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ABSTRACT

Non-uniform memory access (NUMA) architectures pose numerous
performance challenges for main-memory column-stores in scaling
up analytics on modern multi-socket multi-core servers. A NUMA-
aware execution engine needs a strategy for data placement and
task scheduling that prefers fast local memory accesses over remote
memory accesses, and avoids an imbalance of resource utilization,
both CPU and memory bandwidth, across sockets. State-of-the-art
systems typically use a static strategy that always partitions data
across sockets, and always allows inter-socket task stealing.

In this paper, we show that adapting data placement and task
stealing to the workload can improve throughput by up to a factor
of 4 compared to a static approach. We focus on highly concurrent
workloads dominated by operators working on a single table or table
group (copartitioned tables). Our adaptive data placement algorithm
tracks the resource utilization of tasks, partitions of tables and table
groups, and sockets. When a utilization imbalance across sockets
is detected, the algorithm corrects it by moving or repartitioning
tables. Also, inter-socket task stealing is dynamically disabled for
memory-intensive tasks that could otherwise hurt performance.

1. INTRODUCTION
Processor vendors are scaling up modern servers by interconnecting
multiple sockets in a single shared-memory system. Each socket
has a memory controller and multiple cores attached, introducing
new performance challenges for software. There are non-uniform
memory access (NUMA) latencies across the system. The resources,
either CPU or memory bandwidth, of a single socket, as well as
the bandwidth of a single interconnect link, are additional bottle-
necks to be considered. Contemporary main-memory column-store
database management systems (DBMS), such as SAP HANA [11]
or Oracle [23], need to tackle the challenges of data placement and
scheduling in order to scale up on modern NUMA hardware and
efficiently service highly concurrent big data analytics.

In order to balance utilization across sockets, state-of-the-art
systems [16, 20] partition data across sockets and employ task
scheduling with inter-socket task stealing. Our previous analysis
of concurrent NUMA-aware scans [28] showed that such a static
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Figure 1: A conceptual example of our adaptive data placement.

strategy for data placement and task scheduling is not always the
most performant one. We showed that unnecessary partitioning can
incur an overhead and that stealing memory-intensive tasks can hurt
overall performance, depending on the workload.

In this paper, we show that the implications for adaptivity apply
to additional NUMA-aware operators, focusing on aggregations and
equi-joins (see Section 4). We attempt to solve the open problem of
adapting data placement and task scheduling to the workload at run-
time, with the aim to balance resource utilization across sockets. We
target highly concurrent workloads dominated by operators working
on a single table or table group (copartitioned tables).

Our proposed design relies on tracking the history of CPU
and memory bandwidth utilization at three levels (see Section 5):
(a) tasks, (b) partitions of tables and table groups, and (c) sockets.
When the execution engine detects a utilization imbalance across
sockets, it either moves or repartitions tables in order to fix the imbal-
ance (see Section 6). Moreover, it also finds cold partitioned tables to
consolidate and disallows inter-socket stealing of memory-intensive
tasks that would hurt performance (see Section 7).

Figure 1 shows a conceptual example of the most significant
aspects of our adaptive techniques. The server has four fully inter-
connected sockets. The workload consists of numerous concurrent
memory-intensive scans on three tables, which are initially placed
on two of the server’s sockets. Task stealing is disallowed due to the
memory intensity of the scans. Two of the sockets are fully utilized,
and their memory bandwidth is saturated, while the remaining two
sockets are idle. Our adaptive data placement detects the utilization
imbalance, and takes actions to fix it. It moves table TBL2 to socket
3, partitions TBL3 across sockets 2 and 4, and finally merges the
unutilized parts of TBL4. Socket utilization becomes balanced. The
total memory throughput is 2x higher than initially, improving the
workload’s throughput by 2x (see Section 8.1).

Contributions. In this paper, we present adaptive NUMA-aware
techniques for main-memory column-stores. We adapt data place-
ment and inter-socket task stealing to workloads dominated by
operators working on a single table or table group (copartitioned
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tables), at run-time. Our implementation and experiments are based
on a commercial column-store (SAP HANA). Our contributions are:

• An adaptive data placement strategy that can improve through-
put by up to 2x in comparison to a static strategy that always
partitions data across all sockets. We present an adaptive
heuristic algorithm that moves and repartitions tables at run-
time in order to balance the utilization across sockets.

• Adapting inter-socket task stealing to the memory intensity of
tasks, improving throughput by 1.1x–4x in comparison to a
static strategy that always allows inter-socket stealing.

• To adapt data placement and task stealing, complete knowledge
of the system’s utilization is needed. We present a design
that tracks the utilization history at the levels of (a) tasks,
(b) partitions of tables and table groups, and (c) sockets.

2. BACKGROUND
In this section, we give a brief overview of NUMA-awareness, data
placement and task scheduling in main-memory column-stores.

NUMA. Processor vendors scale up modern machines with a non-
uniform memory access (NUMA) architecture. Figure 2a shows an
example of a 4-socket server. Each socket has a 15-core Intel Xeon
E7-4880v2 CPU. Each core has its own L1 and L2 caches, and a
socket’s cores share a L3 cache. Eight 16 GB DIMM are attached
to each socket. The sockets are interconnected to exchange data
requests and support cache coherence. In this example, each socket
has 3 QPI links, forming a fully-interconnected topology (maximum
of 1 hop across sockets). The topology, the interconnects, and the
cache coherence protocol are specific to each system.

NUMA-awareness. Since memory is distributed, new performance
challenges arise for software: (a) accesses to remote memory can be
up to 5x slower than local memory, (b) the bandwidth of a socket and
an interconnect can be additional bottlenecks, and (c) the bandwidth
of an interconnect can be up to 7x lower than the bandwidth of a
socket [7, 28]. Due to the lack of knowledge about inter-socket
routing or the cache coherence, a NUMA-aware application attempts
to solve the above challenges in a simple way: optimizing for
local memory accesses instead of remote accesses, and avoiding
unnecessary centralized bandwidth bottlenecks.

Memory management in the operating system. The OS organizes
memory with (typically) 4 KB pages [17]. The physical location of a
virtual memory page, which an application has allocated, is decided
upon the first page fault. In Linux, the default “first-touch” policy
attempts to allocate physical memory for a virtual page from the
socket where the thread is running. Linux provides NUMA-aware
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Figure 2: (a) 4-socket server. (b) Example of the physical loca-

tion of the virtual memory of two tables on a 4-socket server.

functions for an application, such as mbind or move_pages, to set
and get the physical location of its allocated virtual memory.

Main-memory column-stores. The data of a column can be stored
sequentially in a vector in main-memory [11, 19, 20, 23]. Com-
pression techniques, such as dictionary encoding, are typically used
to reduce the amount of memory and potentially speed up process-
ing [21]. A generic dictionary-encoded column is composed of an
integer vector, called indexvector (IV) (naming can be different),
that stores value IDs (vid), and the dictionary vector, that stores the
sorted unique real values of the value IDs [28].

Figure 2b shows an example of the physical location of the virtual
memory of two tables with one column each. Assuming the same
data type and page-aligned allocations, the example hints that Table 2
has around triple number of rows than Table 1 with a similar number
of unique dictionary values. The DBMS has used OS NUMA-aware
functions to place Table 1 on Socket 1 and Table 2 on Socket 2.

Data placement. An entire table can be placed on one socket as in
Figure 2b, or can be physically partitioned across several sockets [1,
23]. By using, e.g., hash, range, or round-robin partitioning, we
can define multiple table parts (TBP) [28]. All TBP share the same
set of columns, but each column in a table part has its own IV and
dictionary. As such, a table part can be entirely placed on one socket.

Task scheduling. With task scheduling, operations are encapsulated
in tasks, which are put into task queues, and pools of worker threads
are used to process them. The task scheduler can reflect the NUMA
topology of a machine [16, 20, 27, 29]. In our previous work, we
detailed our NUMA-aware task scheduler [27, 28]. We showed
how stealing and a concurrency “hint” can help to saturate CPU
resources without unnecessary scheduling overhead and that stealing
memory-intensive tasks can hurt performance. In this work, we
adapt task stealing to a task’s memory intensity (see Section 7).

