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Adaptive Nulling in Monopulse Antennas 

Abstract-A method for phase-only adaptive nulling in monopulse 
antennas is presented, using a gradient search algorithm. The array's 
beam steering phase shifters double as the adaptive weights. Both 
computed and experimental results are presented. 

INTRODUCTION 

MONOPULSE radar antenna simultaneously forms sum A and difference beams through two separate beam-forming 
networks. Combining these beams in special ways provides 
information for accurately detecting and tracking a target. The 
two corporate feeds in a monopulse phased array considerably 
complicate the design over a phased array with a single 
corporate feed. Low sidelobe and adaptive nulling require- 
ments further increase the antenna complexity. Thus there is 
motivation for simplifying the adaptive nulling process in 
monopulse phased arrays. 

Most adaptive nulling algorithms require variable complex 
weights at each element in the array. Although complex 
adaptive weights offer excellent control over the antenna 
pattern, most phased arrays are equipped with only phase 
controls. Adding variable amplitude weights considerably 
increases the cost but is becoming more common as the 
demands on antenna performance become greater. Placing the 
adaptive weights at the subarray outputs offers some economi- 
cal advantages, but grating lobes limit this form of implemen- 
tation [ 11. 

Several studies have addressed phase only nulling in low- 
sidelobe antennas [2]-[4]. Phase-only nulling has the advan- 
tage of a simple design. Beam-steering phase shifters (which 
are already part of the antenna) provide the means of 
generating nulls in the antenna pattern. As long as the adaptive 
phase shifts are small, the low sidelobes are maintained and 
the main beam remains unchanged. 

Usually, an adaptive nulling algorithm considers only the 
sum channel. These algorithms also apply to monopulse 
antennas if there are separate adaptive weights for the sum and 
difference channels. Rather than building separate adaptive 
processes for each channel, a simple design results when the 
two channels share the adaptive weights. Such a technique is 
theoretically feasible for amplitude and phase nulling as well 
as phase-only nulling [ 5 ] .  More recently, Vu described a 
technique for simultaneous nulling in the sum and difference 
patterns with variable-amplitude weights [6]. 

This paper presents theoretical and experimental results of 
phase-only nulling in low-sidelobe monopulse antennas. Both 
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results are based on a gradient search algorithm that simultane- 
ously searches for a minimum in the sum and difference 
channel output powers. Some of the experimental results were 
discussed previously [7]. 

PHASE-ONLY GRADIENT SEARCH ALGORITHM FOR A 

LOW-SIDELOBE MONOPULSE ARRAY 

The goal of a phase-only adaptive algorithm is to find a 
phase shift 9 to minimize that part of the output power (P) due 
to the undesired signals while not seriously changing the 
output power due to the desired signals. The equation for the 
output power of a linear array of N isotropic sources with M 
incident plane waves due to signal sources in the far field is 
given by 

where 
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= [al ,  u2, 
= [xl, x2, . . . , x N ] ,  element spacing in wavelengths, 
= [$I, $ 2 ,  

= [ql ,  q 2 ,  * . . , q ~ ] ,  quiescent phase shifter settings for 

= [SI , s2, * * * , sN] ,  beam-steering phase settings, 

* , a ~ 1 ,  amplitude weight vector, 

- * , $NI, adaptive weight settings, 

optimum gain, 

electric field at element n due to signal rn in the far 
field, 
direction of signal rn from broadside, 
number of elements in the array, 
number of desirable and undesirable signals in the 
far field. 

Note that the adaptive phase shifts just superimpose on the 
quiescent and beam-steering phase shifter settings. As a result, 
only one set of phase shifters performs all three functions. 

Many possible search algorithms exist for finding 9. The 
algorithm used here is the gradient search or steepest descent 
algorithm. This algorithm is a well-known method of solving 
nonlinear problems. It forms the basis for many advanced 
algorithms and is often used as a standard by which to compare 
other algorithms. 

