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Adaptive Nulling in Time-Modulated Linear Arrays with Min-

imum Power Losses

L. Poli, P. Rocca, G. Oliveri, and A. Massa

Abstract

The synthesis of adaptive time-modulated linear arrays is dealt with by means of an in-

novative strategy, in which aParticle Swarm Optimizer is used to reconfigure the pulse

sequence controlling the static element excitations, as well as the least significant bits of

digital phase shifters to maximize the signal-to-interference-plus-noise ratio at the receiver.

The reduction of the power content of sidebandradiationgenerated by the periodic on-off

commutation of switches is addressed by customizing to non-isotropic sources a very ef-

fective analytic relationship. A set of selected results isreported and discussed to show

the advantagesand limitations of the proposed approach. Comparisons withpreviously

published results are also presented.

Key words: Adaptive Nulling, Time-Modulated Linear Arrays, Sideband Radiation, Particle

Swarm Optimization.
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1 Introduction

Adaptive antenna arrays are key devices for many applications in radars and communications

[1] because of the need to properly receive a desired signal in the presence of interferences

or jammers. Dealing with adaptive phased-arrays, several techniques have been proposed to

control the element weights for synthesizing beam pattern nulls along the directions of arrival

(DoAs) of the undesired signals [2]-[5]. For hardware (HW ) architectures with a receiver at

each array element, amplitude and phase weights can be efficiently reconfigured by multiplying

the quiescent coefficients by the inverse of the covariance matrix [2]. Although very effective,

such a solution hasnot been adopted widelybecause of theHW complexity and the high costs.

Commercial arrays generally have only one output whose value is equal to the sum of the power

of the signals impinging on the antenna array. Furthermore,phase-only adaptive strategies

are usually preferred to the use of tunable amplitude weights [3]-[5] due to the cheap costs

and the reliability of digital phase shifters. Therefore, binary optimization strategies based on

evolutionary algorithms have beenused. Genetic Algorithms (GAs) have been used in [6] to set

the least significant bits of the digital phase shifters for minimizing the total output power. It has

been proved that small variations of the phase weights provide very effective nulling results in

different scenarios, while small changes of the position ofthe main beam guarantee a suitable

reception of the desired signal.Following this, learning strategies exploiting the memory on

the control history have been integrated inGA-based approaches [7][8] to increase the time-

reaction of the system. More recently, the Particle Swarm Optimizer (PSO) has addressed

pattern nulling problems [9], outperforming other adaptive algorithms. A memory-enhanced

version has been investigated also in this case to face more complex scenarios characterized by

jammers located in both the far-field and the near-field of thereceiving antenna [10].

In recentyears, time-modulated arrays haveattractedgrowing interest since they overcome

some classical drawbacks of the amplitude-weight control by arbitrarily shaping the radiated

pattern by means of the modulation of the static excitations[11]-[18] with a set of radio-

frequency (RF ) switches. However,in this case the main disadvantage isthe generation of

unwanted harmonic radiations. To address these issues, an approach based on a Hybrid Differ-

ential Evolution (HDE) algorithm has been developed for time-modulated linear geometries
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(i.e., time-modulated linear arrays -TMLAs) [19]. The minimization of the total output power

has been carried out as in [6], but here the optimization of the least significant bits of the digital

phase shifters as well as the pulse sequence controlling thestatic excitations have been opti-

mized. Thanks to the exploitation of the additional degrees of freedom (in the time domain),

not considered in [6], deeper nulls have been obtained in thedirections of the undesired sig-

nals. The sideband level (SBL), namely the peak level of the sideband radiations (SRs), has

alsobeenminimized, yielding satisfactory results [19]. However, such aSBL optimization to

compensate theSR losses presentstwo drawbacks. First, it does not usually consider the total

amount of power losses in harmonic radiations since the evaluation of theSBL is generally

limited to the first harmonic patterns [11][12][19]. Second, the evaluation of theSBL is cum-

bersome from a computational point of view, since the generation of the whole set of harmonic

patterns is required.