3. RELATED WORK
We organize related work by static NUMA-aware solutions, adaptive
solutions, black-box solutions, and work in distributed systems.

Static solutions. Most DBMS not mentioning advanced NUMA
optimizations indirectly rely on the static first-touch policy for data
placement, e.g., Vectorwise [39], Microsoft SQL Server’s column-
store [19], or IBM DB2 BLU [30]. In a recent thesis describing how
to parallelize query plans in Vectorwise with task scheduling [14],
inter-socket stealing is allowed based on task priorities and the
contention of sockets. In this work, we show that stealing should not
be allowed for memory-intensive tasks. Oracle’s distributed manager
decides the NUMA location of columnar data when the topology
changes [23], but not when the workload changes. HyPer [20]
chunks all data, and statically distributes them uniformly over the
sockets, while inter-socket stealing is always enabled.

There is also related work on NUMA-aware standalone operators.
Albutiu et al [5] construct a NUMA-aware sort-merge join. Hash-
joins, however, are shown to be superior [6, 18]. Yinan et al [22]
optimize data shuffling. Most related work, however, optimize for
low concurrency with a static data placement using all sockets of the
server. In this work, we optimize for highly concurrent workloads,
with a data placement that adapts to the workload.

Adaptive solutions. Two state-of-the-art research prototypes use an
adaptive NUMA-aware solution for data placement: ERIS [16] and
ATraPos [26]. ERIS is a storage manager that employs adaptive range
partitioning, and each partition is assigned to a worker thread. While
ERIS targets storage operations, we target analytical workloads
consisting of numerous operators. In addition, we show in this paper
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how partitioning involves an overhead that can be avoided altogether
depending on the workload, in which case intermediate results can
also be local to process within a socket. ATraPos uses dynamic
repartitioning for OLTP workloads, to avoid transactions crossing
partitions and avoid inter-partition synchronization. While ATraPos
optimizes for the latency of transactions, we focus on optimizing the
throughput of analytical workloads by balancing socket utilization.

Black-box approaches. These approaches monitor performance
metrics to predict an application’s behavior and periodically move
threads and data to balance cache load, optimize for local memory
accesses, and avoid bandwidth bottlenecks. Examples include
DINO [7], Carrefour [8], or the new automatic NUMA balancing
of Linux. Results for DBMS, however, are typically sub-optimal.
Giceva et al. [12] employ a DBMS-focused black-box static approach
to characterize and group the shared operators of a predefined global
query plan, and place them on a NUMA server with the main aim of
improving overall energy efficiency. In this work, we also employ a
DBMS-focused black-box approach, but geared towards adapting
data placement and task scheduling at run-time.

Distributed systems. It is long known that the data placement
problem in distributed systems is NP-hard [10]. The input is a
characterization of the data and a workload. We refer to [25] for a
discussion of solution methods. The most advanced method we are
aware of relies on a reduction to a graph partitioning problem which
is passed to a heuristic solver that may need minutes to run [13].

Similar solvers are employed in several distributed DBMS tools.
Examples include the SAP Data Distribution Optimizer (DDO) [2],
the physical database design advisor in DB2 [31], the database tuning
advisor in MS SQL Server [4], and Oracle’s distribution manager [23].
The produced data placement is static but the solver can be triggered
again manually or automatically after a change in the network
topology. The data placement, however, does not adapt automatically
to new workload characteristics. In our experience workloads are
rarely completely predictable, and there is a tendency towards highly
concurrent workloads generated by several applications. Our aim is
to adapt the data placement across NUMA nodes to the workload
at run-time. The aforementioned solvers cannot quickly adapt to
a changing workload and cannot be immediately applied to our
dynamic setting. Our heuristic algorithm, however, considers only a
few alternative placements, and can quickly adapt to the workload.

Partitioning specifications and table groups. Our adaptive data
placement uses two notions found in automated distributed setups [1,
2]. First, only tables with a defined partitioning specification

(e.g., hash partitioning on a column) are automatically repartitioned.
Second, table groups (TG) can be defined to recognize associated
tables used by multiple-input operators. We track utilization at the
level of TG, instead of tables (see Section 5). When our adaptive
data placement decides to move or repartition a TG across sockets, it
does so for all the tables of the TG. Equi-joins on tables of a TG that
are partitioned over the joined columns (copartitioned tables), can
be executed mostly locally at the sockets with the collocated table
parts [1]. TG and partitioning specifications can be defined manually
by the administrator, suggested by one of the aforementioned solvers
for a workload, or given for popular workloads, e.g., SAP BW [1].

4. NUMAAWARE OPERATORS:

THE NEED FOR ADAPTIVITY
In our previous work [28], we analyzed NUMA-aware scans. As
a reminder, a scan has two phases: (a) a memory-intensive phase
that scans the bit-compressed IV (with SIMD instructions [36]) for
qualifying rows for a given predicate, and (b) a more CPU-intensive

(with less memory throughput) phase that materializes the output
values corresponding to the vid of the qualifying rows by consulting
the dictionary. The first phase is parallelized with multiple tasks,
and the second is parallelized in case of large results. Each phase is
repeated concurrently for all TBP. Task scheduling is NUMA-aware,
by queuing each task to the socket where its associated TBP is.

For scans, we identified the overhead of unnecessary partitioning
and of stealing memory-intensive tasks, showing the need for adaptive
data placement and task stealing. For this paper, we make more
operators NUMA-aware, focusing on aggregations and equi-joins.
Here, we briefly describe their NUMA-aware implementation, and
then show that the same need for adaptivity applies to them as well.

Aggregations. An aggregation uses the scan’s first phase to find the
qualifying rows, and then is parallelized with multiple tasks, where
each task executes two phases: (a) aggregating using a local hash

table (HT), and (b) merging the local HT to a set of disjoint result
HT [33]. The reason for the two phases is that they are interchanged
potentially multiple times in order to avoid large local HT that do
not fit in the processor’s last level cache (LLC) [24, 33]. We note
that we focus on decomposable associative aggregation functions.

If there are multiple TBP, an additional phase precedes, that creates
a global dictionary (used in the subsequent aggregation phases) by
matching the vid of the qualifying rows of the group-by column from
each TBP. Tasks are scheduled in a NUMA-aware fashion similar
to the scans. Although local HT are placed on a task’s socket, the
global dictionary is accessed by all tasks, and is placed on one of the
sockets of the involved TBP. Each disjoint result HT is placed on one
of the involved sockets in a round-robin manner. During the merge
phase, a task tries to merge a result HT that lies on its socket, but
necessarily accesses the local HT that can lie on multiple sockets.

Equi-joins. The NUMA-aware implementation of equi-joins is
similar to their distributed implementation [15, 32]. Consider an
example of an equi-join of two tables with a selection predicate on
the first table. The first table is searched to find qualifying rows
for the predicate, and the corresponding vid of the join column. A
global dictionary is employed, similar to partitioned aggregations,
to map the vid of the join columns between the tables. This is done
by consulting the join columns’ dictionaries. The join column of the
second table is searched for the qualifying vid and rows. A reduced
set of vid is then used to filter rows of the first table whose vid did not
occur in the second table. With the help of the global dictionary, the
second table is searched for the matched rows. The matched rows
from both tables are joined, with the help of the global dictionary,
to produce the final result. All steps are parallelized with multiple
tasks, which are scheduled in a NUMA-aware fashion, best when
the tables are on the same socket. If they are on different sockets,
the tasks incur remote accesses when mapping the vid of the join
columns, and during the final result production.

