 1..M−1) we optimize

a real valued vector, whose size is the desired number n′
F

of additional degrees of freedom for filter adaptation. Any

optimization algorithm which does not require evaluating the

gradient can be used, such as a genetic algorithm [25] or the

Powell direction set method [26], for instance.

In practice, we do not adapt each filter independently, we adapt

the whole filter bank: as a consequence, the dimension of the

optimization problem is
∑M

i=1 n′
Pi

+ n′
Ui

. So, each time the

chosen optimization algorithm generates a vector, we build

each filter in the filter bank with the corresponding coefficients

in the generated vector, as described below, and the whole filter

bank is evaluated by a problem-specific criterion.

We propose the following approach to build a filter F from the

corresponding coefficients in the generated vector (see figure

4):

1) we compute ΘF1, the smallest neighborhood such that

ΠnF
⊂ ΠΘF1

(see section above),

2) we add new points ΘF2 in the neighborhood of τF

(ΘF = ΘF1 ∪ ΘF2),

3) we set the filter coefficients associated with these new

points (F2) to values generated by the optimization

algorithm,

4) we modify the right-hand side of the linear system

accordingly (as explained below),

5) we compute the other filter coefficients (F1) such that F
is a Neville filter of order nF : we solve the e×u linear

system with the matrix A introduced in the previous

section and the new right-hand side.

n
0

n
1

Fig. 4. Optimizing a Neville filter with shift τF = ( 1
2
, 1
2
) and two degrees

of freedom. The subset ΘF1 of the neighborhood is represented by squares
and the subset ΘF2 by circles. The filter taps represented by dark gray circles
(resp. light gray circles) are set to the first value v1 (resp. the second value
v2) associated to this filter in the optimization vector.

As a consequence, we build a new Neville filter, with the

same order nF and the same shift τF than the non-adapted

wavelet (whose computation is described in the previous

section), but this filter is no longer the simplest Neville filter

of order nF with shift τF .

n′
F , the desired number of degrees of freedom of the filter

adaptation, is the number of filter coefficient values v1, ..., vn′
F

that we add to filter F . Note that n′
F is not the number

of coefficients (several coefficients have the same value).

Precisely, v1 is associated in filter F with the closest points

to τF , equidistant to τF , outside of ΘF1, we denote this set

of points P1. v2 is associated in filter F to the closest points

to τF , equidistant to τF , outside of ΘF1 ∪P1, we denote this

set of points P2, etc. ΘF2 = P1 ∪ P2 ∪ ... ∪ Pn′
F

.

To compute the new Neville filter, we have to solve the

following system, where nF is the order of the filter, i.e.

the number of wavelet vanishing moments, and F1 are the

unknowns:






































A1 =
(

∏d

i=1 kni

i

)

∑

d
i=1

ni<nF ,k∈ΘF1

A2 =
(

∏d

i=1 kni

i

)

∑

d
i=1

ni<nF ,k∈ΘF2

b =
(

∏d

i=1 τni

Fi

)

∑

d
i=1

ni<nF

A1 · F1 = b − A2 · F2

F = {F1F2}

(6)

It also has a unique solution and we propose to solve it

with the singular value decomposition method. The proposed

adaptation procedure ensures that all the filter taps, equidistant

to the Neville filter shift, are set to the same coefficient.

We explain in section VII-E how the proposed wavelet adap-

tation procedure is applied to Content-Based Image Retrieval.

VI. SOME LATTICES

In the last two sections, we have seen how to design a

multidimensional wavelet using the lifting scheme, and we
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have proposed a novel way to adapt it to any specific problem,

regardless of the lattice used. In this section, we present some

known lattices that will be compared on an application in the

next section.

n
0

n
1

(a) separable lattice

n
1

n
0

(b) Quincunx lattice

n
0

n
1

(c) hexagonal lattice

n
0

n
1

(d) triangular face lattice

Fig. 5. Examples of lattices. In each figure, the first lattice (T0) is represented
by gray squares and each lattice is represented by distinct shapes.