As an alternative to the above, we presentan innovativePSO-based adaptive nulling strategy

based on the maximization of the signal-to-interference-plus-noise ratio. To deal with theSR

optimization, theanalyticalrelationship derived in [20], which allowsan exact computation of

the contribution of the infinite harmonic radiations, has been modified to encompass the use

of non-isotropic sources, as well. ThePSO has been used to optimize the pulse sequence

controlling the static excitations as well as the least significant bits of the digital phase shifters,

whose weights have been supposed with an odd-symmetrical distribution to achieve the nulling

with minimum perturbation of their phase values [21].

The rest of the paper is organized as follows. The problem is mathematically formulated in

Section2, where the adaptive nulling strategy isalsodescribed. The results of a set of numerical

experiments are reported and discussed inSection3 to point outadvantagesand limitations of

the proposed approach (Section3.1) as well as for comparisons with state-of-the-art methods

(Section3.2).Finally, conclusions are given in Section 4.

2 Mathematical Formulation

Let us consider a time-modulated linear array composedof N point sources withsin θ element

patterns (i.e., collinear short dipoles) equally-spaced along thez-axis. A desired signal andI
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interferences impinge on the antenna fromθd andθi, i = 1, ..., I, different directions, respec-

tively. The electromagnetic signals areassumedto be narrow-band plane waves with central

angular frequencyω0 = 2πf0. The antenna output when at least one element is time-modulated

is given by [22]

F (t, θ) = ejω0t sin θ

N
∑

n=1

αnUn(t)ejβ[n−(N+1

2 )]d cos θ (1)

whereαn = Ane
jϕn, n = 1, ..., N , is then-th complex static excitation,An andϕn being

the corresponding amplitude weight and phase weight, respectively. Moreover,d is the inter-

element distance andβ = ω0

c
is the free-space wavenumber,c being the speed of light in vac-

uum. Furthermore,Un (t) = Un (t + kTp), h ∈ Z, is a periodic rectangular pulse function of

periodTp that models the on-offbehaviourof an RF switch used to modulate then-th array

element where

Un (t) =











1 0 < t ≤ τnTp

0 t > τnTp

(2)

τn ∈ [0, 1] being the normalized duration of the “on” state of then-th element (the so-called

switch-on time). By considering the Fourier expansion of the modulating pulses,Un (t) =

∑

h∈Z
unhe

jhωpt, n = 1, ..., N , unh = 1
Tp

∫ Tp

0
Un (t) e−jhωptdt being the Fourier coefficient and

ωp = 2π
Tp

, Equation (1) can be expressed as the summation of infinite harmonic terms spaced by

ωp [22]. Morespecifically, the term at the central frequency (h = 0) turns out to be

F0 (θ) = sin θ

N
∑

n=1

αnτne
jβ[n−(N+1

2 )]d cos θ (3)

whereτn = un0, n = 1, ..., N , while theSR contribution is equal to [20]

FSR (θ, t) =
∑

h∈Z, h 6=0

ejhωpt sin θ

N
∑

n=1

αnunhe
jβ[n−(N+1

2 )]d cos θ. (4)

The power at the array elements from the desired signal is

Υd =

∣

∣

∣

∣

∣

sin θdsd

N
∑

n=1

αnτnejβ[n−(N+1

2 )]d cos θd

∣

∣

∣

∣

∣

2

(5)
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wheresd is the received signal strength, while the amount of undesired power collected by the

receiver isΥu = Υi + Υn where

Υi =

∣

∣

∣

∣

∣

I
∑

i=1

sin θisi

N
∑

n=1

αnτne
jβ[n−(N+1

2 )]d cos θi

∣

∣

∣

∣

∣

2

(6)

is related to theI interfering signals,si, i = 1, ..., I, being the strength of thei-th signal, and

Υn is the power of the noise modeled as anAWG process.

To maximize the signal-to-interference-plus-noise ratio(SINR), the problem at hand is formu-

lated as in [7][9] and the following functional is maximized

ΨSINR
(

τ , ϕ
)

=
Υd

(

τ , ϕ
)

Υd

(

τ , ϕ
)

+ Υu

(

τ , ϕ
) (7)

to determine the two sets of unknownsτ = {τn, n = 1, ..., N} andϕ = {ϕn, n = 1, ..., N}.

