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Adaptive nonsingular terminal 
sliding mode control of robot 
manipulator based on contour error 
compensation
Zhu Dachang 1*, Huang Pengcheng 1, Du Baolin 1 & Zhu Puchen 2

To achieve accurate contour tracking of robotic manipulators with system uncertainties, external 
disturbance and actuator faults, a cross-coupling contour adaptive nonsingular terminal sliding 
mode control (CCCANTSMC) is proposed. A nonsingular terminal sliding mode manifold is developed 
which eliminates the singularity completely. In order to avoid the demand of the prior knowledge of 
system uncertainties, external disturbance and actuator faults in practical applications, an adaptive 
tuning approach is proposed. The stability of the proposed control strategy is demonstrated by the 
finite-time stability theory. Then, the developed controller combines adaptive nonlinear terminal 
sliding mode control (ANTSMC) of joint trajectory tracking and proportion–differentiation control 
of end-effector contour tracking by introducing the coupling factor between multiple axes based 
on Jacobian. Moreover, a unified framework of cross-coupling contour compensation and reference 
position pre-compensation is built. Finally, numerical simulation and experimental results validate the 
effectiveness of the proposed control strategy.

In the past decades, with the rapid development of modern industrial technology, robotic manipulators have 
been widely used in machining, laser cutting, welding, and other  fields1. The accuracy of contour error is one 
of the key concerns to ensure the quality of machined  parts2. Contour error is defined as the shortest distance 
between the current position and the desired contour curve. However, most current control strategy of robotic 
manipulators focusses on optimizing the tracking performance of each joint to improve the contour machining 
accuracy of the end-effector3–6. Unfortunately, the joint tracking of high accuracy of robotic manipulators cannot 
effectively solve the problem of contour matching accuracy of the end-effector6. One of the main reasons is the 
lack of coordination of the robotic  manipulator7. An integrated control strategy of cross-coupling contour error 
compensation based on chord error constraint, which consists of a cross-coupling controller and an improved 
position error compensator, was proposed by Zhang et al.8. Kommaneesang et al.9 pointed that only a few 
researchers concentrate on solving the contouring problem in the robotic machining system, and the contour-
ing control problem was transformed into the regulation problem by using the method of equivalent errors. 
Moreover, contour accuracy control was studied in many  literatures10–12.

SMC is a particular and powerful class of variable structure control essentially which can dynamically adjust 
based on the current state of the  system13–16. Thus, the system is forced to track a pre-determined trajectory 
of sliding mode states. The sliding mode manifold can be designed independent of object parameters and 
 perturbations17.  Aksu18 proposed SMC based on a linear sliding mode manifold which guaranteed that the 
system states asymptotically converge on the equilibrium point. Inducting a nonlinear term in the linear SMC, 
 Lafrnejani19 proposed the terminal SMC (TSMC) to ensure global finite-time stability.  Su20 proposed an integral 
sliding mode manifold and its TSMC, and manifested the global finite-time convergence of both sliding mode 
manifold and tracking error. The above SMC provide an effective and stable control strategy for nonlinear sys-
tems, but these rely on the prior knowledge of system  uncertainties21–24. Besides, these SMC trajectory tracking 
control of the robotic manipulator only ensures the tracking accuracy of each joint, but the accuracy of contour 
error is not  guaranteed25,26. In addition, there exists a singularity phenomenon near the equilibrium point caused 
by the negative exponent of the  TSMC27,28. The prior information of system uncertainties is difficult to obtain 
in practical tasks, such as random fault parameters and  disturbances29. Considering the uncertainty and control 
system stability analysis  methods30, a cross-coupling contour adaptive nonsingular TSMC strategy is proposed 
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to solve the strong coupling contour error problem and avoid the prior information of system uncertainties, 
external disturbances and actuator faults. Compared to the existing cross-coupling control of robot manipula-
tors, the primary contributions of this paper are summarized as follows:

(1) Considering the strong coupling between the contour error and the joint error, the coupling factor with 
multiple axes based on the Jacobian matrix is proposed. Compared with the method of equivalent errors 
in Ref.9, the accuracy of joint error and contour error is guaranteed simultaneously. Furthermore, a unified 
framework of cross-coupling contour compensation and reference position precompensation is built.

