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An adaptive nonsingular fast terminal sliding mode control scheme consisting of an adaptive control term and a
robust control term for electromechanical actuator is proposed in this article. The adaptive control term with an
improved composite adaptive law can estimate the uncertain parameters and compensate for the modelled
dynamical uncertainties. While the robust control term, which is based on a modified nonsingular fast terminal
sliding mode control method with fast terminal sliding mode (TSM) reaching law, provides fast convergence of
errors, and robustifies the design against unmodelled dynamics. Furthermore, the control method eliminates the
singular problems in conventional TSM control. On the basis of the finite-time stability theory and the
differential inequality principle, it is proved that the resulting closed-loop system is stable and the trajectory
tracking error converges to zero in finite time. Finally the effectiveness of the proposed method is illustrated by
simulation and experimental study.

Keywords: nonsingular fast terminal sliding mode control; composite adaptive law; electromechanical actuator;
finite-time convergence

1. Introduction

With the development of electronic technology, the

electromechanical actuator (EMA) is now widely used

in various applications. For example, it is utilised in

aeroplanes, missiles, engine valves, injectors, brake

systems and so on. As an important part of the entire

system, EMA works like a converter or an amplifier

that transfers the electrical signal to the mechanical

movement. Consequently, the control of EMA, which

is implemented to achieve faster and more precise

regulations of position or velocity, has attracted much

attention during the past few decades. However, the

performance of EMA is influenced by uncertainties

such as parameter variations, external disturbances

and unmodelled dynamics. Therefore the control

method should circumvent the uncertain problems to

achieve better static and dynamic performance.

Sliding mode control (SMC), which provides

invariance to uncertainties once the system dynamics

are controlled on the sliding mode, is an efficient and

effective robust approach to deal with control prob-

lems of uncertain systems. It has been widely used in

practical systems, such as robot manipulators, DC–DC

converters and motors (Utkin 1977, 1993; Utkin,

Guldncr, and Shi 1999; Young, Utkin, and Ozguner

1999). There are two basic components in the SMC

method: a stable sliding surface that ensures the desired

dynamics, and a control effort that steers the system

states to reach and stay on the sliding surface. Usually

the sliding surface is a linear hyperplane of system

states and only asymptotic stability is assured on the

sliding manifold, which implies that system errors

cannot converge to zero in finite time.

Terminal SMC (TSMC) is a variant scheme of

SMC that can achieve finite-time stability (Bhat and

Bernstein 1998, 2000). In Venkataraman and Gulati

(1992), the attractor (Zak 1989) was adopted in the

sliding surface, and TSMC for second-order SISO

system was first presented. By employing the nonlinear

sliding mode, TSMC offers a finite-time error conver-

gence. Inspired by this idea, researchers developed

TSMC approaches with high-order systems (Yu and

Man 1996), MIMO linear systems (Man and Yu 1997)

and uncertain dynamic systems (Wu, Yu, and Man

1998). Nevertheless, TSMC cannot deliver the same

convergence performance while the system states are

far away from the equilibrium point. To overcome this

problem, Yu and Man (2002) presented the fast TSMC

(FTSMC) method that can achieve fast finite-time

convergence when the states are either far away from

or near the equilibrium point. However, singularity

occurs in both TSMC and FTSMC, and this issue was
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addressed explicitly in literature (Feng, Yu, and Man

2002; Yu, Yu, Shirinzadeh, and Man 2005; Jin, Lee,

Chang, and Choi 2009), where global nonsingular

TSMC (NTSMC) methods with the same convergence

properties as those of TSMC for uncertain systems

were proposed. To achieve fast finite-time convergence

for NTSMC, Yu, Du, Yu, and Xu (2008) introduced

the nonsingular FTSMC (NFTSMC) for a class of

n-order systems, but a high gain control effort was

adopted to ensure the stability of the close-loop

system.

The aforementioned control approaches, i.e. SMC,

TSMC, FTSMC and their nonsingular forms, are

robust control methods that do not have the ability to

‘learn’ in the control process, and result in a conser-

vative design. Furthermore, the stability of the system

is achieved at the cost of performance (Song,

Longman, and Mukherjee 1999). While adaptive

SMC (ASMC), with the integration of adaptive control

and SMC, may ride this disadvantage and has been

widely investigated in recent years (Man, Mike, and Yu

1999; Keleher and Stonier 2002; Zhao, Li, Gao, and

Zhu 2009). Usually only the tracking error is used in

the adaptive law in ASMC, and this brings about slow

parameter convergence and large transient tracking

error. In Barambones and Etxebarria (2001, 2002), a

modified TSMC with the composite adaptive law

(Slotine and Li 1989) was presented, where the

parameters were estimated by both the tracking error

and the prediction error. Faster parameter convergence

and smaller tracking errors were achieved, and true

parameter estimates could be acquired if the persistent

excitation (PE) condition was satisfied. To ensure the

boundedness of all signals, a nonlinear filtered error

signal which was switched to zero (Barambones and

Etxebarria 2001, 2002) when the trajectory error

equalled zero was introduced in TSMC. However,

the control effort may become awfully large while the

trajectory error is close to zero, and only semi-global

nonsingularity is obtained.

In this article the above-mentioned problems are

addressed. An adaptive NFTSMC (ANFTSMC)

approach for EMA is proposed. The control scheme

comprises an adaptive control term and a robust

control term. The adaptive control term uses a novel

composite adaptive law where the integration of

filtered system states are employed to estimate the

parameters, and then compensates for the modelled

dynamic uncertainties. While the robust term, which is

based on a modified NFTSMC with the fast TSM

reaching law, provides fast finite-time convergence of

errors either far away from or near the equilibrium

point. In addition it robustifies the design against

unmodelled dynamics with a small switching gain duo

to the parameter adaption. Consequently, the control

effort is less conservative than that of NFTSMC (Yu

et al. 2008). The adaptive law in ANFTSMC can

acquire accurate parameter estimates under a weaker

condition than that proposed by Barambones and

Etxebarria (2001, 2002). Furthermore, the semi-global

singular issue in Barambones and Etxebarria (2001,

2002) and Zhao, Li, and Gao (2009) is eliminated as

the NFTSMC approach is adopted, and global

nonsingularity is achieved. The main contributions of

this article are as follows: (1) a novel architecture of

ANFTSMC with the combination of composite adap-

tive law and NFTSMC that assures fast finite-time

error convergence is provided. (2) The stability and

error convergence analysis of the proposed

ANFTSMC are given.