A. Separable Lattices

We consider a dilation matrix D = 2Id, where Id is the d-

dimensional identity matrix. D is diagonal, as a consequence

the lattice is separable. The number of decomposition sub-

bands at each scale is M = 2d. It is illustrated in the case

d = 2 below (see figure 5 (a)):

D =

(

2 0
0 2

)

, D−1 =

(

1
2 0
0 1

2

)

(7)

The shifts between subbands are: t0 = (0, 0), t1 = (1, 0), t2 =
(0, 1) and t3 = (1, 1); the corresponding Neville filter shifts

are: τ0 = (0, 0), τ1 = ( 1
2 , 0), τ2 = (0, 1

2 ) and τ3 = ( 1
2 , 1

2 ).

B. Checkerboard Lattices

Two expressions are possible for the dilation matrix of

checkerboard lattices [3], including:

D =



















1 0 . . . 0 1
1 1 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 1 (−1)d−1



















(8)

Whatever the expression, D is not diagonal, as a consequence

it is a non-separable lattice. The number of decomposition

subbands M at each scale is dimension independent: M = 2.

In the case d = 2, the checkerboard lattice is called Quincunx

lattice and in the case d = 3, it is called face centered

orthorhombic lattice. It is illustrated in the case d = 2 below

(see figure 5 (b)), using equation 8:

D =

(

1 1
1 −1

)

, D−1 =

(

1
2

1
2

1
2 − 1

2

)

(9)

The shifts between subbands are: t0 = (0, 0) and t1 = (1, 0);
the corresponding Neville filter shifts are: τ0 = (0, 0) and

τ1 = ( 1
2 , 1

2 ).

C. Hexagonal Lattice in dimension 2

The dilation matrix is the following [8] (see figure 5 (c)):

D =

(

2 2
1 −1

)

, D−1 =

(

1
4

1
2

1
4 − 1

2

)

(10)

D is not diagonal, as a consequence it is a non-separable

lattice. The number of decomposition subbands at each scale

is M = 4. The shifts between subbands are: t0 = (0, 0),
t1 = (1, 0), t2 = (2, 0) and t3 = (3, 0); the corresponding

Neville filter shifts are: τ0 = (0, 0), τ1 = ( 1
4 , 1

4 ), τ2 = ( 1
2 , 1

2 )
and τ3 = ( 3

4 , 3
4 ).

D. Triangular Face Lattice in dimension 2

The dilation matrix is the following [8] (see figure 5 (d)):

D =

(

2 1
−1 1

)

, D−1 =

(

1
3 − 1

3
1
3

2
3

)

(11)

D is not diagonal, as a consequence it is a non-separable

lattice. The number of decomposition subbands at each scale

is M = 3. In this configuration, each point on a lattice is at

the centre of a triangle in both other lattices at the same scale.

The shifts between subbands are: t0 = (0, 0), t1 = (1, 0)
and t2 = (2, 0); the corresponding Neville filter shifts are:

τ0 = (0, 0), τ1 = ( 1
3 , 1

3 ) and τ2 = ( 2
3 , 2

3 ).

VII. APPLICATION TO CONTENT-BASED IMAGE

RETRIEVAL

A. Content-Based Image Retrieval (CBIR)

CBIR is a very active research topic in all the fields

where images carry relevant information [21], particularly in

medicine, where imaging is present for diagnosis, therapy or

education [27]. The principle of CBIR is to use images as

queries to access relevant information in databases. Precisely,

the goal is to retrieve similar images from these databases.

The central point of CBIR is to define a similarity measure

between images. In that purpose, relevant features from both

the query image and images stored in the database are ex-

tracted. Typically, features characterizing shapes [28], edges in

particular [29], color [30], or texture [31], are extracted. Then,

the distances between feature vectors (also referred to as image

signatures) are computed, and images minimizing the distance

to the query are retrieved. Relevance feedback is sometimes

applied, in order to enhance the semantic meaningfulness of
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retrieved images [32]. Recently, CBIR has been extended to

the retrieval of multimodal documents, such as image series

with metadata [33] or video with sound and text [34].