(2) Different from the singularity is generally solved by the parameters in equivalent control law, the uncer-
tainties of the system and the function of the actuator faults are combined with a lumped function, and an 
adaptive tuning algorithm is adopted to compensate for the lumped uncertainties of the system.

(3) Adaptive non-singular terminal sliding mode control with cross-coupled contour is improved, and the 
stability of the proposed control strategy is demonstrated by the finite-time stability theory. Compared 
 with20,31, the tracking errors convergence quickly, and the performance of the proposed control is improved 
by approximately 61% and 34%, respectively.

This paper is organized as follows: the problem formulation and motivation are indicated in “Problem for-
mulations and motivation” section, ANTSMC for the precise trajectory tracking of the robotic manipulator with 
dynamic uncertainties, external disturbances and actuator faults is proposed, and its stability with finite-time is 
discussed in “Adaptive non-singular terminal sliding mode control” section. In “Contour error compensation 
with cross coupling control” section, the contour error compensation based on the cross-coupling control is 
presented. Numerical simulation and experiment results are given in “Contour error compensation with cross 
coupling control” section.

Problem formulations and motivation
The dynamic of n− DOF (Degree-of-Freedom) robotic manipulator can be expressed by Newton–Euler formula 
 as32

where q, q̇, q̈ ∈ Rn×1 are the vectors of position, velocity and acceleration in joint space, respectively. M
(

q
)

∈ Rn×n 
is the positive definite inertial matrix, and B

(

q, q̇
)

∈ Rn×n is Coriolis and centripetal matrix, and G
(

q
)

∈ Rn×1 
is the gravity matrix, and F

(

q, q̇
)

∈ Rn×1 is the vector of the friction, τ ∈ Rn×1 is the vector of the input torque, 
and τd ∈ Rn×1 is the vector of torque with external disturbance.

For actual applications, it is difficult to obtain the precise dynamic model of the robot manipulator as the 
nonlinearities of the friction and the external disturbances. Hence, (1) can be rewritten as

where ϕ
(

q, q̇, t
)

∈ Rn×1 is the lumped uncertainty of the system and can be defined by

where �M
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q
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 are the uncertain parameters un-modeled for the dynamics of robot 
manipulator.

The properties of (2) are satisfied with

Property 1 M
(

q
)

 is the symmetric and positive matrix, and bounded by

where m and m are positive constant parameters, respectively, and 0 < m < m . I ∈ Rn×n is an identity matrix.
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 is the skew symmetric matrix and satisfy with

where D is any vector.

Property 3 G
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 is bounded by

where Gk ∈ Rn×1 is positive constant matrix.

Considering the problem of actuator faults during the operating process of the robot manipulator, (2) can 
be rewritten as follows
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where f = γ
(

t − Tf

)

φ
(

q, q̇, τ
)

 is the function of the actuator faults, and γ
(

t − Tf

)

∈ Rn×n is the time profile of 
the faults, φ

(

q, q̇, τ
)

∈ Rn×1 is the vector of the faults, and Tf  is the time of appearance of the faults.
The time profile of the faults γ

(

t − Tf

)

 is a diagonal matrix, yields to

where γi denote the influence of the faults to the ith state.
The time profile mode of the faults is given by

where σi > 0 is the evolution rate of the faults.

Adaptive non-singular terminal sliding mode control
Adaptive non-singular terminal sliding mode control. The position tracking error denoted by 
e(t) ∈ Rn×1 in joint space is defined as

where qd ∈ Rn×1 is the desired trajectory.
Non-singular terminal sliding mode manifold s is defined as

where c1, c2 ∈ Rn×n are constant positive definite diagonal matrix, α and β are positive odd integers, and satisfy 
with 1 < α/β < 2 , η > 0 . eηsgn(e) =

[

eη
1
sgn(e1), · · · , e

η
nsgn(en)

]T . sgn(∗) is the signum function.
Derivation (11) with respect to time, we obtain

