
MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 148

OCTOBER 1979, PAGES 1257-1264

Adaptive Numerical Differentiation

By R. S. Stepleman and N. D. Winarsky

Abstract. It is well known that the calculation of an accurate approximate de-

rivative f'(x) of a nontabular function fix) on a finite-precision computer by the

formula d(h) = (f(x + h) - f(x - h))/2h is a delicate task. If ft is too large,

truncation errors cause poor answers, while if ft is too small, cancellation and other

"rounding" errors cause poor answers. We will show that by using simple re-

sults on the nature of the asymptotic convergence of d(ft) to /', a reliable numerical

method can be obtained which can yield efficiently the theoretical maximum

number of accurate digits for the given machine precision.

1. Introduction. Let /: A —*■ A be differentiable at a point x. One of the

simplest and most common ways discussed in the literature to find an approximate

value of the derivative /' is to choose an h and define

(i.i) diH) = nx + K>-K-h\

and then use (1.1) as our approximation. However, the crucial step in (1.1),the choice

of h, is fraught with uncertainty when (1.1) is performed on a finite-precision digital

computer. If h is chosen too small, the finite precision of the computer can cause

cancellation and other "rounding" errors to be made that result in poor answers; while

if h is chosen too large, d(h) need not be a good approximation to /' even in "exact"

arithmetic. Several authors have given algorithms that attempt to deal with this situa-

tion, see, e.g., Curtis and Reid [1], Dahlquist and Bjorck [2], Dumontet and Vignes

[3], and Oliver and Ruffhead [4]. Often they are based on estimating the amount of

rounding and truncation error made. Since these can be related to various derivatives

of/, these must be explicitly estimated, e.g., Dumontet and Vignes [3] construct an

algorithm that is based on a clever scheme to estimate /'" by difference quotients.

We propose a simple device that avoids any explicit estimation of rounding and

truncation errors (and any unreliabilities inherent in that approach) and allows the

computer to find, adaptively, the best value that it can for h, the "one" that gives the

least error in the approximate derivative. In the next section we prove the following

simple results: choose {h¡\ any sequence tending monotonically to zero (with hQ

sufficiently small), then for essentially all differentiable /(seeTheorem 2.4 for technical

Received November 7, 1978.

AMS (MOS) subject classifications (1970). Primary 65D25.

© 1979 American Mathematical Society

0025-571 8/79/0000-01 58/S03.00

1257

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1258 R. S. STEPLEMAN AND N. D. WINARSKY

details) d(h¡) tends monotonically to /'. Under stronger hypotheses we also have

\d(h¡) - d(hi+ x)\ < \d(h¡) - d(h{_x)\, for all i The basic idea of our algorithm (see

Section 3 for details) is: choose a sequence {h¡} tending monotonically to zero. Let

h, he the first ht in the sequence so that the finite precision of the computer causes

either of the above criteria to be violated, then approximate /' by d(h,_x). Essentially,

we are using violation of monotonicity as a stopping criterion for a numerical process

that would not necessarily terminate in exact arithmetic. (It is clear that it does

terminate in finite precision since for all h sufficiently small, h + 0 we have F(X ® H)

= F(X ©H) and, thus, D(H) = 0. The capital letters here represent the finite-precision

representations of the small lettered quantities. While the circled operators represent

the machine approximations to the arithmetic operators.) That this algorithm is effec-

tive and competitive with known algorithms will be demonstrated in Section 4. The

idea of using violation of a criterion such as monotonicity as a way of terminating a

numerical process on a finite-precision computer at an "accurate" answer has applica-

tions more general than numerical differentiation and can be applied to iterative as

well as noniterative processes (see Rutishauser [6], and Stepleman [7], [8]).

2. Theoretical Foundation. In this section we prove, for completeness, several

simple and useful results that give a firm basis to the algorithm outlined in the next

section.

Definition 2.1. Let g: R —> A and x0 G A. We call g well behaved at x0,

denoted by g G WB(x0), if there exist two intervals Ix = [x0, x0 + e) and I2 =

(x0 - e, x0], e > 0, such that g is either convex or concave on Ix and independently

convex or concave on I2.

The following two lemmas whose proofs are well known, (see, e.g., Ortega and

Rheinboldt [5]) will help us understand and use well behaved functions.