If there are multiple TBP for the tables, the aforementioned steps
are done by visiting all involved TBP to map their vid using the
global dictionary, and match the qualifying rows to produce the
final result. The mapping of the vid is more expensive to compute,
since each TBP has its own dictionary. Remote accesses can be
increased considerably if the TBP reside on multiple sockets. There
is one case when partitioning does not incur additional overhead for
mapping vid, and remote accesses are largely avoided. If the tables
are partitioned on the joined column, the partitioning specifications
of the tables match, and each pair of TBP (of the two tables) reside
on the same socket, the copartitioned equi-join can be parallelized
and executed locally on the sockets where the pairs of TBP reside.
Our adaptive data placement exploits this special case when the
administrator has defined TG that contains the joined tables, and

39



partitioning specifications on the joined column. Joins on other
columns, or between tables outside a TG, are not guaranteed to
have mostly local accesses. This is similar to distributed joins with
partitioned tables [1].

The overhead of partitioning and stealing. Here, we experimen-
tally show the overhead of unnecessary partitioning and stealing for
both aggregations and joins, pointing to the necessity for adaptivity.
Partitioning should be used in skewed workloads to balance used
data across sockets. Stealing should be used for CPU-intensive tasks
to balance CPU load across sockets, but not for memory-intensive
tasks that would overwhelm an already saturated socket.

Figure 3 shows the throughput (TP) of concurrent aggregations
or joins under different cases of selectivity, available tables, task
stealing, and partitioning (TBP/table). See Section 8 for more details
on our methodology, dataset, and query types. Aggregations use
query type b: each query picks a random table out of the available
tables and aggregates a column with a group-by. Joins use a slightly
modified version of query type c: a query picks a random pair of
tables (either TBL1-TBL2, TBL3-TBL4 etc.) to join on their COL1
instead of the ID primary key (PK) column, with a filter predicate
as well. In the case of 1 TBP/table, the table pairs are placed in a
round-robin way around the sockets. In the case of 4 TBP/table,
tables are partitioned on the PK, and the TBP of a table pair are
collocated on the same socket. This configuration can show the worst
overhead of partitioning. The server used is the one of Figure 2a.
All cases saturate CPU load, apart from the case of 1 (or 2 for joins)
table with 1 TBP/table without stealing, which saturates one socket.

Low selectivity aggregations are dominated by IV scans. The
workload is memory-intensive, as can be seen by the high memory
TP. As far as stealing is concerned, it helps saturate the CPU load
(for the case of 1 table with 1 TBP), but it does not improve the TP
as the workload is memory-intensive and stealing is unnecessary. In
fact, it can hurt TP by up to 15% (see case of 8 tables with 4 TBP vs.
not stealing). As far as partitioning is concerned, it can greatly help
improve the memory TP, improving the TP by up to 3x in case the
workload is skewed (see case of 1 table with 1 TBP vs. 4 TBP). But
when partitioning is unnecessary, it has an overhead of up to 25%
(see case of 8 tables with 1 TBP vs. 4 TBP).

As we detected in our previous work for scans [28], the partitioning
overhead involves at least a scheduling overhead that depends on the
implementation, due to a query needing to visit all TBP on multiple
sockets. Irrespective of the implementation, an additional overhead
lies in the second scan phase when outputting the real values into a
single result set, or, in case of partitioned sub-results, when fetching
the sub-results from multiple sockets. In our experiments, we wish to
consider the NUMA, and not the network, effect so the second scan
phase outputs a single result set and we ignore fetching. Another
overhead is the need of a global dictionary, plus the remote accesses
during the merge phase. Remote accesses during the merge phase are
necessary irrespective of the implementation [24, 37], and depend
on the number of groups (see Section 8.3 for a relevant experiment).

High selectivity aggregations are dominated by the aforementioned
aggregation phases. Due to the random accesses and hashing
involved, the workload is more CPU-intensive without achieving a
high memory TP. Stealing is now helpful. Stolen tasks are CPU-
intensive and do not run the risk of overwhelming the remote memory
controller or the interconnects. It can help saturate CPU load and
improve TP by up to 2.5x (see case of 1 table with 1 TBP). The
implications about partitioning are the same: it can help when the
workload is skewed, otherwise it has an overhead (see case of 8
tables with 1 TBP vs. 4 TBP). The reasons for the overhead are the
same as in the case of low selectivity.

Joins are also CPU-intensive and stealing helps. The overhead
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Figure 3: 256 clients issuing aggregation or join queries on a

4-socket server, under different cases of selectivity, available ta-

bles, stealing, and partitioning. Each LLC misses result belongs

to the corresponding case of the left-hand side graphs.

of unnecessary partitioning, however, is aggravated for joins that
are not copartitioned. It reaches up to 40% (see case of 8 tables
with 1 TBP vs. 4 TBP). The overhead is due to mapping the vid of
all involved TBP of both tables, and due to accessing TBP on all
sockets for producing the final results. This overhead does not apply
to copartitioned joins or unpartitioned tables.

To sum up, partitioning should be used only when necessary to
balance utilization, and stealing should not be used for memory-
intensive tasks. In the next sections, we detail how we track utilization
and how our adaptive data placement algorithm works. Afterwards,
we detail our adaptive task stealing strategy.

5. TRACKING RESOURCE UTILIZATION
We track resource utilization (CPU load and memory throughput)
across three levels: (a) tasks, (b) partitions of tables and table groups,
and (c) sockets. Figure 4 depicts our monitoring infrastructure with
an example of concurrent low selectivity scans (dominated by the
scan’s memory-intensive first phase that scans the IV).

Task classes. We organize tasks into classes that have similar
functionality and memory throughput. We use a different class for
the tasks of the first phase of a scan (IV scan), for the tasks of the
second phase of a scan (materialization), for the aggregation tasks
that interchange between the two aggregation phases, and for every
step of a join (see Section 4). For each class, we track the observed
memory throughput with a single exponential moving average.

Scheduling. When a task is scheduled on its intended socket, where
its associated TBP is placed, we aggregate its utilization on the level
of the TBP and the socket. We atomically add the average memory
throughput of the task’s class to the memory throughput consumed
by the TBP. We also atomically increment the CPU load (number of
threads) utilized by the TBP and the socket. When the task either
finishes or blocks in a synchronization primitive, we atomically
subtract the memory TP we previously added and decrement the
CPU load. With this method, we can keep track of the current
local CPU load and the estimated local memory throughput of TBP
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and sockets. We ignore on purpose stolen tasks. The utilization of
sockets that steal appear non-saturated in our metrics, as stealing is
a temporary solution to balance CPU load until our adaptive data
placement algorithm (see Section 6) fixes the imbalance of local
utilization. In the example of Figure 4, we depict how the average
memory TP of a task class is used when scheduling concurrent tasks
to aggregate the utilization at the level of TBP and sockets.

Measuring memory throughput. A task class is needed to assign
an estimated memory TP to a task when it is about to run. After
the task ends, we calculate its consumed memory TP, and push
back the value to the exponential moving average of its class with
a low weight: classAverage = 0.9 ∗ classAverage + 0.1 ∗ newValue.
Memory TP is calculated through H/W counters (integrating the
Intel PCM tool [9]), and considered only for non-stolen tasks
that have not blocked or moved to another core during execution.
The formula is: memoryTP = ((localLLCend − localLLCstart) ∗

64)/(timestampUSend − timestampUSstart). This calculates the ac-
cessed bytes by associating every local LLC miss with a cache
line (64 bytes) retrieval. Dividing by the task’s duration, gives the
average memory TP in MB/s. We ignore on purpose remote LLC,
since we do not wish to track remote memory TP in the task classes.

Table group parts (TGP). If a TG is defined for a group of tables,
tasks do not aggregate their utilization at the level of TBP, but at
the level of table group parts (TGP). For example, if the tables are
partitioned with three TBP each, then we keep three TGP. Each one
of the TGP tracks the aggregated utilization of the corresponding
TBP of the tables. We note that we place the TBP of a TGP on the
same socket, thus a TGP is associated with a single socket. If a table
of the TG does not have a partitioning specification, it is considered
as a single TBP and placed on the first TGP.