This article is organised as follows. Model of EMA

is described and problem formulation is given in

Section 2. In Section 3 the control design is introduced.

Stability and error convergence analysis are presented

in Section 4. Simulation and experimental study are

given in Section 5 and some conclusions are drawn in

Section 6.

2. Models and problem formulation

2.1. Dynamic models of EMA

EMA with a DC motor driving a gearbox mechanism

will be concerned. Generally the current dynamics of

the motor is neglected due to the much faster electric

response in comparison to the mechanical dynamics.

The model of the actuator can be described as follows

(Ilyas 2006),

J
d2�

dt2
þ f

d�

dt
þML þ D ¼ K1u, ð1Þ

where � is the output angle of the gearbox shaft, J, f,

ML, K1 and D are equivalent parameters relative to the

actuator shaft: total moment of inertia, total damping

coefficient, load torque, equivalent electrical-mechan-

ical energy conversion constant and unmodelled

dynamics of the actuator.

Usually in servo systems the load is figured as an

unknown torque, but in some cases the position

dependent torque which can be modelled as a spring

load torque is met (such as the hinge moment of the

aerocraft). Thus, the load torque of EMA can be

expressed as (Wu and Fei 2005),

ML ¼ M�
j �þMC, ð2Þ

where M�
j is the coefficient of spring load torque and

MC is the constant load torque.

Regarding the output angle � as the system

output y, and defining the output angle and angu-

lar velocity of the actuator as the state variables,

2 H. Li et al.
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i.e., x ¼ ½x1, x2�
T ¼ ½�, _��T, then the entire system can be

expressed as

_x1 ¼ x2,

�1 _x2 ¼ u� �2x1 � �3x2 � �4 � D
0,

y ¼ x1,

8

>

<

>

:

ð3Þ

where D0 ¼D/K1(V), and �i(i¼ 1, 2, 3, 4) are given as

follows:

�1 ¼
J

K1

�

V � ðrad � s�2Þ�1
�

,

�2 ¼
M�

j

K1

�

V � rad�1
�

,

�3 ¼
f

K1

�

V � ðrad � s�1Þ�1
�

,

�4 ¼
MC

K1

�

V
�

:

ð4Þ

2.2. Assumptions and problem formulation

For simplicity, the following notations will be used: .i
for the ith component of the vector ., �̂ for the estimate

of ., .min for the minimum value of . and .max for the

maximum value of .. k . k is the Euclidean norm of ..

�min(�) and �max(�) are the minimum eigenvalue and

maximum eigenvalue of the matrix �, respectively. The

operation� (or �) for two vectors is performed in

terms of the corresponding elements.

In general, the parameters of the model cannot be

accurately determined, but we assume that the uncer-

tain parameters lie in some previously known intervals,

as shown in Assumptions 1 and 2. In addition,

Assumption 3 is for the desired trajectories (Zhang,

Chen, and Li 2010).

Assumption 1: �min4 �4 �max, �min and �max are

known with �min¼ [�1,min, . . . , �4,min]
T, �max¼ [�1,max,

. . . , �4,max]
T. Moreover, �1,min40, which conforms to

the physical point of view.

Assumption 2: The unmodelled dynamics is bounded,

i.e., kD0k� &, where &40 is known.

Assumption 3: The desired trajectory xd is continuous,

and its first-order derivative _xd and second-order deriv-

ative €xd , are bounded and available.

Consider model (3) which has unknown parame-

ters, disturbances and unmodelled dynamics, the con-

trol problem of this article can be formulated as

follows. Given the desired motion trajectory xd, the

object is to synthesise a control action u such that the

system tracking error e1¼x1�xd converges to zero,

while maintaining all signals in the system bounded.

3. Controller design

3.1. Control law design

In this section the nonsingular fast terminal sliding

mode (NFTSM) for EMA is first introduced. Then the

control law comprising an adaptive control term and a

robust control term is designed.

NFTSM (Yu et al. 2008) for model (3) can be

described as

�1 ¼ e1,

�2 ¼ �1 þ
�

2� �
_�1 þ c�1j j2��signð _�1 þ c�1Þ,

8

<

:

ð5Þ

where �40, c40, � ¼ z1/z2, 05z15z2, z1 and z2 are

odd integers. �, c, � are parameters to be designed. The

signum function sign(?) for the scalar ? is defined as

signð?Þ ¼

1, ?4 0,

0, ? ¼ 0,

�1, ?5 0:

8

<

:

ð6Þ

The first derivative of �2 is as follows (Yu et al. 2005,

2008):

_�2 ¼ _�1 þ � _�1 þ c�1j j1��ð €�1 þ c _�1Þ: ð7Þ

Remark 3.1: In Barambones and Etxebarria (2001,

2002) and Zhao et al. (2009), a nonlinear filtered error

named as er is used in sliding mode design. er is

switched to zero (Barambones and Etxebarria 2001,

2002) or a constant value (Zhao et al. 2009) when the

trajectory error e equals zero, and all the internal

signals are bounded when e¼ 0. However, er may

become awfully large as e! 0, and it does not achieve

global nonsingularity. The details can be seen in

Appendix A. In (7), as �51, 1� �40, then _�2
and �2 are bounded when ð _�1 þ c�1Þ ! 0. Thus, the

singular problems in classic TSMC and FTSMC are

avoided and global nonsingularity can be achieved

(Yu et al. 2008).

Noting (3) and (7), we obtain the following

dynamics.