Dealing with time-modulation, Equation (7) is properly integrated with a suitable additive term

to take into account the power losses due to the modulation ofthe static excitations

ΨSINR
SR

(

τ , ϕ
)

= ΨSINR
(

τ , ϕ
)

+
P0

(

τ , ϕ
)

Ptot

(

τ , ϕ
) (8)

whereP0

(

τ , ϕ
)

= Ptot

(

τ , ϕ
)

− PSR

(

τ , ϕ
)

is the power associated to the pattern at the central

frequency,Ptot andPSR being the total power and the losses in theSR, respectively. This latter

quantityis computedusingtheanalyticalrelationship in [20] evaluated for point sources

PSR =
4

3

N
∑

n=1

{

|αn|
2
τn (1 − τn)

}

+2

N
∑

m, n = 1, m 6= n

{

Re(αmα∗
n)

[

sinc (ξ) − cos (ξ)

ξ2

]

(τ̂ − τmτn)

}

(9)

whereξ = βd (m − n) andτ̂ = τn if τn ≤ τm andτ̂ = τm, otherwise. Moreover, Re(·) and ∗

denote the real part and complex conjugation, respectively.

The optimization of (7) or (8) is carried out by means of the inertial weight version of the

PSO algorithm [23] following the guidelines described in [9] and extended to the synthesis of

time-modulated arrays in [24].
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3 Numerical Results

In this section, a set of numerical experiments is reported and discussed to assess the effec-

tiveness of the proposed adaptive nulling strategy. Whatever test case, if it is not specified,

the electromagnetic source of the desired signal is assumedto be in broadside (i.e.,θd = 90o)

with powerΥd = 0 dB and the environment ismodelledwith a level of noise30 dB below the

strength of the desired signal (Υn = −30 dB). As far as thePSO is concerned, a swarm of

S = 2×N particles has been used in all the experiments and the control parameters have been

set according to the indications given in [25]. Both cognitive (C1) and social (C2) accelera-

tion coefficients have been fixed to2, while the inertial weight (ω) has been linearly decreased

throughout the iterative optimization from0.9 to 0.4.

The first two numerical experiments are aimed at showing the effectiveness of theSINR-based

approach for adaptive nulling, never considered before (tothe best of the authors’ knowledge)

for the synthesis of time-modulated arrays. Towards this aim, isotropic sources have been

considered instead of small dipoles [i.e., in (1) and in the formulation the termsinθ has been set

equal to one as in [24]] to show thebehaviourof the proposed method without any bias related

to the kind of radiating sources. Accordingly, in the first experiment, a single interference

(I = 1) of powerΥ1 = 30dB impinges on a linear array ofN = 20 equally-spaced elements

(d = 0.5λ0, λ0 being the wavelength at the central frequency) fromθ1 = 158o. The static array

configuration is characterized by real weight coefficients with uniform amplitudes (An = 1,

n = 1, ..., N) and null phases (ϕn = 0, n = 1, ..., N). By optimizingτ , the pulse sequences and

the corresponding radiation patterns atω0 and(ω0 + hωp), h = 1, 2 synthesized with thePSO

are displayed in Fig. 1. More specifically, Figures 1(a)-(b) are concerned with the maximization

of the unconstrainedSINR functional (7), while the results of the joint optimizationof the

SINR and of the sideband power losses are reported in Figs. 1(c)-(d). As expected, since both

setsαn, n = 1, ..., N , andτn, n = 1, ..., N , are real, the patternF0(θ) turns outto besymmetric.

For completeness, thebehaviourof the cost functionthat corresponds tothe optimal solution of

the swarm during the iterative process is given in Fig. 2.

As can be observed, the null is correctly placed along the direction of the interferer in both

cases (Fig. 1) and the null depth turns out to be71 dB and90 dB, respectively (Fig. 3). The
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advantages derived from thePSR minimization are non-negligible. Ontheone hand, the total

amount of power losses in theSR reduces from5.86% down to1.34% of the radiated power.