B. Wavelet Based CBIR

In this article, we apply the indexing and retrieval method

proposed by Do and Vetterli, for texture retrieval [31], to image

retrieval in general. To build image signatures, the principle

is to model the wavelet coefficients in each subband by a

generalized Gaussian distribution:

p(x;α, β) =
β

2αΓ( 1
β
)
e−( |x|

α )
β

(12)

with Γ(z) =

∫ ∞

0

e−ttz−1dt, z > 0 (13)

In the lower frequency subband, we model the coefficient

distribution by a histogram. As a result, each image signature

consists of N − 1 maximum likelihood estimators (α̂, β̂) of

a generalized Gaussian distribution and one histogram, where

N is the number of decomposition subbands.

The divergence between two image signatures is defined as

a weighted sum of the divergences between the coefficient

distribution in the corresponding subbands of the two images.

The Kullback-Leibler divergence was used to estimate the

divergence between two wavelet coefficient distributions [31].

Although this divergence is asymmetric, it is not a problem

in an image retrieval framework, which is asymmetric by its

nature [35].

C. Wavelet Adaptation for CBIR

In CBIR, many factors (shape, texture, etc) come into play

when we try to retrieve semantically relevant images, so it

is usually complex to define a good image signature for

any database. To address this problem, we can either extract

features that are known to be relevant for a particular database,

when expert knowledge is available, or we can design a generic

image signature and tune it automatically to each database. We

explored the second approach in this article. The wavelet’s

degrees of freedom, that we introduced in section V, are used

to tune the generic image signature, described in the previous

section, to any database.

D. The Databases

The proposed method was applied to two medical databases

(DRD and DDSM) and two non-medical databases (FD and

VisTex).

1) Diabetic Retinopathy Database (DRD): this database

has been built at the LaTIM laboratory (INSERM U650) for

research on diabetic retinopathy follow up. Diabetic retinopa-

thy is the main cause of blindness before 50 years old in

the developed countries. The database consists of 63 files

of diabetic patient examined in Brest University Hospital

from June 2003 to April 2007. It contains 1,045 photographs

altogether, with associated anonymous information on the

pathology. Images have a definition of 1,280 pixels/rows for

1,008 rows/image. They were acquired by experts using a

Topcon Retinal Digital Camera (TRC-50IA) connected to a

computer and are lossless compressed. Four types of images

are obtained: color, red-free, blue-light images and angio-

graphic sequences. An image series is given in figure 6 as

an illustration. The disease severity level, ranging from 0 to

5, according to ICDRS classification [36], was determined by

experts for each patient.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Photograph series of a patient eye. Images (a), (b) and (c) are
photographs obtained by applying different color filters on the camera lens.
Images (d)-(j) form a temporal angiographic series: a contrast product is
injected and photographs are taken at different stages (early (d), intermediate
(e)-(i) and late (j)).

2) Digital Database for Screening Mammography (DDSM):

the DDSM project [37], involving the Massachusetts General

Hospital, the University of South Florida and the Sandia Na-

tional laboratories, has built a mammographic image database

for research on breast cancer screening. It consists of 2,500

patient files. Each one includes two images of each breast,

along with some associated patient information. As a conse-

quence, the database consists of 10,000 images. These images

have various definitions, approximately 2,000 pixels/row for

5,000 rows/image. An example of image sequence is given

in figure 7. Each patient file has been graded by a physician.

Patients are then assigned one of these labels: normal, benign

or cancer.

(a) (b) (c) (d)

Fig. 7. Mammographic image sequence of the same patient. (a) and (b) are
images of the left breast, (c) and (d) are images of the right one.

3) Face Database (FD): the database consists of 400

images: ten photographs of 40 distinct subjects1. For some of

them, the images were taken at different times, with different

lightings, facial expressions (open / closed eyes, smiling /

not smiling) and facial details (glasses / no glasses). All the

images were taken against a dark homogeneous background

with the subjects in an upright, frontal position. Images have

a definition of 92 pixels/row for 112 rows/image. Figure 8

shows the 10 face images of a subject. We consider that images

belong to the same class if and only if they represent the same

subject.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. Image sequence of the same person’s face

4) Vision Texture database (VisTex): the database is a

collection of texture images representative of real world con-

ditions2. Images have a definition of 512×512 pixels. We

discarded the miscellaneous classes (Misc and WheresWaldo)

and the classes consisting of three elements or less (Clouds,

Grass and Wood), as a consequence 14 classes were selected,

consisting of 153 images in total. Only the green channel of

images is used in this experiment. An example is given in

figure 9.