�1 _�2 ¼ �1 _�1 þ � _�1 þ c�1j j1��ð�1 €�1 þ �1c _�1Þ

¼ �1 _�1 þ � _�1 þ c�1j j1��ðu� �2x1 � �3x2 � �4

� D
0 � �1 €xd þ �1c _�1Þ: ð8Þ

Then the control law is as follows

u ¼ ua þ us, ð9Þ

where ua denotes the adaptive control term in (10) and

us is the robust control term in (13). Let:

ua ¼ �̂1½ €xd � c _�1 � ’ð�1Þ� þ �̂2x1 þ �̂3x2 þ �̂4 ¼ �̂T’1,

ð10Þ

International Journal of Systems Science 3
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where �̂ ¼ ½�̂1, . . . , �̂4�
T, �̂i is the estimate of �i, i¼ 1, 2,

3, 4. ’1 and ’(�1) are given by

’1 ¼ ½ €xd � c _�1 � ’ð�1Þ, x1,x2, 1�
T, ð11Þ

’ð�1Þ ¼
1

�
_�1 þ c�1j j�sign( _�1 þ c�1)þ

c

2� �
( _�1 þ c�1):

ð12Þ

The robust control term contains two parts

us ¼ us,1 þ us2,

us,1 ¼ �k1�2 � k2 �2j jr signð�2Þ,

us,2 ¼ �k3 signð�2Þ,

8

>

<

>

:

ð13Þ

where k140, k240, k34&, r¼ z3/z4, 05z35z4, z3 and

z4 are odd integers. k1, k2, k3 and r are parameters to be

designed.

Remark 3.2: The first part of the robust control term,

us,1, is used to construct a fast TSM type reaching law

(Yu et al. 2005) that can ensure high convergence speed

as the system states are either far away from or near

the sliding manifold. The second part of the robust

control term, us,2, is adopted to robustify the system

against unmodelled dynamics.

3.2. Adaptive law design

Substituting (9)–(13) into (8), we get

�1 _�2 ¼ �1 _�1 � �̂1� _�1 þ c�1j j1��’ð�1Þ

þ � _�1 þ c�1j j1�� ½ ~�1ð €xd � c _�1Þ þ ~�2x1

þ ~�3x2 þ ~�4 þ us � D
0�, ð14Þ

where ~�i is defined as ~�i ¼ �̂i � �i, i¼ 1, 2, 3, 4.

Noting (5) and (12), we can obtain that

� _�1 þ c�1j j1��’ð�1Þ

¼ � _�1 þ c�1j j1��

	

�

1

�
_�1 þ c�1j j�sign( _�1 þ c�1)þ

c

2� �
( _�1 þ c�1)

�

¼ _�1 þ c�1 þ
c�

2� �
_�1 þ c�1j j2��sign( _�1 þ c�1)

¼ _�1 þ c�2: ð15Þ

Let �0 ¼ � _�1 þ c�1j j1�� and substituting (15) into (14)

results in

�1 _�2 ¼ ~�1½�ð _�1 þ c�2Þ þ �0ð €xd � c _�1Þ� þ ~�2�
0x1 þ ~�3�

0x2

þ ~�4�
0 � c�1�2 þ �0ðus � D

0Þ

¼ � ~�T’2 � c�1�2 þ �0ðus � D
0Þ, ð16Þ

where

’2 ¼ ½ _�1 þ c�2 � �0ð €xd � c _�1Þ, ��0x1, ��0x2, ��0�T:

The adaptive law for �̂ can be chosen as

_̂
� ¼ proj

�̂

�

�1’2�2 � �1�2ef � �1�3sigðef Þ
r
�

, ð17Þ

where �i¼ diag(�i1,�i2,�i3,�i4), �ij40, i¼ 1, 2, 3;

j¼ 1, 2, 3, 4. The projection operator is defined as

proj
�̂
ð�Þ ¼ ½proj

�̂1
ð�1Þ, . . . , proj�̂4ð�4Þ�

T with (Zhang,

Chen, and Li 2009; Zhang et al. 2010)

proj
�̂i
ð�iÞ ¼

0, �̂i ¼ �i, max and �i 4 0,

0, �̂i ¼ �i, min and �i 5 0,

�i, others:

8

>

<

>

:

ð18Þ

The prediction error ef in (17) is given by Zhang et al.

(2009)

ef ¼ P�̂ �Q, ð19Þ

and sig(ef)
r is defined as

sigðef Þ
r ¼ ½jef,1j

rsignðef,1Þ, . . . , jef,4j
rsignðef,4Þ�

T: ð20Þ

While the matrix P and Q are as follows:

P ¼

Z t

0

½’f‘ð�Þ�½’f‘ð�Þ�
Td�,

Q ¼

Z t

0

½’f‘ð�Þ�½uf‘ð�Þ�d�,

ð21Þ

where ’f and uf are filtered signals related to the system

states and control input u, i.e.

_’f,2 þ 	f’f,2 ¼ 	fx1,

_’f,3 þ 	f’f,3 ¼ 	fx2,

_’f,4 þ 	f’f,4 ¼ 	f,

_uf þ 	fuf ¼ 	fu,

8

>

>

>

<

>

>

>

:

ð22Þ

while ’f,1¼ 	f(x2� ’f,3), and ’f¼ [’f,1, ’f,2, ’f,3, ’f,4]
T. 	f

is a large positive number such that the filter outputs

can track their corresponding inputs closely.

‘(�) is given by

‘ð�Þ ¼ expð�"1j�jÞ, ð23Þ

where "1 is a positive parameter to be designed.

Remark 3.3: According to Yu et al. (2008), the control

effort of NFTSMC for (3) is u¼ k sign(�2). If

k4k�Tk � k’1kþ &, then the system is stable and the

finite-time error convergence can be achieved. For

uncertain parameters with known bounds k is chosen as

k4k�Tkmax � k’1kþ &, where k�Tkmax is the maximum

value of k�Tk, and k �T kmax¼ ð
P4

i¼1 j�ij
2
maxÞ

1=2,

j�ijmax¼max{j�i,maxj, j�i,minj}, i¼ 1, 2, 3, 4. However,

the system’s parameters may rarely bear the bounds

4 H. Li et al.

D
o
w

n
lo

ad
ed

 b
y
 [

B
ei

ji
n
g
 I

n
st

it
u
te

 o
f 

T
ec

h
n
o
lo

g
y
] 

at
 0

0
:5

2
 0

1
 D

ec
em

b
er

 2
0
1
1
 



in practical, and k�Tkmax � k’1k is far larger than �
T
’1.