Resource utilization histories (RUH). Every TBP, TGP, and socket,
has a RUH that keeps track of the memory throughput consumed and
the number of threads used. The components of a RUH are shown in
Figure 5. It contains the number of memory pages occupied by the
TBP or TGP or socket, a pointer to the owner TBP or TGP or socket,
the socket where the owner is placed, and two history objects that
capture the recent utilization for memory throughput (memh) and
threads (cpuh). Specially for the pages of a TGP, we do not sum the
pages of its TBP, but keep the maximum pages of any of its TBP.
This is because we later use the pages to estimate the moving or
partitioning time, and we can move/partition a TG’s TBP in parallel.

A History object contains the absolute value that, as explained
before, is atomically incremented by a task when it is scheduled
and decremented when it blocks or is de-scheduled. The absolute

Resource Utilization

History (RUH)

pages: uint32_t

socket: int16_t

owner: TablePart*

  or TableGroupPart*

  or Socket*

memh: History //MB/s

cpuh: History //threads

History

value: uint64_t // atomically updated

ravg: double // recent average

samples: list<pair<uint64_t,uint64_t>>

entries: uint16_t

lock: ReadWriteLock

sample(): void // by refresher thread

avg(uint64_t us): double

reset(): void

Socket TablePart TableGroupPart

Figure 5: Each table part (TBP), table group part (TGP), and

socket is associated with a resource utilization history (RUH).

value is periodically sampled into a list of pairs of timestamps and
values. We maintain one background refresher thread per socket,
that periodically calls sample() on the histories of its socket and
of a subset of all TBP and TGP. sample() appends a pair with the
current timestamp and value to the back of the samples list, and
increments the entries. If the entries grow over a specified limit, it
deletes the pair at the front of the list. In our current implementation,
a refresher thread runs every 100 ms, and the limit of the samples
list is set to 3000 entries, which means that it can reach up to around
47 KB, holding samples for roughly the last 5 min.

We note that tasks atomically modify the absolute values of
the RUH of TBP or TGP only. A socket’s absolute values are
periodically calculated by the corresponding refresher thread by
aggregating the absolute values of all TBP and TGP placed on the
socket. This is to avoid numerous atomic operations at the level
of a socket, since many TBP and TGP can be placed on it, and
because we use a socket’s utilization mostly for monitoring purposes.
The adaptive data placement algorithm of Section 6 calculates the
sockets’ utilization by aggregating the utilization of TBP and TGP, in
order to work on a single “snapshot” of how the sockets’ utilization
is composed by the involved TBP and TGP.

The adaptive data placement algorithm makes heavy usage of the
avg(uint64_t us) function of the RUH, which runs the sample
list to find the first entry that is not older than the given microseconds,
and starts averaging the entries up to the last entry (each entry is given
a weight equal to the microseconds passed since the previous entry),
finally returning the average utilization. If the given microseconds
would require an entry older than the first of entry of the samples
list, we assume that the value of the utilization during that period is
equal to the value of the first entry.

Due to synchronization issues with the refresher threads, a read-
write lock is used by both the refresher threads (which write) and
the adaptive data placement algorithm (which reads). There are
minimal synchronization issues due to the periodicity of the threads,
and due to the fact that every refresher thread processes a different
socket and a different subset of TBP and TGP.

Finally, we also keep a shortcut average value for the last microsec-
onds that correspond to the period with which the adaptive data
placement algorithm runs. At the end of every sample() call, the
recent average (ravg) is updated by calling avg() with the period
of the adaptive data placement algorithm. The algorithm can use
this value immediately, without having to calculate it with avg().

6. ADAPTIVE DATA PLACEMENT
First, we describe the abstract workflow of our adaptive data place-
ment algorithm. Then we gradually delve into algorithmic details.
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6.1 Abstract Workflow
The main component of our adaptive data placement is the Data

Placer (DP) thread. Figure 6 shows its abstract workflow. The first
time tables are loaded into memory, they can be placed across sockets
in a round-robin manner. DP runs periodically in the background to
monitor the workload, and automatically takes care to either move
or repartition tables to fix a utilization imbalance.

DP focuses on balancing CPU utilization, under the constraint of
not creating a memory bandwidth bottleneck. We remind that we
refer to local-only utilization as tracked in Section 5. We balance the
utilization between sockets with saturated CPU resources and colder
sockets, by moving or partitioning tables. This strategy allows tables
that were previously on saturated sockets to potentially increase their
utilization using free threads on colder sockets (due to intra-query
parallelism), increasing the total system utilization.

At every period, DP gets a snapshot of the active RUH (of TBP and
TGP) and their recent utilization. It then calculates their eligibility for
moving and partitioning, depending on whether their past utilization
has been stable. Then, DP sorts the RUH within each socket by
their recent utilization, aggregating them as well to calculate the
recent utilization of the sockets. Afterwards, DP calculates the CPU
utilization imbalance between all pairs of sockets, and sorts the pairs.

For every pair of sockets, DP investigates whether a new placement
can reduce the imbalance. DP proceeds only if the imbalance is
over a threshold, and if the hot socket is saturated. If the hot socket
is not saturated, the TBP and TGP cannot increase their utilization
by exploiting free threads on the cold socket. DP iterates the RUH
of the hot socket, and examines whether moving or partitioning an
eligible RUH’s owner (the corresponding TBP or TGP) reduces the
imbalance. If additionally it does not create a memory bandwidth
bottleneck, DP proceeds to move or partition the RUH’s owner.

The outlined steps in Figure 6 are first executed while considering
moving an eligible RUH’s owner. If none can be moved across all
socket pairs, we repeat the steps considering partitioning an eligible
RUH’s owner. This ensures we first prefer moving over partitioning,
to avoid any unnecessary overhead of partitioning (see Section 4).

In case DP did not move or partition a RUH’s owner, it goes on to
see if there are any cold partitioned tables to merge. This optional
step can give the opportunity for cold tables previously partitioned
to not suffer the partitioning overhead in case they are again utilized
in the future (see Section 8.3 for a relevant experiment).

Data Placer (DP)Place TBP/TGP on sockets (e.g., round-robin)

Wait period
Find active RUH per socket, and calculate

their eligibility for moving and partitioning

Calculate sock-
ets’ utilization

Calculate CPU imbal-
ance between sockets

Sort
pairs

Sort RUH
per socket

Merge a cold partitioned table/TG and move to coldest socket

Iterate
pairs

Iterate
hot RUH

Calculate utilization of new
placement for eligible RUH

Execute
placement

Reduces
imbalance?

Imbalance? Saturated?

Outlined steps repeated
first for moving and then

for partitioning RUH

Mem. TP
constraint?

Continue

Finished

Yes
No

Yes
No Finished

Continue

Yes

OK

No

Not
OK

Figure 6: Abstract workflow of the Data Placer (DP).

Next, we detail how the eligibility of RUH is calculated (see
Section 6.2), how we reduce the utilization imbalance by moving
or partitioning (see Section 6.3), and finally how all pieces are put
together in DP’s algorithm (see Section 6.4). The parameters used
in our algorithms are summarized in Table 1. The exemplary values
are used for our experiments. They are not absolute and can be
modified to fit other systems, implementations and use cases.

Table 1: Configurable parameters used in our algorithms, along

with the values we use in our experiments.

Symbol Description Our value
cp Period of the Data Placer (DP) algorithm 1 second

ce
Eligibility threshold for the divergence between

the past and recent utilization of a RUH 30%

ci
Acceptable imbalance threshold between the

utilization of a pair of sockets
40% of

socket cores

cs
Lower threshold for considering a socket’s

utilization saturated
70% of

socket cores

We assume that each socket corresponds to a NUMA node [17],
and that all sockets have the same number of H/W threads and
maximum memory TP. This assumption is for typical NUMA servers
with the same processors, and the same number and type of DIMM.

6.2 Information and Eligibility of RUH
At every period, DP finds the RUH of all TBP and TGP, takes a
snapshot of their recent utilization and calculates their eligibility
to be moved or partitioned. For every RUH, this information is
stored in an InfoRUH object, which is defined in Algorithm 1, and
calculated through the function calculateInfoRUH.