(a) (b) (c) (d) (e) (f)

Fig. 9. Example of class from the VisTex dataset (Stone)

E. Objective and tuning of the System

In DRD, the number of cases retrieved by the system is

set to five, at ophthalmologists’ request: because examining

retrieved images may be time consuming, they expect to find

interesting images among the topmost results. For comparison

purposes, the same number of cases is retrieved for the other

three databases. As a consequence, the satisfaction of user’s

needs can be meaningfully assessed by the precision at five, the

percentage of cases relevant for the query among the topmost

five results.

Regarding our wavelet adaptation problem, it means that we

will search for the wavelet basis that maximizes the mean

precision at five of the retrieval method, in conjunction with

the best set of weights between the subbands in the divergence

measure (see section VII-B). The wavelet filter coefficients and

the set of weights are tuned offline on a reference database,

using a genetic algorithm, and this optimal setup is applied to

each query image (see figure 10). As a consequence, wavelet

adaptation is not performed for each image individually, but

for a given dataset taken as a whole. The system is evaluated

on each dataset using a 5-fold cross validation.

F. Results

We first give the performance of the system, according to

the lattice used and the number Nl of decomposition levels,

2http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

inline

weights

best weights

best filter bank

mean precision
at 5

inner genetic

(weights)
algorithm

algorithm
(filter bank)

outer genetic

wavelet filter
bank

offline

query image signature 5 most similar
images

Fig. 10. Optimization Process

without filter adaptation. In order to compare the performance

of the system with different lattices and numbers of decompo-

sition levels, we propose the following definition of the scale

of analysis:

scale =
√

M
Nl

(14)

The performance of the retrieval system according to the scale

of analysis, for each lattice, is given on figure 11. The order

of the prediction and update filters is set to 4.

As the number of decomposition levels increases, the di-

mension of the search space increases, and it becomes harder

to find good weight vectors between subbands. So, we usually

observe a decrease in the mean precision at some point. For

FD, the small definition of images also contributes to the de-

crease of the mean precision, since the low frequency subband,

whose definition decreases with the number of decomposition

levels, is particularly relevant for this database.

Then, for each lattice, we adapt the filter bank with the best

number of decomposition levels, as obtained on figure 11. For

this purpose, we add one degree of freedom per filter in the

filter bank. The retrieval performance of the adapted system

is given in table I.