While in ANFTSMC, us,1 decays to zero when the

system states reach the sliding mode �2, and a small

switching gain can be used in us,2 (in the presented

method k34&) to ensure the system’s stability (the

stability analysis is proposed in Section 4) due to

parameter adaption. Thus, the control effort in

ANFTSMC is less conservative than that in NFTSMC.

Remark 3.4: Owing to the construction of the sliding

mode �2 in (5), the action of _�1 shown in (8) should be

balanced in view of system stability. It is not a special

issue in NFTSMC for a high gain control effort is

employed to stabilise the system. If k is large enough,

the action of _�1 can be counteracted when

_�1 þ c�1 6¼ 0. However, an additional item that can

offset the action of _�1 is required in ANFTSMC to

design the adaptive control term, where a linearly

parameter dependent term in the control effort is

necessary in terms of parameter adaption. Intuitively

an item in the form of � _�1 þ c�1j j��1
_�1 may be used in

the control law. But it makes the control effort

unbounded when _�1 þ c�1 ! 0 and _�1 6¼ 0, for

� _�1 þ c�1j j��1
_�1 ! 1 in this case as �51, i.e. a new

singular problem may be brought. Here, the item ’(�1)

is introduced in the adaptive control term. It can

counteract the influence of _�1 as shown in (14)–(16).

While _�1 þ c�1 ! 0, ’(�1)! 0, which ensures the

boundedness of the control effort.

Remark 3.5: Noting (3), the control input u can also

be expressed as

u ¼ �1 _x2 þ �2x1 þ �3x2 þ �4 þ D
0 ¼ ’Tr � þ D

0, ð24Þ

where ’r ¼ ½ _x2, x1, x2, 1�
T. Substituting (24) into (22), uf

can be rewritten as

uf ¼ ’Tf � þ ’f,D0 , ð25Þ

where ’f,D0 is the filtered output of D0, i.e.,

_’f,D0 þ 	f’f,D0 ¼ 	fD
0. Due to the boundedness of D0,

’f,D0 is bounded. Assume that ’f,D0 ¼ 0, then we can get

(Zhang et al. 2010)

uf ¼ ’Tf �: ð26Þ

From (19) and (21), we have (Zhang et al. 2009)

ef ¼ P�̂ �Q ¼

Z t

0

½’f‘ð�Þ�½’f‘ð�Þ�
Td� �̂

�

Z t

0

½’f‘ð�Þ�½uf‘ð�Þ�d�

¼

Z t

0

½’f‘ð�Þ�½’f‘ð�Þ�
Td� �̂

�

Z t

0

½’f‘ð�Þ�½’f ‘ð�Þ�
Td� �

¼

Z t

0

½’f‘ð�Þ�½’f‘ð�Þ�
Td� ~� ¼ P ~�: ð27Þ

Remark 3.6: In Zhang et al. (2009), only ’f is used to

construct the matrix P and Q. As P is non-negative

definite, it may become infinite when t!1. In order

to keep P bounded ’f is reset to 0 after some time in

Zhang et al. (2010), where the invertibility of P needs

to be checked online. Here, a fading term ‘(�) given in

(23) is employed. As �!1, ‘(�) converges to zero

exponentially, this can ensure the boundedness of P for

bounded ’f.

4. Stability and error convergence analysis

Before the stability analysis, some properties of the

discontinuous projection mapping used in (17) are

given as follows.

P1 (Ioannou and Sun 1996):

~�½��1proj
�̂
ð�
Þ�4 0 8
 2 R: ð28Þ

P2 (Zhang et al. 2009):

~�½��1proj
�̂
ð�
� �
0Þ � 
�4� ~�
0 8
 2 R, 8
0 2 R:

ð29Þ

P3 (Ioannou and Sun 1996): If �̂ðtÞ 2 �� ¼
4

f�̂ : �min 4 �̂4 �maxg and the adaptive law is

�̂ðtÞ ¼ projð�
Þ in the time interval [t0, t00], then

�̂ðtÞ 2 �� 8t 2 ½t0, t00�: ð30Þ

Theorem 4.1: Suppose that the control law in (9)–(13)

with the adaptive law in (17)–(23) is applied to the

plant (3), then the controller guarantees that:

(i) The closed-loop system is globally stable.

(ii) If there exists a time T0(T040) that P(T0) is

positive definite, the system trajectory error

converges to zero in fast finite-time form.

Proof: Define the following Lyapunov function

candidate

V ¼ V1 þ V2, ð31Þ

V1 ¼
1

2
�1�

2
2 , ð32Þ

V2 ¼
1

2
~�T
�
�1
1

~�: ð33Þ

The derivative of V satisfies

_V ¼ _V1 þ _V2 ¼ �2�1 _�2 þ ~�T
�
�1
1

_̂
�: ð34Þ

We first prove (i).

International Journal of Systems Science 5
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Substituting (16), (17) into (34) and noting P2,

we can get

_V ¼ �2½� ~�T’2 � c�1�2 þ �0ðus � D
0Þ� þ ~�T

�
�1
1

_̂
�

¼ �c�1�
2
2 þ �0�2½�k1�2 � k2 �2j jrsignð�2Þ

� k3 signð�2Þ � D
0�

� ~�T’2�2 þ ~�T
�
�1
1 proj

�̂

�

�1’2�2 � �1�2ef

� �1�3 sigðef Þ
r
�

4 � c�1�
2
2 � �0ðk1�

2
2 þ k2j�2j

1þrÞ � �0ðk3j�2j þ D
0�2Þ

� ~�T
�2ef � ~�T

�3 sigðef Þ
r: ð35Þ

From (20), we have

sigðef Þ
r ¼ Edef, ð36Þ

where Ed¼ diag(ed,1, ed,2, ed,3, ed,4), and ed,i (i¼ 1, 2,

3, 4) is defined as

ed,i ¼
jef,ij

r�1, er,i 6¼ 0,

0, er,i ¼ 0:

(

ð37Þ

Noting (27), then

~�T
�2ef þ ~�T

�3 sigðef Þ
r ¼ ~�T

�2P ~� þ ~�T
�3EdP ~� ¼ ~�T

� ~�,

ð38Þ

where �¼�2Pþ�3EdP. As �2 and �3 are symmetric

positive definite matrices, while Ed and P are

non-negative definite, then � is non-negative definite,

and ~�T� ~�50, i.e.