The equation for the gradient search algorithm is 

\ k ( k C l ) = \ E ( k ) - - V P ( \ k ( k ) )  (2) 

where the gradient of P is given by 
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In discrete form, the nth component of the gradient is 

ap AP,, 

a$, A $  
- _-__ (4) 

where AP,, is the change in output power due to A$, and A$ is 
the phase shifter step size, a constant. 

The derivative in this equation may be represented by a 
central or forward difference formula. Surprisingly, the 
central difference formula did not improve the algorithm's 
performance. In fact, since two power measurements are 
necessary to form the central difference derivative (versus 
only one power measurement for the forward difference 
derivative), the central difference method is considerably 
slower. Therefore, the algorithm described here uses the 
forward differencing scheme. 

The standard mathematical approaches to minimizing a 
function start by assuming the function is quadratic. When the 
function is not quadratic, little can be said about the 
convergence properties of the algorithm. 

The output power as a function of phase shifter setting does 
not form a quadratic surface. In fact, many combinations of 
phase shifter settings will form a null (find a local minimum in 
the output power) at any given angle. The best combination 
forms the nulls in the directions of the undesired signals, with 
a minimum loss in gain and a minimum perturbation to the 
sidelobe level. This objective is feasible when few undesirable 
signals exist and the adaptive phase settings are kept to the 
minimum. 

The adaptive weights may be thought of as random 
perturbations to the phase taper of the array (although not true 
for all adaptive nulling algorithms, this statement is fairly 
accurate for this algorithm). Consequently, the sidelobe level 
is proportional to the size of the phase perturbations and 
inversely related to the number of elements. By keeping the 
adaptive phase shifts small, the average sidelobe level and the 
main beam gain do not drastically change. 

The phase shifter settings may be kept small by finding an CY 

that satisfies ( I ) .  An CY that satisfies 

P ( x  - a V P )  =minimum 

may be found by doing a line search along the gradient VP. 
However, a line search is slow and may require many power 
measurements. Also, no limit exists on the value of CY, hence 
no limit to the size of perturbations to the antenna pattern. The 
CY used in this paper normalizes the gradient and limits the step 
size taken along the gradient to a value of A$: 

If A$ is carefully chosen, then the desired nulls will form in 
the pattern without significantly disturbing the rest of the 
pattern. A small value of A$ may not produce the deepest 
nulls, but it will form a more accurate approximation to the 
gradient (4) and will not perturb the pattern much. On the 

other hand, too small a value of A$ will not adequately form 
the nulls and will converge very slowly. 

The algorithms begins by assigning a constant value to A$. 
For instance, an eight-bit phase shifter has a possible 256 
settings. The increment between settings is 1.4". For one to 
three nulls and N > 20, a good starting value for A$ is 7".  
Each element in the gradient is found by changing a phase 
shifter setting by A$ and measuring the change in output 
power. Then the phase shifter is restored to its original value, 
and the process repeated for all the remaining array phase 
shifters. The algorithm iterates as long as \ k ( k + l )  reduces the 
total output power. If the output power does not go down, then 
A$ is decremented by one setting (1.4') and the iteration is 
started again. The algorithm stops when A$ = 0". 

The value for AP, in (4) may be found in several ways. If 
only one of the channel output powers is considered, then 
either one of the following is possible: 

sum channel: A P,, = PS - PS, 

difference channel: AP, = PD - PD, 

(6) 

(7) 
where 

PS 

PSn 

PD 

PDn 

output power of sum channel due to phase settings 

output power of sum channel when phase shifter n is 
incremented by A$, 
output power of difference channel due to phase 
settings \ l r ( O ) ,  
output power of difference channel when phase 
shifter n is incremented by A$. 

\lr (O', 

Either of these equations will place a null in its respective 
channel's antenna pattern but will not simultaneously place the 
null in both patterns. A more proper choice considers the 
change in output power of both channels. Two possible 
selections are 

AP,, = JPS,  * PD, - PS * PD (8) 

AP, = (PS, + PD,) - (PS + PD). (9) 

After trying these equations in the computer simulation and the 
experiment, I can find no preference for one over the other. 