The algorithm first stores the recent CPU and memory throughput
utilization of the RUH (lines 2–3). The RUH is deemed active if
its utilization is non-zero (line 4). DP continues to calculate the
eligibility of the RUH for moving or partitioning. A RUH is deemed
eligible if its average utilization in the past does not diverge much
from its recent utilization. The amount of time we look in the past
depends on the implementation of the move or partition operation.

For the time to look in the past in the case of moving, we first
calculate the time required to move the RUH’s owner (line 5), by
multiplying its pages with the speed of moving (microseconds per
page). The speed of moving and partitioning are calculated at
start-up by moving or partitioning a simple mock-up table to another
socket, without a concurrent workload. See Table 2 for the speeds
of the machines we use in our experiments. The speeds are rough
estimates. One can improve accuracy by specializing the speeds
by socket, or the concurrent workload, or a table’s characteristics
such as the number of columns, data types, etc. However, we do not
need to be precise, since the aim of our eligibility calculations is to
disallow instant actions by DP and not delaying them for long.

In our implementation, queries need to wait while a TBP is moved.
We use SAP HANA’s functionality to unload a TBP from memory and
reload it on the desired socket. We do not use Linux’s move_pages,
because it would mess up the statistics of SAP HANA’s NUMA-
aware memory allocators [35]. Due to queries waiting during the
move, we double the time to look in the past (line 5). This is
optional and simply prolongs the amount of time to look in the past.
Conceptually, the additional time corresponds to the time required
to “recover” the utilization which drops to zero during the move. We
then calculate the average past utilization of both CPU and memory
TP (lines 6–7). The RUH is eligible for moving if the past utilization
is within a threshold of the recent utilization (line 8).

The algorithm then continues similarly for calculating the eligibil-
ity of partitioning (lines 9–14). There are three differences. First, we
require that the RUH is also eligible for moving (line 9). This is to
enforce the preference of DP to having first considered moving the
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Algorithm 1 Calculate information and eligibility of a RUH
struct InfoRUH:

RUH; // pointer to corresponding RUH object
recentCpu; // recent CPU utilization
recentMem; // recent memory throughput utilization
isActive; // whether the recent utilization is non-zero
canMove; // eligible for moving
canPartition; // eligible for partitioning

1: function calculateInfoRUH(corresponding RUH)
2: recentCpu← RUH.cpuh.ravg
3: recentMem← RUH.memh.ravg
4: isActive← (recentCpu > 0 and recentMem > 0)
5: usMove← (RUH.pages * speed of moving) * 2
6: pastCpu← RUH.cpuh.avg(usMove)
7: pastMem← RUH.memh.avg(usMove)
8: canMove← ( | recentCpu - pastCpu | < ce * recentCpu) and

( | recentMem - pastMem | < ce * recentMem)
9: canPartition← canMove and 2 * current partitions ≤ sockets

10: if canPartition then

11: usPartition← usMove + (RUH.pages * speed of partitioning)
12: pastCpu← RUH.cpuh.avg(usPartition)
13: pastMem← RUH.memh.avg(usPartition)
14: canPartition← ( | recentCpu - pastCpu | < ce * recentCpu) and

( | recentMem - pastMem | < ce * recentMem)

RUH’s owner before considering partitioning it. Second, the amount
of time to look in the past consists of partitioning plus the time
required to move the new partitions to the correct sockets (line 11).
We use SAP HANA’s partitioning commands, which, contrary to the
implementation of moving, creates the partitions in the background
and allows queries [1]. Third, we limit the number of new partitions
to the number of sockets to avoid excessive partitioning (line 9).

We note that in this work when we partition a TBP or TGP, we
partition the corresponding table or TG into double their previous
number of partitions. The reasons why we double the partitions are
two. First, partitioning is more time-consuming than moving. Since
we decide to partition, we can immediately have double number of
partitions and give the algorithm more parts that can potentially be
moved later. Second, repartitioning with a number of partitions that
is a multiple of the previous number of partitions is fast since each
existing partition can be split separately and concurrently [1].

As an illustrative example, Figure 7 depicts two RUH, one that is
eligible for partitioning, and one that is not. Both RUH have similar
recent utilizations. The utilization of the first one, however, is not
stable in the past, and is thus ineligible for partitioning yet.
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Figure 7: Conceptual examples of calculating the partitioning

eligibility of (a) an ineligible RUH, and (b) an eligible RUH.

6.3 Reducing the Utilization Imbalance
The purpose of balancing the CPU utilization between sockets is to
allow tables to increase their utilization by exploiting free threads
on cold sockets when moved or partitioned out of saturated sockets.
When considering moving or partitioning a tables, however, we
assume the worst case that it does not increase its utilization. This
allows us to be on the safe side when calculating the new utilization
imbalance, and truly decrease it with every move or partition.

Algorithm 2 Reduce the utilization imbalance between two sockets
struct InfoSocket:

recentCpu; // recent CPU utilization
recentMem; // recent memory throughput utilization
infoRUH[]; // InfoRUH of TBP and TGP placed on the socket

1: function reduceImbalance(InfoSocket S1, InfoSocket S2, strategy)
2: S1← hotter socket of the two, according to recentCpu
3: S2← colder socket of the two, according to recentCpu
4: maxCpu← H/W threads of a socket
5: maxMem←Maximum memory throughput of a socket
6: imb← S1.recentCpu - S2.recentCpu
7: if S1.recentCpu > cs * maxCpu and imb > ci * maxCpu then

8: for all S1.infoRUH do

9: if strategy = move and infoRUH.canMove then

10: S1’cpu← S1.recentCpu - infoRUH.recentCpu
11: S2’cpu←min(S2.recentCpu + infoRUH.recentCpu, maxCpu)
12: imb’← | S1’cpu - S2’cpu |
13: S2’mem← S2.recentMem + infoRUH.recentMem
14: if imb’ < imb and S2’mem ≤ maxMem then

15: Move TBP or TGP to S2
16: return true
17: else if strategy = partition and infoRUH.canPartition then

18: S2freeCpu← maxCpu - S2.recentCpu
19: halfRUH← min(infoRUH.recentCpu / 2, S2freeCpu)
20: S1’cpu← S1.recentCpu - infoRUH.recentCpu + halfRUH
21: S2’cpu← S2.recentCpu + halfRUH
22: imb’← | S1’cpu - S2’cpu |
23: S2’mem← S2.recentMem + (infoRUH.recentMem / 2)
24: if imb’ < imb and S2’mem ≤ maxMem then

25: Partition table or TG into 2 · current partitions,
and move all new partitions to their original sockets,
apart from one partition of S1 which is moved to S2

26: return true
27: return false

Let us denote the utilization imbalance between two sockets at
some timestamp tn as imb(tn). If our algorithm does nothing, the
imbalance stays the same. If our algorithm moves or partitions a
RUH’s owner, the imbalance decreases: imb(t

n+1) ≤ imb(tn). The
sequence imb(tn) is monotonically decreasing with a lower bound
of 0. According to the monotone convergence theorem, the sequence
will converge. In our case, since we limit partitioning to a number
of partitions capped by the number of sockets, the imbalance may
converge to a non-zero value. Also, we set a lower threshold for the
imbalance (see Table 1), below which DP does nothing. We note
that even if tables increase their utilization after the new placement,
the resulting imbalance cannot exceed the previous one.

The algorithm for reducing the utilization imbalance of a pair of
sockets is presented in Algorithm 2. As mentioned, DP at every
period calculates a snapshot of the recent utilization of the system’s
RUH by creating InfoRUH objects. It also aggregates the utilization
of every InfoRUH to calculate the snapshot of the recent utilization
of every socket. For every socket, this information is stored in an
InfoSocket object, which is defined in Algorithm 2 as well.

Function reduceImbalance receives two InfoSocket objects and
a strategy (move or partition). First, it discerns which socket is the
hotter one and which is the colder one (lines 2–3). It then gets the
cores and maximum memory throughput of a socket (lines 4–5).
These are calculated once on a machine (see Section 8 and Table 2).
The current imbalance is calculated (line 6). If the hot socket’s
utilization is over our saturation threshold and the imbalance is
over our threshold (see Table 1), the function proceeds (line 7). It
iterates the RUH of the hot socket (line 8), and examines whether the
utilization imbalance can be reduced by either moving (lines 9–16)
or partitioning an eligible RUH’s owner (lines 17–26). Conceptual
examples of the calculations are shown in Figure 8.
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sockets before and after (a) moving, and (b) partitioning.