~�T
�2ef þ ~�T

�3 sigðef Þ
r
50: ð39Þ

While k34&, it is verified that

�0ðk3j�2j þ D
0�2Þ5�0ðk3j�2j � jD0jj�2jÞ

5�0ðk3 � jD0jÞj�2j50: ð40Þ

Thus

_V4�c�1�
2
2 � �0ðk1�

2
2 þ k2j�2j

1þrÞ: ð41Þ

When �2 6¼ 0, _V5 0. The condition for Lyapunov

stability is satisfied. Noting Assumption 1 and P3, it

holds that j ~�ij4 j�i, max � �i,minj, i¼ 1, 2, 3, 4. So V2 is

bounded. Moreover, V1!1 as �2!1, thus V!1

as �2!1, i.e., V is radially unbounded. This

completes the proof of (i).

Then we prove (ii) in three cases.

Case 1: �2 6¼ 0 and _�1 þ c�1 6¼ 0.

When �2 6¼ 0 and _�1 þ c�1 6¼ 0, we get the following

inequality by (35) and (40).

_V4�c�1�
2
2 � �0ðk1�

2
2 þ k2j�2j

1þrÞ

� ~�T
�2ef � ~�T

�3 sigðef Þ
r: ð42Þ

The terms related to �2 on the right hand of (42) satisfy

�c�1�
2
2 � �0ðk1�

2
2 þ k2j�2j

1þrÞ

¼ �2ðcþ �0k1=�1ÞV1 � ð2=�1Þ
1þr
2 �0k2V

1þr
2

1

4�2ðcþ �0k1=�1,maxÞV1 � ð2=�1,maxÞ
1þr
2 �0k2V

1þr
2

1

¼ �k01V1 � k02V
1þr
2

1 , ð43Þ

where k01 ¼ 2ðcþ �0k1=�1,maxÞ, k
0
2 ¼ ð2=�1,maxÞ

1þr
2 �0k2.

If P(T0) is positive definite at sometime T0, then

�min(P(T0))40, for t5T0 we have (Zhang et al. 2009)

PðtÞ ¼

Z t

0

½’f‘ðtÞ�½’f‘ðtÞ�
Td�

¼

Z T0

0

½’f‘ðtÞ�½’f‘ðtÞ�
Td�þ

Z t

T0

½’f‘ðtÞ�½’f‘ðtÞ�
Td�

¼ PðT0Þ þ

Z t

T0

½’f‘ðtÞ�½’f‘ðtÞ�
Td�, ð44Þ

thus 8t5T0, P(t) is invertible if P(T0) is positive

definite, and �min(P(t))5 �min(P(T0))40.

Then the terms related to ef on the right hand of

(42) satisfy

� ~� T
�2ef � ~�T

�3 sigðef Þ
r

¼ � ~�TPTðPTÞ�1
�2ef � ~�TPTðPTÞ�1

�3 sigðef Þ
r

4�
�minð�2Þ

�maxðPTÞ
eTf ef �

�minð�3Þ

�maxðPTÞ
eTf sigðef Þ

r: ð45Þ

According to Lemma B2, the following inequality

holds.

eTf sigðef Þ
r ¼

X

4

j¼1

jef,jj
ð1þrÞ

5

�

X

4

j¼1

jef,jj
2

	ð1þrÞ=2

¼ ðeTf ef Þ
ð1þrÞ=2: ð46Þ

While for �i¼ diag(�i1,�i2,�i3,�i4), we have

V2 ¼
1

2
~�T
�
�1
1

~�4
1

2
�maxð�

�1
1 Þ ~�T ~�

¼
1

2
�maxð�

�1
1 Þ ~�TPTðPPTÞ�1P ~�4

1

�
eTf ef

¼
1

�
e2f , ð47Þ

where

05�4
2�minðPP

TÞ

�maxð�
�1
1 Þ

: ð48Þ

Thus, (45) can be rewritten as

� ~�T
�2ef � ~�T

�3 sigðef Þ
r

4�
�minð�2Þ

�maxðPTÞ
eTf ef �

�minð�3Þ

�maxðPTÞ
ðeTf ef Þ

ð1þrÞ=2

4�#1V2 � #2V
ð1þrÞ=2
2 , ð49Þ

where #1 ¼
�minð�2Þ�
�maxðPTÞ

, #2 ¼
�minð�3Þ�

ð1þrÞ=2

�maxðPTÞ
.
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For 05r51, 05(1þ r)/251, from (42), (43) and

(49) while noting Lemma B1, we have

_V4��1ðV1 þ V2Þ � �2ðV
ð1þrÞ=2
1 þ V

ð1þrÞ=2
2 Þ

4��1V� �2V
ð1þrÞ=2, ð50Þ

where �1 ¼ minfk01,#1g, �2 ¼ minfk02,#2g.

Therefore, according to Lemma B5, the system

states can reach the sliding mode �2 within finite time

when �2 6¼ 0 and _�1 þ c�1 6¼ 0.

Case 2: �2 6¼ 0 and _�1 þ c�1 ¼ 0.

For �2 6¼ 0 and _�1 þ c�1 ¼ 0, we have �2¼ �1,

_�2 ¼ _�1 ¼ �c�1 and ’(�1)¼ 0 from (5), (7) and (12).

Then the derivative of V1 becomes

_V1 ¼ �2�1 _�1 ¼ �1�1 _�1 ¼ �c�1�
2
1 ¼ �2cV1 5 0: ð51Þ

If the system states retain in �2 6¼ 0 and _�1 þ c�1 ¼ 0,

only exponential stability can be obtained from

Equation (51). We will prove that the sliding mode

�2 is reached in finite time in this case.