TABLE I
RETRIEVAL PERFORMANCE OF THE SYSTEM WITH FILTER ADAPTATION

lattice adaptation DRD DDSM FD VisTex

separable
no 47.74% 71.74% 94.85% 57.11%
yes 48.25% 76.03% 95.20% 59.08%

Quincunx
no 48.08% 73.06% 94.90% 56.71%
yes 48.42% 76.20% 95.25% 59.08%

hexagonal
no 46.84% 70.91% 95.35% 57.24%
yes 48.47% 71.07% 95.35% 58.68%

triangular
no 48.02% 70.41% 95.15% 55.66%
yes 48.64% 77.69% 95.35% 56.03%

We illustrate in table II the influence of the number of

degrees of freedom on the mean precision score. The exper-

iment is carried out on the face database. For each lattice,

the filter bank is adapted with p (resp. u) degrees of freedom



8 IEEE TRANSACTIONS ON IMAGE PROCESSING

separable lattice
Quincunx lattice
hexagonal lattice

triangular face lattice
 42

 43

 44

 45

 46

 47

 48

 49

 1  2  3  4  5  6  7  8  9

m
ea

n 
pr

ec
is

io
n 

at
 f

iv
e

scale

separable lattice
Quincunx lattice
hexagonal lattice

triangular face lattice
 55

 60

 65

 70

 75

 1  2  3  4  5  6  7  8  9

m
ea

n 
pr

ec
is

io
n 

at
 f

iv
e

scale

separable lattice
Quincunx lattice
hexagonal lattice

triangular face lattice
 75

 80

 85

 90

 95

 100

 1  2  3  4  5  6  7  8  9

m
ea

n 
pr

ec
is

io
n 

at
 f

iv
e

scale

separable lattice
Quincunx lattice
hexagonal lattice

triangular face lattice
 50
 51
 52
 53
 54
 55
 56
 57
 58

 1  2  3  4  5  6  7  8  9

m
ea

n 
pr

ec
is

io
n 

at
 f

iv
e

scale

(a) DRD (b) DDSM (c) FD (d) VisTex

Fig. 11. Retrieval performance of the system without filter adaptation.

for each prediction (resp. update) filter, using the best number

of decomposition levels. This table shows that increasing the

number of degrees of freedom, up to a certain number, leads

to an improvement of the performance. Anyway, if we add

too many degrees of freedom, the objective function becomes

more complex and it is harder to find the optimum: the system

performance stops increasing and even decreases. One or two

degrees of freedom for both the prediction and the update filter

seems to be a reasonable choice.

TABLE II
RETRIEVAL PERFORMANCE OF THE SYSTEM ACCORDING TO THE NUMBER

OF DEGREES OF FREEDOM

lattice p\u 0 1 2 3

separable

0 94.85% 95.15% 94.80% 94.65%
1 95.00% 95.20% 94.85% 94.80%
2 95.20% 95.10% 94.25% 95.20%

3 95.00% 94.85% 90.85% 94.50%

Quincunx

0 94.90% 95.20% 95.20% 95.05%
1 95.20% 95.25% 95.15% 95.25%
2 95.30% 95.30% 95.20% 95.05%
3 95.35% 95.45% 95.20% 95.55%

hexagonal

0 95.35% 95.65% 94.95% 95.2%
1 95.75% 95.35% 95.45% 95.45%
2 94.90% 95.40% 95.25% 95.20%
3 95.80% 95.60% 95.30% 94.50%

triangular face

0 95.15% 95.35% 95.15% 95.35%
1 95.30% 95.35% 94.50% 95.25%
2 95.00% 94.55% 95.00% 94.95%
3 95.45% 94.65% 95.10% 94.90%

The retrieval performance of the system is compared in table

III to that of the separable wavelet transform based system [22]

(a one-dimensional wavelet transform is applied to the rows

and to the columns of the image, separately). In both cases,

an adapted wavelet transform is searched for within the lifting

scheme framework, and a set of weights between subbands is

tuned, using exactly the same procedure (see figure 10).

TABLE III
NON-SEPARABLE VERSUS SEPARABLE WAVELET TRANSFORM - MEAN

PRECISION AT 5

wavelet transform DRD DDSM FD VisTex

separable 46.10% 70.91% 95.50% 56.05%

non-separable 48.64% 77.69% 95.35% 59.08%

Using a non-separable wavelet transform, we observe a

noticeable improvement of the performance on three out of

the four databases (DRD, DDSM and VisTex) and the results

are similar on the other one. The improvement is particularly

important for DDSM; our explanation is that the tissues, the

cancerous tissues in particular, tend to be aligned in an oblique

direction (see figure 12 - the cancerous tissues are overlaid). As

a consequence, a separable wavelet is not particularly suited.

For FD, the x-axis and the y-axis are probably dominant, so

a separable wavelet is better suited than for DDSM. And for

DRD and VisTex, there are no obvious dominant directions

on the dataset taken as a whole.

Fig. 12. Dominant direction in DDSM

The mean time required to decompose an image using the

adapted separable or non-separable wavelet transform is given

in table IV. Note that the time required to decompose images

does not differ whether or not an adapted wavelet is used,

since the wavelet is adapted to a reference database, offline,

and not to each individual query image (see section VII-E). All

experiments were conducted using one core of an Intel Core 2

duo E4500 based computer running at 2.2 GHz. Note that our

implementation of the separable wavelet transform is based

on the computationally efficient JPEG-2000 standard and that

our implementation of the non-separable wavelet transform

was designed to manage any dimensions and lattices; it could

be optimized for a specific lattice.