In case of moving, the sockets’ new CPU utilization is calculated
(lines 10–11). For the cold socket, we cap the CPU utilization by
the socket’s cores (line 11). The new CPU imbalance is calculated
(line 12). The new memory bandwidth of the cold socket is calculated
(line 13), without capping it. If the new CPU imbalance is less
than the original, and we do not create a new memory bandwidth
bottleneck on the cold socket (line 14), we move the corresponding
TBP or TGP to the cold socket (line 15), and return true (line 16).
We note that we move all TBP of a TGP concurrently.

In case of partitioning, we calculate the cold socket’s free threads
(line 18). Each new partition’s CPU utilization is half of the original
utilization, capped by the cold socket’s free threads (line 19). Then,
we calculate the sockets’ new CPU utilization (lines 20–21) and
imbalance (line 22). The cold socket’s new memory bandwidth is
calculated (line 23), without capping it. If the new CPU imbalance is
less than the original, and we do not create a new memory bandwidth
bottleneck on the cold socket (line 24), we partition the RUH’s owner
(line 25), and return true (line 26). We note that we partition all tables
of a TG concurrently. After partitioning, we move concurrently all
new TBP or TGP to their original sockets, apart from one of the hot
socket which is moved to the cold socket.

6.4 Data Placer
Algorithm 3 implements DP. After waiting for a period (line 2), DP
goes through all TBP and TGP (line 3). For every one, it calculates
its InfoRUH (line 5), and if it is active, DP adds it to the appropriate
InfoSocket, aggregating its recent utilization as well to the socket
(line 7). At this point, we have a snapshot of the recent utilization
in the past period. DP then sorts the RUH of every socket by their
recent CPU utilization (line 8). This makes intensely used RUH to
be considered first for moving or partitioning.

DP then calculates the imbalance of every pair of sockets (lines 9–
11). The pairs of sockets are sorted by their imbalance (line 12),
so that we first examine the pair with the greatest imbalance. For
all pairs (line 13), we try to reduce their imbalance by moving a
RUH’s owner (line 14). If nothing is moved, we try again to reduce
their imbalance by partitioning a RUH’s owner (lines 16–18). If DP
moves or partitions a RUH’s owner, it goes back to waiting.

If DP does not move or partition a RUH’s owner, it attempts to
merge cold partitioned data. It iterates through all partitioned tables
and TG in the system catalog (line 19). DP checks whether a table
or TG is cold by looking into its past utilization. The amount of
time to look in the past is calculated (lines 20–22) as in Algorithm 1
for the case of partitioning, with the difference of summing the
pages of all RUH (since merging creates a single partition). If the
average past CPU and memory TP utilization of all RUH is zero
(line 23), a background request is initiated (line 24) which merges
the table, or all involved tables in case of a TG, and moves it to the
coldest socket. We use a set internally to keep track of tables or TG
undergoing merging in order to consider them ineligible for moving
or partitioning until their merging completes.

Algorithm 3 Data Placer

1: while true do

2: wait cp
3: InfoSocket[]← initialize an InfoSocket object for every socket
4: for all loaded TBP and TGP do

5: InfoRUH← calculateInfoRUH(RUH)
6: if InfoRUH.isActive then

7: Add and aggregate InfoRUH to the appropriate InfoSocket

8: Sort the InfoRUH in every InfoSocket by their recentCpu
9: list<tuple<InfoSocket, InfoSocket, imbalance>>← empty list

10: for all pairs of InfoSocket do

11: Add new tuple(S1, S2, | S1.recentCpu - S2.recentCpu |) to list

12: Sort list by imbalance
13: for all pairs of InfoSocket in the sorted list do

14: if reduceImbalance(S1, S2, move) then

15: goto line 2

16: for all pairs of InfoSocket in the sorted list do

17: if reduceImbalance(S1, S2, partition) then
18: goto line 2

19: for all partitioned tables and TG in the catalog do

20: pages← sum pages of all RUH of table or TG
21: usMove← (pages * speed of moving) * 2
22: usPartition← usMove + (pages * speed of partitioning)
23: if all RUH have 0 average utilization during last usPartition then

24: Merge and move to the coldest socket in the background

7. ADAPTIVE TASK STEALING
As we showed in Section 4, stealing memory-intensive tasks can hurt
overall performance. Here, we pinpoint the switching point when
tasks become memory-intensive enough that they should not be
stolen across sockets. The switching point depends on the hardware
and the implementation. For this reason, we propose a calibration
experiment that the DBMS can run once on a server to find the
switching point. In order to fully control the memory intensity of
tasks, we avoid the SQL layer of the DBMS, and use immediately
the task scheduler on simple data structures.

Calibration experiment. We place four 4 GB vectors of randomly
generated doubles on each of the half sockets of the server. Thus,
half of the sockets can have local accesses, while the rest will either
steal remote tasks or stay idle. The workload consists of one client
thread per vector. Each client continuously issues a query that sums
the elements of its corresponding vector. We measure the total
throughput (TP). The client parallelizes the query with a number of
tasks equal to the number of hardware threads in the socket. The
tasks are given equi-sized ranges of the vector to sum. The reason
we use four vectors per socket, and one client thread per vector, is to
have enough tasks to saturate the local socket and more tasks that
can potentially be stolen by another socket (that does not have data).

In order to control the memory intensity of the summation, we raise
each element of the vector to a varying power n: sum = v

n

1
+v

n

2
+v

n

3
...

We implement each task’s summation using a for loop to raise its
element to the desired power n. As we increase n, we increase the
time spent in the for loop, thus increasing the CPU intensity.

Figure 9 shows the results of the calibration experiment for the
three servers of our experiments (see Section 8). For all servers,
disallowing stealing results in the best TP for lower values of n, since
the summation is more memory-intensive. This is also shown by the
system’s memory TP, which almost saturates the memory bandwidth
of half the sockets. It is also shown by the average memory TP of
the task class (tasks belong to a single class in this experiment).

We note that disallowing stealing only achieves a 50% CPU load,
since half of the sockets have data. But it is better for memory-
intensive workloads than allowing stealing, achieving up to 4x better
TP (on the 32-socket server). Stealing has 100% CPU load, but
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Figure 9: Calibration experiment for three NUMA servers.

saturates the interconnect network and overwhelms the already
saturated remote memory controllers. The overwhelmed memory
controllers achieve much lower overall memory TP (for both local
and remote tasks) than the case of disallowing stealing.

As n increases, the workload becomes more CPU-intensive, and
the memory TP of the system and the task class finally starts
decreasing. In terms of CPI (cycles per instruction), e.g., on the
4-socket server for the case when stealing is disabled, it starts at 0.83
and gradually increases up to 1.25 (for n = 30). At a switching point,
stealing becomes better, and remote tasks can be satisfied through
the interconnects and the remote memory controllers sufficiently.

At the switching point, we mark the memory TP of the task class
as the threshold for stealing vs. not stealing. Our adaptive task
stealing uses this threshold at run-time. If the exponential average of
a task class becomes higher than the threshold, stealing is disallowed
for tasks of this task class. If the exponential average becomes lower
than the threshold, stealing is allowed.

Figure 9 shows the threshold pinpointed for each server, and
also shows the adaptive task stealing that uses this threshold. The
adaptive line achieves the best throughput for all cases of power n,
successfully allowing stealing at the switching point.

Finally, we note that the calibration experiment can be further
extended to specialize the threshold for more cases of: different
number of sockets having data, different CPU utilization per socket,
etc. Our current calibration experiment is sufficient for our use cases
and experiments, as it roughly finds out the switching point for the
“middle” case where half of the server’s sockets have active data.

8. EXPERIMENTAL EVALUATION
We first present our experimental configuration. Then, we present
results of a custom benchmark and finally of the TPC-H benchmark.