Substituting control law (9)–(13) into system (3)

with some manipulations yields

�1 _e2 ¼ ~�T’1 � �1c _�1 � k1�2 � k2�
r
2 � k3 signð�2Þ � D

0,

ð52Þ

where e2 ¼ x2 � _xd. Denoting d ð�1Þ ¼ _�1 þ c�1, then

(52) can be rewritten as

�1 _dð�1Þ ¼ ~�T’1 � k1�2 � k2�
r
2 � k3 signð�2Þ � D

0: ð53Þ

For �240, �k3 sign(�2)�D0 ¼�k3�D050 as k34&,

we get

�1 _dð�1Þ4 ~�T’1 � k1�2 � k2�
r
2: ð54Þ

Noting that ’2¼ 0 when _�1 þ c�1 ¼ 0, then the deriv-

ative of V2 satisfies

_V2 ¼ ~�T��1
1 proj

�̂

�

��1�2ef � �1�3 sigðef Þ
r
�

4� ~�T
�2ef � ~�T

�3 sigðef Þ
r

4�#1V2 � #2V
ð1þrÞ=2
2 : ð55Þ

According to Lemma B5, we know that ~� converges to

zero in finite time. Substituting ~� ¼ 0 into (54), then

�1 _dð�1Þ4�k1�2 � k2�
r
2 5 0: ð56Þ

While �140, _dð�1Þ5 0. For �250, it can be verified

that _dð�1Þ4 0 with the similar process. As shown in

Feng et al. (2002), �2 6¼ 0 and _�1 þ c�1 ¼ 0 is not an

attractor of the system. The system states cannot retain

in �2 6¼ 0 and _�1 þ c�1 ¼ 0 forever. Thus, the sliding

mode �2 can be reached in finite time.

Case 3: �2¼ 0.

When �2¼ 0, the system states reach the sliding

mode �2. If �2¼ 0 at t0, then e1¼ 0, 8t5 t1, with t1
given by (Yu et al. 2008)

t1 ¼
2� �

cð1� �Þ

h

ln
�

c




e1ðt0Þ






1��

2�� þ �00
�

� ln�00
i

þ t0, ð57Þ

where

�00 ¼
2� �

�

� 	 1
2��

,

and e1(t0) is the trajectory error at t0.

From the analysis in case 1 and case 2, it is verified

that the system states can reach the sliding mode �2 in

finite time. Once the system states reach the sliding

mode �2, the system states will converge to the

equilibrium point along the sliding mode in fast

finite-time form as shown in case 3. This completes

the proof of (ii). œ

Remark 4.1: Noting (27), the adaptive law in (17)

contains the estimated-error information of the param-

eters, which has the same peculiarities as the composite

adaptive law. However, it is different from that in

Barambones and Etxebarria (2001, 2002), where the

prediction error ef is defined as ef ¼ ’Tf �̂ � uf, and the

PE condition is required to ensure the finite-time

convergence of the trajectory error. In (17), only the

positive definiteness of the matrix P after some time is

needed to achieve the finite-time control. Due to the

integration of the filtered system states, the positive

definiteness of P can be satisfied more easily than the

PE condition.

Remark 4.2: In Barambones and Etxebarria (2001,

2002), only finite-time control in form of (B5) is

realised. By analogy with the difference between TSM

and FTSM, the ‘fast’ finite-time control in form of (B7)

possess faster convergence than the finite-time control

in form of (B5) when the system states are far away

from the equilibrium point. In this article owning to

Table 1. Parameters of EMA.

Parameters J (kgm2) M�
j ðNmrad�1Þ f (Nm (rad s�1)�1)) Mc (Nm) K1 (NmV�1)

Quantities 7.56 305 9.12 4.12 28.23

International Journal of Systems Science 7
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the utilisation of NFTSMC and composite adaptive

law in (17), the ‘fast’ finite-time control in form of (B7)

is obtained.

Remark 4.3: In view of the positive definiteness of P,

the parameter "1 in (23) must be carefully designed. A

large "1 is not recommended as it renders a rapid

attenuation of ‘(�), with which some useful informa-

tion may be lost in P and makes it difficult to be

positive definite. Generally a small positive number is

selected.

Remark 4.4: In (17) if �3¼ 0, then the adaptive law

which is similar to that in Zhang et al. (2009) can be

obtained. But when �3¼ 0, #2¼ 0 in (49) and (55), and

�2¼ 0. So _V4��1V, and only exponential stability

can be gained. Here with the employment of the

nonlinear term sig(ef)
r in (17) and the NFTSMC

approach, the finite-time control is obtained.

5. Simulation and experiment

In this section, the effectiveness of the proposed

method is validated by simulation and experimental

study. The identified parameters of the EMA system

(which is introduced in Section 5.2) given in Table 1

will be used in both simulation and experimental study.

5.1. Simulation and analysis

The unmodelled dynamics is set as

D¼ [2 rand(1)� 1]Nm in simulation, where rand(1) is

random number in [0, 1]. According to (4) with the

values presented in Table 1, the parameter vector � are

given by: �¼ [0.268, 10.806, 0.319, 0.146]T. The param-

eter bounds �min and �max are as follows: �min¼ [0.05,

�15, 0.02, 0]T, �max¼ [0.5, 15, 0.6, 0.6]T.

Four control methods, i.e., the proposed

ANFTSMC and ANFTSMC with adaptive law in

Barambones and Etxebarria (2001, 2002), the NTSMC

(Feng et al. 2002) and NFTSMC (Yu et al. 2008) are

implemented. To avoid the chattering phenomena

saturation function with the form of (2/)atan(900�2)

instead of sign(�2) is used in us,2 for ANFTSMC while

in u for NFTSMC and NTSMC. As in practical

systems, the control effort is limited by the voltage

supply source. Here the control effort is limited in the

interval of �10
+10V.

The following values have been chosen for the

parameters of the proposed ANFTSMC: �¼ 0.1,

c¼ 10, k1¼ 150, k2¼ 150, k3¼ 1.5, �¼ r¼ 13/15,

	f¼ 100, "1¼ 0.25, �1¼ diag(1, 60, 3, 2.5), �2¼�3¼

diag(5, 50, 2.5, 1.5). The initial parameter estimates

are set as follows. (C1): �̂ð0Þ ¼ ½0:12, 0, 0:15, 0�T.

(C2): �̂ð0Þ ¼ �max.(C3): �̂ð0Þ ¼ �min.