The positive-definite Lyapunov function is given by

Derivation (13) with respect to the time, and combining with (12), yields to

Substituting (7) into (14), we obtain

Simplified (15), we obtain

Let V̇1 = 0 , the equivalent control law τeq is derived as

Assumed that the uncertainties and actuator faults of the robot manipulator are defined as

The upper bound of function K is estimated as follows

where �∗� is the standard Euclidean norm.
The switch control law τsw is given by

where k = �K�max + υ, υ is the switch control gain, and υ ≥ 0, and 0 < µ < 1 is a positive constant.
Thus, the NTSMC is derived as
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eα/β−1ė + c2ηe

η−1ė
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Since ϕ and f  are the lumped uncertainty of the system and the function of the actuator faults, respectively, 
K is unknown function caused by ϕ and f  . However, the design process of NTSMC relies on the value of func-
tion K , and hence an adaptive algorithm is proposed to determine the value of uncertainties and actuator faults.

The estimated error is defined as

where K̂  is the estimated value of K  . Assumed that the uncertainties and actuator faults change slowly, there 
has K̇ = 0.

Derivation (22) with respect to the time, we obtain

The control law τ of the system can be rewritten as follows:

The positive definite Lyapunov function with estimated error is given by

where ξ is positive integer.
Derivation (25) with respect to the time, yields to

Adaptive algorithm is given by

Substituting (27) into (26), we obtain

where η1 = 1
n

n
∑

i=1

|si| , η2 = �s�2−µ|s|µ−1
max  , and |s|max = max (|s1|, · · · , |sn|).

The schematic of the proposed ANTSMC is shown in Fig. 1.
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Figure 1.  Schematic of the proposed ANTSMC.
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Finite-time stability analysis. 
Theorem  1 For finite-time stability with fast time convergence, the Lyapunov function V(x) 
with initial value V0 is given by

where a > 0 , b > 0 , 0 < δ < 1 , and V(x) satisfy the inequality at any x0.

The stability time of convergence T can be calculated by

Proof Considering the Lyapunov function as

Derivation (31) with respect to the time, yields to

Substituting (12) into (32), we obtain

Substituting (21) into (33), yields to

As sT · s = �s�2 and sT sgn(s) = �s� , (34) can be simplified as

Assumed that the uncertainties and the actuator faults changes slowly, there has

where µ=̃1.
As

where � � (1+ r)/2 , γ � kmin{2/m}� , kmin � min (ki).
Then

According to Theorem 1, the proposed adaptive non-singular terminal sliding mode control is finite time 
stable.

When x0 = 0 , the convergence time can be expressed as

where �1 = �s��max

(

k̂
)

 , �2 = 1
(µ+ 1)/2�s��max

(

k̂
)

.

Contour error compensation with cross coupling control
Contour error of end-effector of robot manipulator. The trajectory planning interpolation method 
can be used to fit the trajectory contour into a straight line or a circular contour. The contour error model of the 
straight-line contour for an XY planar is shown in Fig. 2.
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η−1ė − q̈d

)]

.

(34)V̇ = sT
[

−K̃ − k̂s|s| − k̂sgn(s)|s|
]

.

(35)V̇ = −
∥

∥K̃
∥

∥�s� − k̂�s�2�s� − k̂�s��s�.

(36)V̇ = −
(

k̂�s�2 + k̂�s�
)

�s� ≤ −
(

sT k̂s + sT k̂sgn(s)
)

�s�µ,

(37)sTKsr =

n
∑

i=1

kis
r+1
i ≥ γ

{

n
∑

i=1

1

2
ms2i

}�

≥ γ

(

1

2
sTMs

)�

,

(38)V̇ ≤ −�s�γV − 1(µ+1)/2�s�γV (µ+1)/2.

(39)ts ≤
1

�1(1− δ)
In

(

1+
�1V

(1−µ)/2
0

�2

)

,



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:330  | https://doi.org/10.1038/s41598-023-27633-0

www.nature.com/scientificreports/

P is the actual position of the end-effector of robotic manipulator, Pd is the reference point, ε is the contour 
error, ex and ey are the error components along with x and y axis of the tracking error e , respectively. θ is the angle 
between the reference trajectory y and the x axis.

Assumed that the contour error is the shortest distance between the prevailing position and the desired 
contour curve. The contour error of plane line is defined as

where cx = − sin θ , cy = cos θ are the cross coupling operator.