Checking to see whether the adaptive phase settings lowered 
the output power may be done in several ways. First, one may 
require that either one or both of the channel output powers go 
down: 

where 

Sf(0) 

SP(')  
D f  ('1 
D f  

output power of the sum channel due to X(O), 
output power of the sum channel due to X ( ' ) ,  
output power of the difference channel due to X(O), 
output power of the difference channel due to X(I) .  
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(a) Sum channel. (b) Difference channel. 
Fig. 1. Quiescent far-field patterns of linear array of 20 isotropic elements. 

Equations (10)-(12) usually result in a null in only one of the 
patterns, but not both. At the opposite extreme (12), when the 
requirement is that both channel output powers must go down, 
then the nulls are poorly formed. 

A much better check to determine whether the output power 
goes down involves some combination of the output powers of 
both channels. Two examples are 

SP(') * DP(')<SP(O) * Dp(0) 

SP(1) + DP(') < S P )  + LIP@). 

Either of these choices lead the gradient search algorithm to 
put nulls in both the sum and difference patterns. 

(14) 

(15) 

COMPUTER RESULTS 
The computer model has 20 isotropic elements, each having 

its own eight-bit phase shifter. The sum channel has a low- 
sidelobe Taylor amplitude taper, and the difference channel 
has a low-sidelobe Bayliss taper. These tapers produce the 
quiescent sum and difference patterns shown in Figs. l(a) and 

The computer model has several options for AP,, and the 
performance criteria. Equations (6), (7), (8), or (9) are the 
choices for AP,,, and any equation from (10) through (15) is 

1 (b) . 

the choice for the adaptive performance criterion. The starting 
value for A$ is 7". Table I lists the results from adaptive 
nulling in the presence of three interference sources at - 35 ', 
25 ', and 61 '. The quiescent condition is normalized to 0-dB 
output. The first column is the equation number that defines 
AP,,. The second column is the equation number of the 
adaptive performance criterion. Finally, the last two columns 
show the change in output power in the sum and difference 
channels due to the adaptive phase settings. Figs. 2(a) and 2(b) 
show the resulting adapted far-field pattern with (5) as the 
gradient and (14) to judge the performance. 

Another technique produced similar final results as shown 
in Table I. This method consists of alternating the adaptive 
nulling algorithm between the sum and difference channels. In 
other words, nulls are adaptively placed in the sum channel 
using (3) for the gradient and (14) as the convergence 
criterion. Next, the phase shifters are not reset, but the 
adaptive nulling algorithm places nulls in the difference 
channel using (4) for the gradient and (10) as the convergence 
criterion. Returning to the sum channel, the process repeats 
until the desired nulls appear in both patterns. Figs. 3(a) and 
3(b) are the resulting far-field patterns for interference sources 
at -35", 25", and 61". The second method works fine but 
takes longer than the first method. 
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EXPERIMENTAL RESULTS 

Details about the antenna and test range appear in [ 1 I]. 
Consequently, only a brief sketch of the experiment is related 
here. The antenna is a linear array of 80 elements with eight- 
bit phase shifters. Its sum and difference channels have low- 
sidelobe Taylor and Bayliss amplitude tapers, respectively. 
Fig. 4 shows a picture of the antenna. Its quiescent sum and 
difference patterns appear in Figs. 5(a) and 5(b). 

The measurements were performed at the RADC far-field 
test range in Ipswich, MA. Nulling was done in the sidelobes 
of the antenna using a single CW source as the interference. 
Although not a realistic situation, this experiment is one step 
beyond a computer simulation. The antenna was positioned 
such that a sidelobe in both the sum and difference patterns 
pointed toward the source. Next, the algorithm was turned on. 
When the algorithm stopped, the adaptive phase shifters were 
frozen. Then the far-field patterns were recorded. 