Noting Remark 4.1, if we let ef ¼ ’Tf �̂ � uf,

and define the adaptive law as
_̂
� ¼ proj

�̂

�

�1’2�2�

�1�2’fef � �1�3’f sigðef Þ
r
�

, then adaptive law in

Barambones and Etxebarria (2001, 2002) will be

used. For simplicity, we denote ANFTSMC with

adaptive law in Barambones and Etxebarria (2001,

2002) as ‘C4’, and the initial parameter estimates is

�̂ð0Þ ¼ ½0:12, 0, 0:15, 0�T. Controller parameters are

the same as those of the proposed ANFTSMC

except for �1¼ diag(0.15, 5, 0.2, 0.1), �2¼�3¼

diag(0.2, 8, 6, 1.2), which are tuned to gain the best

parameter estimation.

The values for the parameters of NFTSMC are as

follows: �¼ 0.1, c¼ 10, �¼ 13/15, k¼ 10. If we let c¼ 0

in (5), then the nonsingular terminal sliding mode in

Feng et al. (2002) and Yu et al. (2005) can be gained.

Figure 1. Tracking efforts with sinusoidal excitation.

Figure 2. Control efforts with sinusoidal excitation.

8 H. Li et al.
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So the control law of NTSMC can be gained by setting

c¼ 0 in NFTSMC.

The simulation contains two sets. In one set the

desired trajectory is xd¼ 0.2 sin(t)rad, and the initial

angular is set as 0.2 rad. Figure 1 shows the trajectory

errors of the output angle. For ANFTSMCs, the

trajectory error attenuates as quickly as that of

NFTSMC, while in NTSMC it attenuates slower

than that in NFTSMC and ANFTSMCs.

Nevertheless, both NFTSMC and NTSMC hold

larger control effort than that of ANFTSMCs as

shown in Figure 2, which verifies the conservativeness

of NFTSMC and NTSMC. In Figure 1, we can see the

trajectory error converge to a region around the

equilibrium in all control methods as the saturation

function instead of the signum function is used in the

control law (Feng, Han, Yu, Stonier, and Man 2000).

However, the steady-state error of ANFTSMCs is

Actual value

Actual value

Actual value

Actual value

Figure 3. Estimates of parameters with sinusoidal excitation.

Figure 4. Reference signal for triangular excitation. Figure 5. Tracking efforts with triangular excitation.
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smaller than that of NFTSMC and NTSMC. In

ANFTSMCs only the robust control term us,2 is

affected by saturation function, while in NFTSMC

and NTSMC, the whole control effort is influenced,

thus the NFTSMC and NTSMC methods possess

larger steady-state error than ANFTSMCs with the

same saturation function. Figure 3 shows the estimates

of the parameters in ANFTSMCs. For the proposed

ANFTSMC, the estimates tend to the real values fast

despite the different initial values as is observed. While

for ANFTSMC with adaptive law in Barambones and

Etxebarria (2001, 2002), the estimates also tend to the

real values, but not as quickly and smoothly as those in

the proposed ANFTSMC.

In another set the desired trajectory is obtained by

putting the reference signal shown in Figure 4 to pass

through a second-order filter. The reference signal

(which is named as xr) is symmetrical triangular signal

whose amplitude is 0.2 rad and the period is 8 s. The

second-order filter with the transfer function model
2500

s2þ100sþ2500
is used to gain the bounded desired trajec-

tory (Assumption 3), where s is the Laplace operator.

The initial angular of the plant is 0.2 rad. Figure 5

shows that the proposed ANFTSMC can gain the best

trajectory tracking in all the control methods. In

Figure 6, it shows that the estimates of the parameters

in the proposed ANFTSMC also tend to the real

values with different initial values under the triangular

excitation. But in the adaptive law in Barambones and

Etxebarria (2001, 2002), it is more difficult for the

estimates of the parameters tend to the real values than

those under the sinusoidal excitation.

From Figures 3 and 6, we can see that the

proposed adaptive law can achieve better parameter

estimation than that in Barambones and Etxebarria

(2001, 2002). The reason is that in comparison with the

PE condition required in Barambones and

Etxebarria (2001, 2002), the positive definiteness of P

Actual value

Actual value

Actual value

Actual value

Figure 6. Estimation of parameters with triangular excitation.

Signal

processor

Driver

Motor Potentiometer

Gear

reducer

Load

Power

Servo

controller
Host PC

Figure 7. EMA experimental study facility.
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in the proposed ANFTSMC can be more easily

satisfied (Remark 4.1).

5.2. Experimental study

To demonstrate the effectiveness of the proposed

ANFTSMC, an EMA system is set up as a testing-

bed. As shown in Figure 7, the testing-bed comprises

five major components: an EMA, a driver, a signal

processor, a servo controller and a host PC. The EMA

consists of a DC motor, a gear reducer, a potentiom-

eter and the load. In the EMA the motor drives the

load via the gear reducer. The driver contains a PWM

amplifier that can drive the motor, and the signal

processor can acquire the angular information of the

EMA with the potentiometer that is fixed on the gear

reducer.

The controller of the servo system is implemented

through an Xpc target that consists of a target personal

computer and the interface card NI PCI-6259

(Figure 8). The sampling time of the servo controller

is 1ms, a value in common use for servo mechanisms.

The input and output range of the card are set as

�10
þ10V.

Identification is performed to obtain the parame-

ters, whose values are shown in Table 1. Three control

methods, i.e. the proposed ANFTSMC, the NTSMC

and the NFTSMC are implemented. Parameters of the

controllers are the same as those in simulation. For

ANFTSMC, the initial parameter values is set as

�̂ð0Þ ¼ ½0:12, 0, 0:15, 0�T. The desired trajectory is

selected as xd¼ 0.2 sin(t) rad, and the initial angular

is 0.2 rad.

Tracking errors are shown in Figure 9. It shows

that the tracking error of ANFTSMC is smaller than

Figure 8. Block diagram of the experimental architecture.

Figure 9. Tracking error of the system in experiment. Figure 10. Control efforts in experiment.
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that of NTSMC and NFTSMC, and the tracking error

of ANFTSMC and NFTSMC attenuates faster than

that of NTSMC. Figure 10 shows that ANFTSMC

holds a small control effort. Thus, the experiment

results coincide with those of the simulation.