Moreover, a significant reduction of theSBL has alsobeen achieved(e.g., almost13 dB for

h = 1 sinceSBL = −23.6 dB goes down toSBLSR = −36.4 dB) asseen inthe plots in

Fig. 4, where the sideband level of the first20 harmonic patterns,SBL(h), h = 1, ..., 20, are

reported. On the other hand, only one switch is required to generate the pulse configuration in

Fig. 1(c) and the16-th element is turned-off, while18 switches are necessary when theSR

term is not taken into account during the optimization. As a final remark, while the sidelobe

level (SLL) of the pattern at the central frequency is slightly improved (although not involved

in the optimization) fromSLL = −13.6 dB to SLLSR = −14.4 dB, it is worth pointing out

that the antenna directivityalsoincreases because of the reduction of the power losses.It turns

out thatDSR
max = 12.7 dB againstDmax = 11.1 dB(1).

The second experiment deals with a multiple-jamming configuration. Three interferences with

equal power (Υi = 30dB, i = 1, 2, 3) impinge on the antenna fromθ1 = 4o, θ2 = 130o, and

θ3 = 173o. The solutions synthesized at the end of the optimization processes are given in Fig.

5. Also in this case, the undesired signals are efficiently suppressed and three nulls (Fig. 6) are

located at the convergence in correspondence with theDoAs of the jammers. As expected, sim-

ilar conclusions to those from the previous example arise bycomparing the solutions with and

without theSR constraining term in the cost function to be maximized. The power lossesare

halved(P (SINR)
SR = 6.58% vs. P

(SINR−SR)
SR = 2.75%) and the maximum directivity increases

by almost1dB from Dmax = 11.7 dB up toDSR
max = 12.6 dB. Moreover, theSBL(h) values

turn out to be always smaller that those without theSR constraint (Fig. 7). As regards theHW

architecture,fewer than halftheswitches (i.e.,4 against9) are required to modulate the array

according to the pulse sequence of Fig. 5(c) instead of using the configuration in Fig. 5(a).

Since adaptive nulling inTMLAs has been already dealt with in the literature, the results of

some comparisons with the solutions achieved in [19] where the nulling has been obtained

through the minimization of the total output power with theHDE-based approach are shown

and discussed in the following. For fair comparisons, shortdipoles are considered and the

(1) The directivity values have been computed by exploiting therelationship available in [26].
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unknowns to be optimized are now the time durations,τ , and the phase coefficients,ϕ. As in

[19], the phase shifters are characterized byB = 6 bits and only the two least significant (L = 2)

have been modified during the optimization process. However, unlike [19], anti-symmetric

phases have been considered ontheone hand to take into account the same number of degrees of

freedom in the synthesis process and on the other hand to fully exploit the suggestion in [6][21]

about nulling efficiency of phase distribution(2). As for the switch-on times, the admissible

perturbations have been limited to±0.23Tp (i.e., τn ∈ [τ init
n ± 0.23], n = 1, ..., N , τ init

n being

then-th guess switch-on-time).

The first comparison considers aTMLA of N = 40 elements (d = 0.5λ0) and two interferers

from u1 = cos θ1 = 0.62 (i.e., θ1 = 51.68o) andu2 = cos θ2 = 0.72 (i.e., θ2 = 43.95o)

both with power60 dB over the desired signal (Υi = 60 dB, i = 1, 2). The starting pulse

sequence has been set to afford a Dolph-Chebyshev pattern [28] at ω0 with SLL = −30dB

(i.e., τ init
n = τDC

n , n = 1, ..., N) and uniform static excitations have been chosen (An = 1,

n = 1, ..., N) to simplify the architecture of the beam forming network, as well.

The HDE, aimed at reducing theSR losses through theSBL minimization, required250

iterations (Fig. 8) to place nulls of
∣

∣

∣

F0(θi)
max{F0(θ)}

∣

∣

∣

2

≃ −50 dB at the interferenceDoAs (even

though
∣

∣

∣

F0(θi)
max{F0(θ)}

∣

∣

∣

2

+ Υi ≃ 10 dB, i = 1, 2) with SBLHDE = maxh

{

SBLHDE(h)
}

equal

to −16.7 dB [19]. In contrast, the proposedPSO-based approach has yielded null depths of

−160 dB, far below the levels reached with theHDE, just after200 iterations (Fig. 8) by

computing theSR using (9) throughout the optimization process. The pulse sequence and the

phase weights at thePSO convergence are shown in Fig. 9, while the radiated patternsat the

central frequency and atω0 + hωp, h = 1, 2, are reported in Fig. 10. As it can be observed