TABLE IV
NON-SEPARABLE VERSUS SEPARABLE WAVELET TRANSFORM -

COMPUTATION TIMES

wavelet transform DRD DDSM FD VisTex

separable 0.32 s 2.92 s 0.008 s 0.080 s

non-separable 6.17 s 60.88 s 0.044 s 1.172 s

Finally, the retrieval performance of the proposed method

is compared to the same CBIR framework, but based on an

overcomplete wavelet transform, the 2-D dual-tree complex

wavelet transform [38], since overcomplete wavelet transforms

are renowned for being particularly suited for CBIR. The

experiment was carried out on the VisTex dataset, with the



QUELLEC et al.: ADAPTIVE NON-SEPARABLE WAVELET TRANSFORM VIA LIFTING AND ITS APPLICATION TO CONTENT-BASED IMAGE RETRIEVAL 9

Polytechnic Institute of NYU’s implementation of the 2-D

dual-tree complex wavelet transform3, using the Farras nearly

symmetric filters [39]. The best retrieval performance was

obtained for two levels of decomposition. The retrieval results

are compared in table V. An improvement is observed when

wavelet adaptation is performed.

TABLE V
COMPARISON WITH THE DUAL-TREE COMPLEX WAVELET TRANSFORM ON

THE VISTEX DATASET

wavelet transform mean precision at 5

dual-tree CWT [38] 56.60%

non-separable lifting-scheme [8] 57.24%

proposed adaptive wavelet transform 59.08%

VIII. DISCUSSION

We presented in this article a novel method to adapt a

multidimensional wavelet filter bank to any specific problem.

The proposed method is based on the non-separable lifting

scheme framework. It allows the design of filter banks with

a desired number of degrees of freedom, while controlling

the regularity of the primal and dual wavelets. The regularity

of the wavelets is controlled by setting the number of low

order moments that should vanish. The support of the wavelet

functions is closely related to the sum of the number of degrees

of freedom for adaptation and of the number of vanishing

moments. The complexity of the system calibration (related

to the number of degrees of freedom) and of the wavelet

transform (related to the filters’ support) can thus be controlled

independently. The proposed system is convenient from an

implementation point of view: the same algorithm is used

whatever the dimensionality of the signal, and whatever the

lattice used.

The proposed method is applied to Content-Based Image Re-

trieval (CBIR): an image signature is derived from an adapted

non-separable wavelet transform, using four different lattices.

The performances of the adapted wavelet filter bank over the

non-adapted wavelet filter bank are higher for every database.

The system is compared to a similar CBIR system, but using

an adapted separable wavelet transform. The performances of

the non-separable wavelet based system are notably higher on

three out of the four databases (DDSM, DRD and VisTex),

and comparable on the other one (FD). A large improvement

is observed for DDSM, where there is a dominant oblique

direction. We have also shown that the proposed system is

better suited than the 2-D dual-tree complex wavelet transform

on the VisTex dataset, using a Kullback-Leibler divergence

based CBIR system.

In future studies on CBIR, we intend to apply the proposed

wavelet adaptation scheme to signals of higher dimensions,

such as CT scans, MRI, temporal MRI, etc. Also, the ability

to adapt the wavelet, while maintaining a desired amount of

zero moments, makes our framework potentially interesting

for combined compression and retrieval; this potential shall

be explored in future works.

3http://taco.poly.edu/WaveletSoftware/dt2D.html
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APPENDIX A

FINDING A BASIS TO INTERPOLATE POLYNOMIALS OF

ORDER STRICTLY LESS THAN n

A. De Boor and Ron Algorithm

De Boor-Ron algorithm [23] allows to build a space ΠΘ

of R
d polynomials in which there is a unique interpolant for

each function defined on a set Θ of points in R
d. To define

the space ΠΘ, the following definitions are used:

• eθi
(x) = eθi·x = 1 + θi · x + (θi · x)2/2 + ..., x ∈ Rd,

θi ∈ Θ, θi · x =
∑d

u=1 θi(u)x(u)
• let f be an analytic function at the origin (such as eθi

or

a polynomial), f ↓ is the first non-zero term in the series

f = f (0) + f (1) + ... where f (j) is the sum of all the

terms of degree j in the power series expansion of f .