Lemma 2.2. Let g: R—► A and g G C1 (I), I some interval. Then g convex

on I is equivalent to g' monotone increasing on I, while g concave on I is equivalent to

g monotone decreasing on I.

Lemma 2.3. Let g: R —> A and g G C2(I), I some interval. Then g convex

on I is equivalent to g" >0 on I, while g concave on I is equivalent to g" < 0 on I.

Using the above lemmas, it is not difficult to see that most functions are in

WB(x0). Exceptions are functions that wiggle infinitely often such asx2sin(l/x) in the

neighborhood of zero; for example, g"(x0) =£ 0 implies g G WB(x0).

Theorem 2.4. Let /: A —> A be in Cl(I), 1= (x0~ e, x0 + e), for some

e > 0 arbitrary. Assume

(2.1) c*0=/(*o+')-/(*0-0

satisfies g G WB(0). Then for h > 0 sufficiently small, d(h) converges monotonically

to f(x0).

Proof. Since d(h) = g(h)/(2h), simple differentiation yields

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ADAPTIVE NUMERICAL DIFFERENTIATION 1259

, = g'(h)h-g(h) = g'(h)h-[g(h)-g(0)]

2h2 2h2

(2.2)
.BW-iWl, 0<1<fc.

2ft

Then since g G WB(0), we have for h sufficiently small that d(h)' has exactly one sign

from Lemma 2.2. Since for hx > h2

d(hx)-d(h2)= d(s)'ds,
■> h2

the monotonicity follows. The rest of the result follows since it is well known that

lim d(h) = f'(x0) for /G Cl(I).

Lemma 2.5. Let g defined by (2.1) be in C2(I), I = [0, e), e > 0 arbitrary and

both g and g & WB(0). Then

gih)\
(2.3) Fin)

is monotone increasing for h sufficiently small.

i in) h

Proof. Since g G WB(0), we can without loss of generality assume g is convex

for h sufficiently small and then from Lemma 2.2

F(h) = g'(h)-g-^.
h

Differentiation yields

g'(h)-g(h)/h
F'(h) = g"(h) -'■

h

(2.4) =g» -«'(»WO, 0<t<h,

= g"(h)-g"(s)(l-t/h), t<s<h.

Since g G WB(0) it follows that g" is monotone, while g convex implies g" > 0 from

Lemma 2.3, and (2.1) gives g"(0) = 0. If g" is monotone increasing F'(h) > 0 follows

from (2.4), while if g" is monotone decreasing it follows that F'(h) = 0 since g"(0) = 0

and g" > 0. In any case, the conclusion follows.

Theorem 2.6. Let the hypothesis of Lemma 2.5 hold. In addition suppose we

have a positive monotone decreasing sequence {h{} that satisfies for any ß > 1

(2-5) hi^=J> ' = 0,1,2,....

Then for all i > N, N some positive integer,

(2.6) \d(hi+x) - d(h,)\ < \d(ht) - d(ht_x)\.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1260 R. S. STEPLEMAN AND N. D. WINARSKY

Proof. As in Theorem 2.4,

ld(hi)-d(hi_x)\=f
•i-l

ft,. 2h
g'(h) .gJÊ

h
dh.

Using Lemma 2.5, we have for i > N some positive integer, that

\g'(ht) - g^/hj
(2.7) \d(hi)-d(hi_x)\>\n(hi_x/hi)

Here In is the natural logarithm function. Similarly,

\d(hi)-d(hi+x)\=fi ¿

(2.8)

ft/+1 2ft

<ln(VAi+i)

Then the conclusion follows from (2.5), (2.7) and (2.8).

3. The Algorithm. In this section we discuss the practical implementation of the

algorithm suggested in the last section. In order to do this we must make particular

choices of the two numbers h0 and ß. The quantity h0 must be chosen small enough

so that we are in the asymptotic range of d(h) approximating/' (i.e., Theorem 2.4 and

Theorem 2.6 holding), while not so small that the rounding error is the dominant part

of the total error. The quantity ß > 1 must be chosen to avoid the danger of having

an abrupt transition from D(H¡) dominated by truncation error to D(Hi+x), dominated

by rounding errors because this could cause the algorithm to terminate before L\H¡) is

a good approximation to /'. Here, of course,

(3.1) D(H) = (F(X®H) 0 F(XQH)) 0 (2 ® H),

where the capital letters represent the finite-precision representation of the small

lettered quantities and the operators represent the machine approximation to the stand-

ard arithmetic operators.