(Fig. 10), the maximum value ofSBL has been lowered of more than3 dB (SBLPSO
SINR−SR =

−20.2 dB), as well. However, theSLL of the PSO solution turns out to be higher than the

HDE one [19] (SLLPSO
SINR−SR = −16.0 dB vs. SLLHDE = −27.0 dB ). This is not surprising

because of the even distribution about thecentreof theHDE phases used to keep low theSLL

of the radiation atω0 [6][27]. To alsoaddress theSLL minimization with odd phase shifts, a

suitable forcing term has been added to (8)

(2) “Lowering the sidelobe levels requires an even phase shift about the center of the array [27], while nulling
requires an odd phase shift[21]” [6].

9



ΨSINR
SR−SLL

(

τ , ϕ
)

= ΨSINR
SR

(

τ , ϕ
)

+

∣

∣SLL
(

τ , ϕ
)
∣

∣

|SLLref |
(10)

whereSLL , maxθ∈ΘSLL

{

F0(θ)
max0≤φ≤π[F0(φ)]

}

andΘSLL identifies the range of angular directions

outside the main beam region. Following such a strategy and settingSLLref = −30 dB, the

patterns shown in Fig. 11 have been synthesized. The jammersare still efficiently suppressed

with nulls deeper than−100 dB, but now the level of the secondary lobes atω0 is of the same

orderof magnitudeastheHDE solution (i.e.,SLLPSO
SINR−SR−SLL = −24.8 dB) with a reduc-

tion of more than8 dB compared toSBLPSO
SINR−SR. For completeness, thePSO pulse sequence

and the phase weights are reported in Fig. 12(a) and Fig. 12(b), respectively.

The last experiment is concerned with a larger array withN = 100 elements andd = 0.5λ0.

As in [19], the performances of thePSO adaptive nulling strategy are evaluated when an inter-

fering signal of powerΥ1 = 54 dB impinges on the array close to the main lobe (θ1 = 88.28o),

while the second one (Υ2 = 46 dB) is generated by a source atθ2 = 43.11o. For comparison

purposes,L = 4 bits among the available6 have been changed as in [19] since placing nulls

close to the main beam is expected to need more significant perturbations of the phase weights.

Figure 13 shows the patterns synthesized when optimizing (10) by constraining the switch-on

times withinτn ∈ [τ init
n ± 0.23], n = 1, ..., N , as in [19] [Fig. 13(a)] and without constraints

on the switching sequence [Fig. 13(b)]. In both cases, the jammers are suitably counteracted

with null depths lower than−80 dB. As for the other pattern features, the synthesized pattern

is characterized bySLLPSO
constr = −14.5 dB in the constrained case (SLLHDE = −17.5 dB)

and theSBL is lowered of more than20dB with respect to theHDE solution (SBLHDE =

−20.0 dB vs. SBLPSO
constr = −40.5 dB). As expected, the unconstrained solution [Fig. 13(b)]

also improves the sidelobe level (i.e.,SLLPSO
unconst = −18.1 dB).

4 Conclusions

In this paper, an innovative strategy for the synthesis of adaptiveTMLAs has been presented.

The complexity of the amplitude control for pattern nullinghas been avoided by optimizing

the on-off sequence that modulates the static excitations and the least significant bits of digital
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phase shifters by means of aPSO-based approach. To deal with the optimization of the power

losses, the standardSINR cost function has been integrated with a computationally-efficient

analyticalexpression customized to take into account also non-isotropic radiators havingsin θ

element pattern. Suitable countermeasures for dealing with theSLL minimization also with

anti-symmetric phase distributions of the array elements havealsobeen adopted. A selected

set of numerical results as well as representative comparisons with state-of-the-art techniques

have been presented and discussed to point out the effectiveness and reliability of the proposed

approach which seems to represent a useful tool for communication and radar devices.
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FIGURE CAPTIONS

• Figure 1. Numerical Validation- Single Interference(N = 20; I = 1 - θ1 = 158o,

Υ1 = 30dB). Plots of the (a)(c) pulse sequences and of the (b)(d) normalized power

patterns at the central frequency (h = 0) and at the harmonic radiationsh = {1, 2}

synthesized by thePSO approach (a)(b) without [Eq. (7)] and (c)(d) with SR constraint

[Eq. (8)].