Experimental configuration. We use a prototype built on SAP
HANA (SPS11), a commercial main-memory column-store, with
our NUMA-aware task scheduler and scans [28]. We add support
for more NUMA-aware operators (see Section 4), track resource
utilization (see Section 5), and employ our adaptive NUMA-aware
data placement (see Section 6) and task stealing (see Section 7).

For all experiments, we warm up the DBMS, we admit all clients
and disable result caching. LLC misses, CPU load, and memory

TP are gathered from Linux and H/W counters (integrating Intel
PCM [9]). The utilizations of RUH are the local-only utilizations
we track (via the same H/W counters). The imbalance metric
corresponds to the maximum imbalance between any two sockets,
when calculated by DP. The imbalance fluctuates since the averaged
sampled utilizations of RUH also fluctuate, but in general is decreased
with a stable workload. Results shown with a timeline consist of a
single run, while any data points (in previous sections as well) are
averages of at least three iterations with a standard deviation <10%.

Table 2 shows characteristics of the servers we use. The first is the
one of Figure 2a. The second is an 8-socket server. The third is a rack-
scale 32-socket SGI UV 300H server. NUMA characteristics, such
as local and inter-socket idle latencies and peak memory bandwidths,
are measured with Intel Memory Latency Checker [34].

Table 2: Characteristics of the three NUMA servers we use.

Statistic

Local latency

1 hop latency

Max hops latency
Local B/W

1 hop B/W
Max hops B/W

Total local B/W

4x15-core Intel

Xeon E7-4880v2

at 2.50GHz

108 ns

170 ns

170 ns

70 GB/s

12.5 GB/s

12.5 GB/s

280 GB/s

110 ns

320 ns

390 ns

70 GB/s

10.5 GB/s

9.5 GB/s

570 GB/s

120 ns

320 ns

590 ns

45.5 GB/s

15 GB/s

7.3 GB/s

1363 GB/s

Machine 8x15-core Intel

Xeon E7-8880v2

at 2.50GHz

32x18-core Intel

Xeon E7-8890v3

at 2.50GHz

Memory per socket 128 GB 128 GB 512 GB

Stealing threshold

Move us/page
Partition us/page

1200 MB/s

59

109

550 MB/s

63

123

230 MB/s

60

129

Custom benchmark. Our dataset has 64 tables (TBL1-64). For
each table we generate a CSV file of 50 million rows, around 3.2 GB,
for a total of 204 GB files. Each table has an ID integer column
(PK), 8 additional columns (COL1�8) of random integers (uniform
distribution), and a partitioning specification (hash) on ID. The 8
columns have bitcases 17 to 24, so as to have different number of
unique values. Each experiment mentions the initial table placement.

The workload is generated with a Java application on a different
server. Clients continuously issue queries and we measure the total
throughput (TP). At each experiment, we mention how many clients
are used, which query type(s) they issue, which table(s) they target,
and which selectivity they use. The possible query types are:

(a) SELECT COLx FROM TBLy WHERE COLx >= ? AND COLx

<= ?. The client selects a random column from its target table.
The query involves both scan phases mentioned in Section 4.

(b) SELECT COL1, SUM(TO_DOUBLE(COLx)) FROM TBLy WH-
ERE COLx >= ? AND COLx <= ? GROUP BY COL1. The
client selects a random column (COL2�8) from its target table
to aggregate and group-by COL1. This query involves the
aggregation phases mentioned in Section 4. We choose COL1 for
the group-by because it has the least number of unique values.
We cast to double to avoid potential numeric overflow errors.

(c) SELECT TBLz.COLx FROM TBLy, TBLz WHERE TBLy.ID
= TBLz.ID AND TBLy.COLx >= ? AND TBLy.COLx <= ?.
The client joins two target tables on the ID column. A random
column is selected to filter and project. This query involves the
equi-join steps mentioned in Section 4.

Before each experiment begins, we let clients build a prepared
statement for each query they can issue. There are no thinking
times. The clients do not fetch results, in order to not let the network
transfer dominate. Each TP value in a timeline corresponds to the
slope of the achieved queries during the previous 30 seconds.
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8.1 Adaptive Data Placement
The first experiment realizes the introductory example of Figure 1.
TBL1 and TBL2 are placed on socket S1, TBL3 on S2, and TBL4 is
partitioned across S3 and S4. Each of the tables TBL1-3 are targeted
by 64 clients executing query (a) with a low selectivity (0.001%) for
5 minutes. Figure 10 shows the timelines of the throughput (TP),
the utilization imbalance, and additional performance measurements
that include H/W counters as well as our tracked utilization (RUH).

At the beginning, only S1 and S2 execute queries as shown by their
RUH. Queries are dominated by the scan’s first phase (“IV-Scan”).
Tasks are memory-intensive as shown by the task class’s memory TP,
which is over the stealing threshold. That is why adaptive stealing
disallows stealing, and most LLC misses are local. As shown by the
tables’ RUH, TBL1 and TBL2 share S1, while TBL3 fully utilizes S2.

DP recognizes the imbalance, but does not take action because the
TBP are not yet eligible to be moved or partitioned. DP searches the
catalog to find TBL4 which is partitioned and cold (thus not shown
in Figure 10), and at 16 s starts a background request to merge it.
The merge finishes at 64 s, and the single TBP is moved to S4 (a cold
socket) at 106 s. The merge and move contribute to the small bump
in the CPU load and memory TP of S3 and S4. Another reason for
their increased CPU load is that their worker threads attempt to steal
tasks from other sockets, but tasks are memory-intensive and cannot
be stolen in this experiment. Since S3 and S4 do not process any
queries, we do not account this busy CPU load in their RUH.

At 53 s (see markers on the timeline of the tables’ RUH graphs),
DP examines the pair of S1 and S3. It decides to fix their imbalance
by moving TBL2, which has become eligible for moving, to S3. The
move completes at 91 s. Overall TP and memory TP are increased.

Next, DP detects that there is still a utilization imbalance because
3 sockets are utilized and S4 is not (as shown by its RUH). At 108 s,
DP examines the pair of S2 and S4. It decides to fix their imbalance
by partitioning TBL3, which is eligible for partitioning, into two
parts. At 174 s, partitioning completes, and the two TBP are moved
to S2 and S4 concurrently, which completes at 190 s.

After that point, the imbalance is decreased within our threshold,
and there are no more actions. In comparison to the beginning of the
experiment, overall memory TP is 2x more, and TP is also 2x more.
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Figure 10: Introductory experiment showing the adaptive data

placement of three active tables (4-socket server).

8.2 Adaptive Task Stealing
To show the effect of adaptive task stealing, we use scans of varying
selectivity. We place TBL1 on S2 and TBL2 on S4. Adaptive
placement is disabled. Each of the tables is targeted by 256 clients
executing query (a) with the specified selectivity. Half of the sockets
have local tasks, while the other half would need to steal. For each
selectivity, we execute 5 min runs of: enabled stealing for all tasks,
disabled stealing for all tasks, and adaptive stealing. We report each
run’s average TP. The results are shown in Figure 11.
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Figure 11: Experiment showing how adaptive task stealing dis-

allows stealing of memory-intensive classes (4-socket server).

For low selectivities, the scan’s first phase (“IV-scan”) dominates.
Tasks are memory-intensive and stealing hurts TP by up to 23%
for the case of 0.1% selectivity. As selectivity increases, the scan’s
second phase (materialization) dominates and is parallelized. The
fewer IV-scan tasks can utilize more memory bandwidth on their
socket. The dominating materialization tasks are CPU-intensive, due
to their random accesses to the dictionary, and thus stealing helps
improve TP by up to 70% for the case of 10% selectivity. Adaptive
stealing achieves the best TP of either stealing or not stealing in all
cases of selectivity. It can also, e.g., for the case of 1% selectivity,
further improve performance by 15%. This is due to disallowing
stealing of IV-scan tasks, and allowing stealing of materialization
tasks, instead of taking a static strategy for all task classes.