Our algorithm contains an iteration to choose the delicate quantity hQ; because

of this we need only a reasonable first guess at h0, and we now give a heuristic dis-

cussion of our choice. A main source of error in the approximate derivative is the

calculation of D(H) instead of d(h).

It is clear that given any x we will have a nonempty set of positive h such that

X © H = X and thus D(H) = 0. For h in this set all significance is lost. For h not in

this set we can estimate the dominant rounding error (following the analysis of Dumontet

and Vignes [3]) assuming

(3.2) A(x)-/(x)=e(x)/(x)

with

(3-3) ¡e(x)|<A, P>0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ADAPTIVE NUMERICAL DIFFERENTIATION 1261

and that for h we do not use H but

(3.4) H=(H®X)eX.

The result is that the rounding error er satisfies

F(X)
(3.5) er=D(H)-d(h)

2h
(ex-e2), ex,e2e[-P,P].

The standard estimate of the truncation error ef is

(3.6)

et = d(h) - f(x) = \ f'"(y)h2, y G (x - h, x + h),

= i/'W-

Dumontet and Vignes [3] show that the expected value of the absolute value of the

total error is

(3.7) \er + et\ =
. P\F(X)\ hs(f'"(x))2 h*\f"(x)\3 for/>>

3 h
+

36P\F(X)\ 64%Pi(F(X))2

hT'(x)
GF(x)

To find a starting guess for h0 we calculate an estimate for hp the h that minimizes

(3.7). This is given by

l.67P\F(X)\yH = 0(Pl>3).
(3.8) hP = y r(x) j

To check for violation of monotonicity on convergence of D(h) to /' we need to cal-

culate at least h0, hx and h2 (and hopefully no more); and thus, we would like h0 -

ßhp. Thus, using this as a heuristic guide, we choose as our starting guess for hQ

(3-9) h0 = ßPll*x.

The x appears as a scaling factor to insure X © H0 ^ X for x =£ 0; note that X ©

Hp = X is certainly possible.

We next consider how to decide if (3.9) is an adequate choice for hQ. The loss

of figures due to the subtraction in (3.1) is the main contributor to er for useful h,

and this can be measured computably by

(3.10) 8(h) =\(2®H ®D(H) © F(X)\.

Thus, the number of digits N(h) lost in the subtraction is

(3.11) N(h) = - log(5(h)).

Observe that (3.5) yields

(3.12) 8(h) =
2H

\er + d(h)\
2 fix)

F(X)
0(hP).

F(X)

Thus, (3.8) and (3.12) give

(3.13) AÍ/V^logíA-1/3).

Note also that (3.12) implies that, if we have lost N(h) digits at h, we can expect that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1262 R. S. STEPLEMAN AND N. D. WINARSKY

(3.14) n(^\ = N(h) + log ß; N(hß) = N(h) - log ß.

Since we need rounding error to be no worse than equal to truncation error

at hx, we want N(hx) <N(hp). Thus, using (3.13) and (3.14), we would like

/p-l/3\

(3.15) Wo) < Wp) - log 0 = logi —j- 1 •

We would also like to be sure that we have lost some digits, so that we know our start-

ing guess for h0 is not grossly large. Thus, we want

(3.16) A(fto)>0.

If (3.15) and (3.16) are not both satisfied for (3.9), we use (3.14) and a bisection type

zero finder to find such an h0 using (3.9), as the initial guess. This is done in the

following way: Suppose N(h0) does not satisfy (3.15). Then use (3.14) to predict

a new larger h0 that will. For this new hl0 calculate N(hl0) by (3.10) and (3.11). If

both (3.15) and (3.16) are satisfied, then we stop. If (3.15) is still not satisfied, then

we repeat the loop. If (3.16) is not satisfied, we define h\ = (h0 + ft0)/2 and use

the bisection method until both (3.15) and (3.16) are satisfied.