• expΘ = vect{eθi
|θi ∈ Θ}.

De Boor and Ron proved that ΠΘ = (expΘ) ↓. In order to

define a basis for ΠΘ, they first look for a basis (gi)i=1..|Θ|

for expΘ. The basis vectors gi are searched applying a

Gaussian elimination with partial pivoting to the matrix V
obtained from matrix V ′ = (

∏d

u=1 θi(u)αj(u))θi∈Θ,αj∈Zd
+

treating all the elements of degree k as a single element:

V = (
∏d

u=1 θi(u)αj(u))θi∈Θ,
∑

d
u=1

αj(u)=k (each element in V
is actually a vector). We obtain the factorization V = A · W
where A is an invertible scalar matrix and W is a matrix of

vectors in reduced row-echelon form. The basis vectors gi are

defined as gi = x 7→ ∑

αj
(
∏d

u=1 x(u)αj(u))W (θi, αj)/αj !,

αj ! =
∏d

u=1 αj(u)!.
Finally, ΠΘ is defined as ΠΘ = vect{gi ↓ |i = 1..|Θ|}.

B. Testing the Inclusion of Πn in ΠΘ

Kovacevic and Sweldens [8] do not mention how they

test the inclusion of Πn = vect{x 7→
∏d

u=1 x(u)α(u)|x ∈
R

d, α ∈ Z
d
+,

∑d

u=1 α(u) < n} in ΠΘ. We propose the

following approach. Let πn′ = vect{x 7→
∏d

u=1 x(u)α(u)|x ∈
R

d, α ∈ Z
d
+,

∑d

u=1 α(u) = n′} be the set of all polynomials

of degree n′. ΠΘ is defined as the space spanned by the

gi ↓ defined above: ΠΘ = vect{gi ↓ |i = 1..|Θ|}. Each

vector gi ↓ is a linear combination of basis polynomials

(x 7→
∏d

u=1 x(u)α(u))x∈Rd,α∈Z
d
+

,
∑

d
u=1

α(u)=ngi↓
of πngi↓

; the

degree ngi↓ may vary from one gi ↓ to another. To test if Πn is

included in ΠΘ, we need to test if πn′ ⊂ vect{gi ↓ |ngi↓ = n′}
∀n′ ∈ {0, ..., n − 1}. The space spanned by the polynomials

gi ↓ of degree n′ is included in πn′ , since each of these polyno-

mials are defined as a linear combination of basis polynomials

(x 7→
∏d

u=1 x(u)α(u))x∈Rd,α∈Z
d
+

,
∑

d
u=1

α(u)=n′ of πn′ . As a

consequence, testing the inclusion πn′ ⊂ vect{gi ↓ |ngi↓ = n′}
is equivalent to testing the identity πn′ = vect{gi ↓ |ngi↓ =
n′}, and therefore testing if these two spaces have the same

dimension.

Let x = (x1, x2, ..., xN )t be the vector consisting of the

basis polynomials of πn′ (the dimension of πn′ is N ). Let

g = (g1 ↓, g2 ↓, ..., gM ↓)t be the vector consisting of the

gi ↓ such that ngi↓ = n′. We write g as the product of a

matrix An′

= (an′

ij )i=1..M,j=1..N and of x: an′

ij =
W (θi,αj)

αj !

(see section A-A). If the rank of An′

is equal to N , then

the dimension of vect{gi ↓ |ngi↓ = n′} is N , and then

πn′ ⊂ vect{gi ↓ |ngi↓ = n′}.

As a conclusion, Πn ⊂ ΠΘ if ∀n′ ∈ {0, ..., n − 1}, the rank

of An′

is equal to the dimension of πn′ .

To compute the rank of a matrix A (M×N ), we use a Gaussian

elimination, which expresses A as the product of an invertible

matrix S (M×M ) and of a matrix T (M×N ) in row-echelon

form: the number of non-zero rows of T is equal to the rank

of A.