ANTSMC based on cross coupling. The contour motion control with cross coupling is given by

where Kp is the proportional gain, and Kd is the differential gain of the contour motion control.
As compensation of contour and trajectory tracking control are carried out in the task space and in the joint 

space, respectively, so the mapping relationship between two space is established as follows

where ec is the vector of contour tracking error in the task space, and eq is the vector of trajectory tracking error 
in the joint space, J

(

q
)

 is the Jacobian matrix.
According to (42), the contour tracking error is derived, yields to

The rectifier gain of contour tracking error compensation is given by

Combining (21) with (41), we obtain

where Cn ∈ Rn×1 is the contour error compensation rectifier gain.

Remark From Eq. (45), one can see that the proposed CCCANTSMC is a combination of ANTSMC control 
for joint trajectory tracking and PD contour control for end-effector. The ANTSMC in joint space ensures the 
stability of the robotic system, while the PD control in the workspace is used to reduce contour errors. The goal 
of the proposed cross-coupled controller is to improve the tracking performance of the joint and further improve 
the contour tracking performance of the end-effector.

The schematic of the ANTSMC with cross-coupling is shown in Fig. 3.

Experiments
Robotic manipulator with two-link is used to illustrate the effectiveness of the proposed control strategy, shown 
as Fig. 4.

Assumed that the mass of each link is concentrated. The dynamic equation of the robotic manipulator with 
two-link is derived as follows

(40)ε = cxex + cyey ,

(41)τc = Kpε + Kd ε̇,

(42)ec = J
(

q
)

eq,

(43)ε =
[

cx cy
]

ec =
[

cx cy
]

J
(

q
)

eq.
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([

cx cy
]

J
(

q
))T

.

(45)

τ = M

[

q̈d −
c1α

β
e

(

α/β
)

−1
ė − c2ηe

η−1ė

]

−B
(
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)
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(∥

∥
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∥
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∥
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Kpε + Kd ε̇
)

Cn,

Figure 2.  Error model of the straight-line contour.
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where 
[

τ1 τ2
]T is the vector of the input torque, and

J
(

q
)

 is the Jacobian matrix which is defined as

Considering the influence of uncertainties and the actuator faults of robotic manipulator, ϕ
(

q, q̇, t
)

 and 
φ
(

q, q̇, τ
)

 are selected as follows

[

τ1
τ2

]

=

[

M11 M12
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][

q̈1
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]

+

[
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+

[
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]

,
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2
1 +m2r

2
2 +m2L

2
1 + 2m2L1r2 cos q2 + I1 + I2, M12 = m2r

2
2 +m2L1r2 cos q2 + I2,

M21 = m2r
2
2 +m2L1r2 cos q2 + I2, M22 = m2r

2
2 + I2, B11 = −2m2L1r2 sin q2q̇2,

B12 = −2m2L1r2 sin q2q̇2 − 2m2L1r2 sin q2q̇1, B21 = −2m2L1r2 sin q2q̇1, B22 = 0,

G2 = m2r2g cos(q1 + q2), G1 = (m1r1 +m2L1)g cos q1 +m2r2g cos
(

q1 + q2
)

.

J
(

q
)

=

[

−L1 sin
(

q1
)

− L2 sin
(

q1 + q2
)

−L2 sin
(
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)

L1 cos
(

q1
)

+ L2 cos
(

q1 + q2
)

L2 cos
(

q1 + q2
)

]

.

φ
(

q, q̇, τ
)

=

{

30 sin
(

q1q2
)

+ 4 cos
(

q̇1q2
)

+ 15 cos
(

q̇1q̇2
)

Tf 1 ≥ 1.5
0 Tf 2 ≥ 1.5

.

Figure 3.  Schematics of ANTSMC with cross-coupling.

Figure 4.  Structure of robot manipulator with two-link.
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Set the simulation time is 3 s , the sampling step is 0.001 s , and the initial state is 
[

0.3 0.3
]T , the desired 

trajectory along with x and y are given by

Parameters of traditional PID, ANTSMC and cross coupling control are given by Table 1, respectively.
The experiment platform is built, shown as Fig. 5. Trajectory tracking of joint 1# and 2# in the joint space is 

shown in Fig. 6. The error of trajectory tracking in the joint space are shown in Fig. 7. The contour tracking of 
the end-effector of the robotic manipulator is shown in Fig. 8.