Figs. 6(a) and 6(b) and 7(a) and 7(b) are the far-field 
adapted patterns when A$ is started at 7 O . Figs. 6(a) and 6(b) 
simultaneously considered both the sum and difference pat- 
terns by using ( 5 )  and (14). This figure corresponds to Figs. 
2(a) and 2(b) of the computer simulation. The source is at 23". 
Figs. 7(a) and 7(b) show the results of nulling in alternating 
channels as was done in the computer simulation (Figs. 3(a), 
3(b)). In this case the source is at 5. I O .  Notice the deep nulls 
formed in the sidelobes. In addition, the rest of the far-field 
pattern was virtually undisturbed. The main beam gain of the 
adapted patterns did not change from the quiescent gain when 
one undesirable signal existed in the far field. The main beam 
peaks in Figs. 6(a) to 7(b) are normalized to the main beam 

~~ 
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peaks of their respective quiescent patterns in Figs. 5(a) and 

CONCLUSION 
This paper presents a gradient search algorithm for simulta- 

neously placing nulls in the low-sidelobe sum and difference 
patterns of a nionopulse antenna. Such an algorithm has the 
potential for being used on phased arrays already in existence 
since it uses the beam-steering phase shifters as the adaptive 
weights. 

Low-sidelobe antennas are designed at great expense to 
reduce interference signals at all angles outside the main 
beam. Hence the adaptive nulling process must strive to 
maintain the low-sidelobe levels while placing nulls in the 
directions of interference sources. The more jamming signals 
present, the more difficult it is to maintain the sidelobe level. 
A proper choice of the phase increment AI) is very important. 
When the number of jammers is small compared to the number 
of elements and A$ is of modest size, the gain and average 
sidelobe levels remain virtually unchanged. 

The important steps in the algorithm are deciding how to 
calculate the change in output power and how to judge the 
performance of the algorithm after each iteration. In both 
cases the sum and difference channel output powers must be 
combined in some fashion to produce successful results. 

As demonstrated by the computer program and the experi- 
ment, this algorithm is capable of placing very deep nulls in 
the antenna patterns in the directions of interference. Although 
the algorithm successfully places nulls in both patterns, it is 
slow. No attempt was made to streamline the algorithm or find 
faster methods of convergence. The goal of this project was 

5(b). 
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not to develop new algorithms but to demonstrate the 
feasibility of simultaneously placing adaptive nulls in the sum 
and difference patterns of an experimental low-sidelobe 
monopulse array. 

Some last words about the inherent main beam constraint 
are needed. First, the small values of A$ will not destroy the 
main beam gain. I tried using this algorithm to place a null in 
the main beam. The algorithm was only able to alter the main 
beam when the values of A$ were very large. I have found that 
a reasonably small value of A$ will inherently constrain the 
main beam and sidelobe levels. Second, the jamming signal is 
often always present, whereas the returning radar signal is 
only present for a short time. This implies that the adaptive 
nulling usually takes place when only the jamming signal is 
present. As a result, the algorithm spends little time trying to 
null the desired signal. 

I was hoping to present much more extensive experimental 
results with multiple wide-band jammers, but an accident 
prevented any further work. A high-performance antenna is a 
very delicate piece of equipment and must be handled like a 
baby. Unfortunately, the baby was dropped several feet onto 
the antenna positioner when being put into place with a crane. 
Fortunately, I did have several experimental results, some of 

Fig. 4. Picture of experimental adaptive nulling linear array. 
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(b)  
Fig. 5 .  Quiescent (a) m m  and (b) difference patterns of experimental array. Fig. 6. Simultaneously nulling in (a) sum and (b) difference far-field 

patterns of experimental array (source at 23"). 
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Sum channel. (b) Difference channel 
Fig. 7 Nulling in far-field patterns one at a time with source at 5.1”.  (a) 

which are presented here, before this tragic accident hap- 
pened. 
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