Parameter estimates are shown in Figure 11. As for

noise exists in the testing-bed, the estimates of the

parameters may not tend to the real values as precisely

as those in simulation. But it can be seen that the

parameter estimates tend to steady values quickly.

6. Conclusion

In this article, an ANFTSMC scheme for EMA has

been presented. The control scheme consists of an

adaptive control term with improved composite adap-

tive law and a robust control term with a modified

NFTSMC approach. The adaptive control term adopts

a composite adaptive law where the integration of

filtered system states is used to estimate the uncertain

parameters, and fast parameter convergence can be

achieved. The estimates are then used as controller

parameters to overcome the effects of modelled

uncertainties. While the robust control term which is

based on NFTSMC with a fast TSM reaching law

provides fast finite-time convergence of errors either

far away from or near the equilibrium point. Duo to

the parameter adaption, a small switching gain is used

to robustify the design against unmodelled uncertain-

ties. Conclusively, the control scheme assures the

robustness in both the parameter uncertainties and

external disturbances without a high gain control effort

that has to be utilised in NFTSMC. Furthermore, the

control method enables the elimination of singular

problem in conventional TSMC and FTSMC. It has

been proved that the closed-loop system with the

proposed ANFTSMC is stable, and the tracking errors

converges to zero in fast finite-time form if the

nonsingularity of the matrix P holds. Finally, it has

been shown by simulation and experimental study that

the proposed control scheme performs reasonably well

and the tracking control objective is achieved.
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Appendix A: TSM in Barambones and Etxebarria

(2001, 2002) and Zhao et al. (2009)

In Zhao et al. (2009) the sliding mode is defined as
� ¼ _x� xr, and xr is as

xr ¼ _xd ��1e��2 sigðeÞ
� ,

_xr ¼ €xd ��1e��2er,

�

ðA1Þ

where er¼ [er1, . . . , ern]
T, and eri(i¼ 1, 2, . . . , n) is defined as

eri ¼

eij j��1
_ei, ei 6¼ 0, _ei 6¼ 0,

"j j��1
_ei, ei ¼ 0, _ei 6¼ 0,

0, ei ¼ 0:

8

>

<

>

:

ðA2Þ

It can be proved that with the definition in (A1) and (A2) the
fast TSM is achieved. If �1¼ 0 and "¼ 0, TSM in
Barambones and Etxebarria (2001, 2002) can be gained.
However, when ei! 0 and _ei 6¼ 0, eri may become awfully
large. The global nonsingularity cannot be achieved.

Appendix B: Preliminaries

Some definitions, lemmas used are introduced in this section.

Lemma B1: Assume a140, a240 and 05b51, then the
following inequality holds (Mitrinovic 1970):

ða1 þ a2Þ
b
4 ab1 þ ab2: ðB1Þ

Lemma B2: Suppose a140, a240, . . . , an40 and 05q52,
then the following inequality holds (Yu et al. 2005):

ða21 þ a22 þ � � � þ a2nÞ
q
4 ða

q
1 þ a

q
2 þ � � � þ aqnÞ

2: ðB2Þ

Definition B1: If �(V(t), t) is a scalar function of scalars
V(t), t in some open connected set D, then a function V(t),
t04 t5t1, t14t0 is a solution of the differential inequality

_VðtÞ4�ðVðtÞ, tÞ, ðB3Þ

on [t0, t1) if V(t) is continuous on [t0, t1) and its derivative on
[t0, t1) satisfies (B3) (Hale 1969).

Lemma B3: Let �(d(t), t) be continuous on an open con-
nected set D2R2 and assume that the initial value problem for
the scalar equation

_dðtÞ ¼ �ðd ðtÞ, tÞ, d ðt0Þ ¼ d0, ðB4Þ

has a unique solution. If d(t) is a solution of (B4) on t04 t5t1
and V(t) is a solution of (B3) on t04 t5t1 with V(t0)4 d(t0),
then V(t)4 d(t) for t04 t5t1 (Hale 1969).

Lemma B4: Assume that a continuous positive-definite func-
tion V(t) satisfies the following differential inequality
(Barambones and Etxebarria 2001, 2002)

_VðtÞ4��V� 8t5t0, Vðt0Þ50, ðB5Þ

where �40, 05�51 are constants. Then V(t)¼ 0 8t� t1 with
t1 given by

t1 ¼ t0 þ
V1��ðt0Þ

�ð1� �Þ
: ðB6Þ

Lemma B5: Assume that a continuous positive-definite func-
tion V(t) satisfies the following differential inequality:

_VðtÞ4��1V� �2V
� 8t5t0, Vðt0Þ50, ðB7Þ

where �140, �240, 05�51 are constants. Then V(t)¼ 0,
8t5 t1 with t1 given by

t1 ¼ t0 þ
1

�1ð1� �Þ
fln½�1V

1��ðt0Þ þ �2� � ln�2g: ðB8Þ

14 H. Li et al.

D
o
w

n
lo

ad
ed

 b
y
 [

B
ei

ji
n
g
 I

n
st

it
u
te

 o
f 

T
ec

h
n
o
lo

g
y
] 

at
 0

0
:5

2
 0

1
 D

ec
em

b
er

 2
0
1
1
 



Proof: Consider the following differential equation:

_dðtÞ ¼ ��1d� �2d
�, d ðt0Þ ¼ Vðt0Þ: ðB9Þ

The unique solution to this equation can be found as

ln½�1d
1��ðtÞ þ �2� ¼ ln½�1d

1��ðt0Þ þ �2� � �1ð1� �Þðt� t0Þ:

ðB10Þ

Therefore from Lemma B1, we have

ln½�1V
1��ðtÞ þ �2�

4 ln½�1d
1��ðtÞ þ �2�

¼ ln½�1d
1��ðt0Þ þ �2� � �1ð1� �Þðt� t0Þ, t0 4 t5 t1,

ðB11Þ

and V(t)¼ 0 8t5 t1, with t1 given in (B8). This completes the
proof of Lemma B5.
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