The mean square value of the tracking error is defined as

x =

{

0.3− 0.2t, 0 ≤ t ≤ 1
0.1, 1 < t ≤ 2
0.2(t − 1)− 0.1, 2 < t ≤ 3

,

y =

{

0.2t + 0.1, 0 ≤ t ≤ 1
0.3− 0.2(t − 1), 1 < t ≤ 2
0.1, 2 < t ≤ 3

.

Table 1.  Parameters of controller.

Type of controller Parameters

Traditional PID
KP = diag[4500, 4500]
KI = diag[150, 150]
KD = diag[650, 650]

ANTSMC
c1 = diag[10, 10] , c2 = diag[10, 13.5]
η = diag[0.5, 0.5] , α = 3 , β = 5

υ = diag[50, 165] , ξ = 10

ANTSMC with cross coupling Kp = 500 , Kd = 100

Figure 5.  Experiment platform of robot manipulator with two-link.

Figure 6.  Trajectory tracking in joint space (a. Joint 1#, b. Joint 2#).
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where N is the number of simulation step.
As shown in Figs. 6 and 7, compared with PID,  NTSMC20, and  ANTSMC31, when the system has obvious 

position errors, the joint tracking errors of the proposed CCCANTSMC reach the convergence more quickly. 
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Figure 7.  Tracking error (a. Joint 1#, b. Joint 2#).

Figure 8.  Contour tracking error of the end-effector.
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Moreover, there are the actuator faults after 1.5 s, the control performance of PID controller decreases remark-
ably, and the control performance of NTSMC converges after a slight fluctuation. However, the NTSMC used 
adaptive algorithm can ensure the stability of the system effectively. In addition, from Fig. 8, it is obvious to see 
that compared with PID, NTSMC and ANTSMC, the proposed CCCANTSMC can quickly optimize the contour 
error when there are significant position errors in the system.

Table 2 shows that the mean squared contour error for PID, NTSMC and ANTSMC is 0.0076 m, 0.0051 m and 
0.0044 m, respectively, while the mean squared contour error for CCCANTSMC is 0.0029 m. Compared to PID, 
NTSMC, and ANTSMC, the control performance of CCCANTSMC is improved by approximately 61%, 43%, 
and 34%, respectively. The proposed CCCANTSMC significantly reduces the contour error and the systematic 
tracking error. Moreover, the mean squared tracking error of each joint of CCCANTSMC is smaller than that 
of PID, NTSMC and ANTSMC. The experimental results demonstrate that the proposed control strategy has 
better properties than the remaining three control methods in contour control.

In this paper, due to sudden changes in position, velocity and acceleration at the junction inflection point of 
adjacent straight segments, each controller will suffer performance degradation to a certain extent at the time of 
1 s and 2 s, but the adaptive tunning method of the proposed control strategy for this kind of mutation is better 
than the traditional PID, NTSMC and ANTSMC. However, it is necessary to perform trajectory planning process-
ing at these sudden changes to optimize the controller performance, which will be a desired future research work.

Conclusions
In this paper, a cross-coupling contour adaptive nonsingular terminal sliding mode control (CCCANTSMC) is 
proposed for the issue of precise contour tracking of the robotic manipulator in the presence of system uncertain-
ties, external disturbance, and actuator faults. Based on the strengths of the NTSMC for driving the system state 
to the equilibrium point in finite time, the adaptive tuning approach is proposed. Thus, the prior knowledge of 
system uncertainties, external disturbance, and actuator faults is avoided and the singularity problem is elimi-
nated. Introducing coupling factors among the multi-axes based on Jacobian, ANTSMC of joint tracking and PD 
control of end-effector contour tracking is combined to improve the accuracy of contour error. Furthermore, a 
unified framework of cross-coupling contour compensation and reference position pre-compensation is built. 
The experimental results are shown to prove the effectiveness of the proposed control strategy.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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