• Figure 2. Numerical Validation- Single Interference(N = 20; I = 1 - θ1 = 158o,

Υ1 = 30dB). Behavior of the optimum value of the cost function throughout the iterative

PSO-based optimization.

• Figure 3. Numerical Validation- Single Interference(N = 20; I = 1 - θ1 = 158o,

Υ1 = 30 dB). Behavior of the null depth versus the iteration indexk.

• Figure 4. Numerical Validation- Single Interference(N = 20; I = 1 - θ1 = 158o,

Υ1 = 30 dB) - Plots of the sideband levelsSBL(h), h ∈ [1, 20], of thePSO solutions

synthesized without [Eq. (7)] and with theSR constraint [Eq. (8)].

• Figure 5. Numerical Validation- Multiple Interferences(N = 20; I = 3 - θ1 = 4o,

θ2 = 130o, andθ3 = 173o, Υi = 30 dB). Plots of the (a)(c) pulse sequences and of the

(b)(d) normalized power patterns at the central frequency (h = 0) and at the harmonic

radiationsh = {1, 2} synthesized by thePSO approach (a)(b) without [Eq. (7)] and

(c)(d) with SR constraint [Eq. (8)].

• Figure 6. Numerical Validation- Multiple Interferences(N = 20; I = 3 - θ1 = 4o,

θ2 = 130o, andθ3 = 173o, Υi = 30 dB). Behavior of the null depth versus the iteration

indexk.

• Figure 7. Numerical Validation- Multiple Interferences(N = 20; I = 3 - θ1 = 4o,

θ2 = 130o, andθ3 = 173o, Υi = 30 dB). Plots of the sideband levelsSBL(h), h ∈ [1, 20],

of thePSO solutions synthesized without [Eq. (7)] and with theSR constraint [Eq. (8)].

• Figure 8. Comparative Assessment- Multiple Interferences(N = 40; I = 2 - θ1 =

15



51.68o, θ2 = 43.95o, Υi = 60 dB). Behaviors of the null depths along the interferer

DoAs (u1 = cos θ1, u2 = cos θ2) versus the iteration indexk using thePSO approach

with SR constraint [Eq. (8)] and theHDE approach [19].

• Figure 9. Comparative Assessment- Multiple Interferences(N = 40; I = 2 - θ1 =

51.68o, θ2 = 43.95o, Υi = 60 dB). Plots of the (a) pulse sequence and of the (b) phase

values synthesized by thePSO approach withSR constraint [Eq. (8)].

• Figure 10. Comparative Assessment- Multiple Interferences(N = 40; I = 2 - θ1 =

51.68o, θ2 = 43.95o, Υi = 60 dB). Normalized power patterns at the central frequency

(h = 0) and at the harmonic radiationsh = {1, 2} synthesized with thePSO approach

with SR constraint [Eq. (8)].

• Figure 11. Comparative Assessment- Multiple Interferences(N = 40; I = 2 - θ1 =

51.68o, θ2 = 43.95o, Υi = 60 dB). Normalized power patterns at the central frequency

(h = 0) and at the harmonic radiationsh = {1, 2} synthesized with thePSO approach

with constraints on bothSR andSLL [Eq. (10)].

• Figure 12. Comparative Assessment- Multiple Interferences(N = 40; I = 2 - θ1 =

51.68o, θ2 = 43.95o, Υi = 60 dB). Plots of the (a) pulse sequence and of the (b) phase

values synthesized by thePSO approach with constraints on bothSR andSLL [Eq.

(10)].

• Figure 13. Comparative Assessment - Large Array(N = 100; I = 2 - θ1 = 43.11o,

Υ1 = 54 dB, θ2 = 88.28o, Υ2 = 46 dB) - Plots of the (a)(b) normalized power patterns

at the central frequency (h = 0) and at the harmonic radiationsh = {1, 2}, (c)(d) pulse

sequences, and (e)(f ) phase values synthesized by thePSO approach [Eq. (10)] with (left

column) and without switch-on-time constraints (right column).
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