8.3 Partitioning Overhead
Here, we show how our adaptive data placement can avoid the
overhead of unnecessary partitioning. We focus on aggregations,
but the implications of unnecessary partitioning are similar for joins
(as in Section 4). We initially partition TBL1-8 across all sockets
of the 8-socket server. The experiment has three consecutive 5min
phases. In the first, each table is targeted by 8 clients executing query
(b) with a high selectivity (10%). The second phase has no activity.
The third phase is the same as the first. Figure 12 shows the results.

During the second phase, all tables are merged. During the third
phase, DP moves tables that happened to be merged on the same
socket to balance utilization. TP reaches 1.7x of the TP of the first
phase, because there is no partitioning overhead, and the server can
be saturated with non-partitioned tables. This is also shown by the
improved memory TP and local LLC misses.
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Figure 12: The overhead of partitioning (8-socket server).
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Impact of groups. Next, we detail how the partitioning overhead
for aggregations increases as the number of groups increases. We
use TBL1-8 either partitioned (8 TBP/table) or non-partitioned
(1 TBP/table), placed round-robin across the sockets. Adaptive
placement is disabled. Each table is targeted by 8 clients issuing
a variation of query (b) that selects COL8 with a high selectivity
(10%), and groups-by a different column. As we group-by COL1
through COL7, the bitcase of the group-by column increases, and so
the number of groups increases. Figure 13 shows the results. Each
run is 5 minutes. We also include a case without a group-by, and
show the percentage of remote LLC misses out of all LLC misses.
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Figure 13: The impact of the number of groups (8-socket server)

For the case without grouping, both data placements perform
similarly, with mostly local accesses. As the number of groups
increases, TP drops since we need to work on more hash tables.
For 1 TBP/table, merges happen locally to each socket, while for 8
TBP/table there is the the cost of the global dictionary and merges
may need to access hash tables on 7 other sockets. For this reason,
the drop in TP from COL1 to COL7 for 8 TBP/table is worse (78%
drop) than for 1 TBP/table (63% drop). This is also reflected in the
percentage of LLC remote misses. For several group-by cases, the
TP of 1 TBP/table is more than 2x than the TP of 8 TBP/table.

8.4 Changing Workload
Here, we show a workload with three consecutive phases. We place
8 tables on each socket of the 8-socket server (all 64 tables are
placed). Clients execute query (a) with low selectivity (0.001%).
The first phase lasts 15 min, and only TBL56 (on S7) and TBL64 (on
S8) are targeted by 512 clients each. The second phase lasts 5 min,
and all 64 tables are targeted by 16 clients each. The third phase
lasts 10 min, and only TBL1-4 (on S1) and TBL9-12 (on S2) are
targeted by 128 clients each. Figure 14 shows the results.
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Figure 14: Three different workload phases (8-socket server).

During the first phase, DP gradually partitions the hot tables to
fill all sockets and reach maximum TP. During the second phase, all
tables become hot, TP stays at the maximum, and DP takes no actions.
At the third phase, only two sockets are used, and DP gradually
moves their hot tables to fill all sockets and reach maximum TP.

8.5 Workload Mix
Here, we have an initial complex placement, a stable workload mix,
and show that DP gradually reaches a final stable state. We use
TBL1-7, initially placed on 4 sockets of the 8-socket machine as
shown in Figure 15. We use 128 clients, continuously issuing a
random query out of the queries shown in Figure 15. We define a
TG for TBL1-2 and another TG for TBL3-5, thus the queries’ joins
between these tables are copartitioned. Figure 15 shows the results.
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Figure 15: Balancing the utilization of a stable workload mix.

Initially, 4 sockets have memory TP. We note that the system CPU
load is saturated, as there are CPU-intensive tasks that are stolen. DP
moves and partitions tables to reach the placement shown in Figure
15 with a balanced utilization. All sockets finally have memory TP
and mostly local accesses, improving TP by 44% vs. the initial TP.
Since in this experiment all clients issue all queries, there are drops
in TP while DP holds an exclusive lock for moving a table.

8.6 TPCH Benchmark
Here, we show the TPC-H [3] benchmark with a scaling factor 30
(30 GB flat files). We use 512 clients, each continuously issuing a
random query out of the 22 templates. The tables are initially placed
on a single socket of the 32-socket server. We define a partitioning
specification for all tables except nations and regions, and a TG for
lineitems and orders so that they are copartitioned (on the orderkey
columns). Figure 16 shows the results, which are normalized, due to
legal reasons, with undisclosed constants, to the maximum observed
values. This does not hinder us from showing DP’s impact.
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Figure 16: TPC-H throughput run (32-socket server).

Initially, only one socket has memory TP. We note that more
sockets have CPU load, as there are CPU-intensive tasks that can be
stolen. TP is only around 0.2. DP gradually moves and repartitions
tables and the TG to balance utilization. Finally, all sockets have
data, the TG of lineitems and orders has 32 partitions, customers
have 4 partitions, partsupp has 8 partitions, while the remaining
tables are not partitioned. All sockets have memory TP and mostly
local accesses. TP reaches around 0.8. Assuming the initial TP
corresponds to the typical case when an administrator simply loads
the dataset, our adaptive data placement helps improve TP by 4x.

9. DISCUSSION AND OUTLOOK

Associated tables. We use predefined TG for handling multiple-
input operators at run-time, focusing on copartitioned equi-joins. A
further opportunity is an automated way of recognizing associated
tables, the dominant join predicates, and forming TG, by tracking
the workload at run-time. This requires the challenging adaptation
of an offline solver for distributed data placement (see Section 3) or
specially for copartitioned joins [38], for execution at run-time.
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Priorities and fairness. Priorities and fairness are an orthogonal
issue out of this paper’s scope. We note that our task scheduler sup-
ports priorities and a degree of fairness (based on query submission
time) [28]. In typical cases, if a workload has user-defined priorities,
the prioritized tasks will highly contribute to the utilization of RUH
which will be considered first by DP for moving or partitioning.

Task classes. Tasks in the same class should have similar memory
throughput. We assume that classes are defined manually, as we
do in Section 5 for our NUMA-aware operators. One can further
specialize classes, e.g., by the involved predicates. As seen in
Section 7, an aggregation’s memory throughput can vary depending
on the complexity of the predicate. Ideally, we need a way to classify
complex predicates. This is left out of the paper’s scope. For our
implementation and experiments, we use rather typical predicates
and the defined task classes can sufficiently capture the memory
intensity of our NUMA-aware operators’ different phases.

Unit of data placement. Our unit of data placement is a row-
wise partition of a table. An alternative would be column-wise
partitioning, i.e., placing a table’s columns on different sockets.
In such a case, a global dictionary (see Section 4) is not needed,
but queries referencing columns on multiple sockets incur a lot of
remote accesses. For this work, we assume that the organization of
associated columns into tables is left to the administrator.

Balancing memory throughput. We balance primarily the CPU
utilization under the constraint of not creating memory bandwidth
bottlenecks. This is to allow newly placed data to potentially increase
their utilization. Since we balance local-only CPU utilization, this
can indirectly balance memory TP as well as shown in many of our
experiments. This is not guaranteed, however. One may wish DP to
continue balancing memory TP after CPU utilization is balanced,
under the constraint of not increasing the CPU imbalance. DP’s
possible actions can be extended to consider exchanging TBP or TGP
between sockets. We have found only a few cases where balancing
memory TP is required to slightly improve IPC and TP.

10. CONCLUSIONS
In this paper, we show that main-memory column-stores should
not employ a static strategy of always partitioning data across all
sockets, and always allowing inter-socket task stealing. We show
that unnecessary partitioning involves an overhead of up to 2x
in comparison to not partitioning. For this reason, we develop
an adaptive data placement algorithm that can track a utilization
imbalance across sockets, and can move or repartition tables at
run-time to fix the imbalance. Also, we show that inter-socket
stealing of memory-intensive tasks can hurt throughput by up to
4x in comparison to not stealing. For this reason, we develop an
adaptive technique that disallows stealing at run-time for tasks whose
memory intensity exceeds a fixed threshold for a NUMA server.
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