We next consider the choice of ß. The only restriction we have now is

ß > 1. However, we do not want ß overly large since this would mean, as we stated

earlier, large changes in N(h). This is quantified by (3.14). Our experience shows the

algorithm is not very sensitive to the choice of ß for any single digit ß. We chose ß = 4

for our results in the next section (i.e., approximately .6 digits change from N(h¡) to

m+i))-
It is also possible to get an error estimate for the relative error, using (3.5)

followed by (3.10) to obtain

(3.17)
D(H)-d(h)

d(h)
2P

\d(h)\ o(hy

At h near the optimal h we would expect the truncation error (3.6) to be about equal

to the rounding error so that a computable error estimate is

4P
(3.18) E.T 0(h)

A simplified flowchart of the algorithm appears in Figure 1. Note that if

f(x + h) and f(x - h) axe different in sign there is no cancellation error so we cannot

control on it. If it is not desired to obtain full accuracy of the derivative (which is,

by (3.13),log A-2/3 digits) but only N "significant" figures or "accurate" digits, one

can add the appropriate relative or absolute accuracy test and stop the process at this

point.

The point x = 0 is a special case that does not fit into the discussion of this

section using (3.9). For this x we choose our starting guess arbitrarily. For the re-

sults in the next section this point does not occur. In practice, we have found an

h0 = .01p\P1/3 to be satisfactory.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ADAPTIVE NUMERICAL DIFFERENTIATION 1263

Compute

.. _ „„1/3

4P/«h)

Figure 1

4. Numerical Experience. In this section we compare our numerical experience

with that of Dumontet and Vignes [3]. For each of the functions Usted in the table we

we found the derivative at 100 equally spaced values ofxG [.1, 12.5]. This was done

on the IBM 370/168 in double precision, i.e., P - 1 x 10-16. The following table

presents our results on the averages of these 100 values for each function.

Function Average Relative Error Average Number of Function Evaluations

Log x

Vx~

tan_1x

sin x

1.83 • 10"11

2.40 • 10-u

8.74 • 10"12

9.43 • 10~ u

1.54- 10-11

8.94

7.86

10.52

10.18

9.12

(15)

(17)

(15)

(20)

(15)

The numbers in parentheses are those for the method of Dumontet and Vignes [3].

Thus, we see that at a cost of about 10 function evaluations we can get a derivative

correct to about 11 significant figures for these elementary functions. This is in Une

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1264 R. S. STEPLEMAN AND N. D. WINARSKY

with what we would expect from the arguments of Section 3. In certain types of

problems with repetitive derivative calculation it is possible to reduce the average num-

ber of function evaluations dramatically by the following technique. Suppose we have

just found the optimal h* for f'(x0), and we now want to differentiate at Xj where

Xj is "close" to x0. Then we can use h* as the optimal h at x0. We need only check

to make sure that N(h*) has not changed "very much". Using this technique, the

average number of function evaluations is between 2.1 and 2.8 for the examples in the

table with the average relative error about 1 x 10~10. This type of idea would be

applicable to an iteration like Newton's method or evaluating the Jacobian repeatedly

in the solution of stiff systems of differential equations.

RCA Laboratories

Princeton, New Jersey 08540

1. A. CURTIS & J. REID, "The choice of step lengths when using differences to approxi-

mate Jacobian matrices,"/. Inst. Math. Appl, v. 13, 1974, pp. 121 — 126.

2. G. DAHLQUIST & A. BJORCK, Numerical Methods, Prentice-Hall, Englewood Cliffs,

N.J., 1974.

3. J. DUMONTET & J. VIGNES, "Determination du pas optimal dans le calcul des de'rivées

sur ordinateur," R.A.I.R.O., v. 11, 1977, pp. 13-25.

4. J. OLIVER & A. RUFFHEAD, "The selection of interpolation points in numerical dif-

ferentiation," BIT, v. 15, 1975, pp. 283-295.

5. J. ORTEGA & W. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several

Variables, Academic Press, New York, 1970.

6. H. RUTISHAUSER, "Description of ALGOL 60," Handbook for Automatic Compulation,

Vol. la, Springer-Verlag, New York, 1967.

7. R. STEPLEMAN, "Analysis of convergence for fixed point iterations in R ," Proc. 1977

Conf. on Information Sciences and Systems, John Hopkins University, 1977, pp. 389-394.

8. R. STEPLEMAN, "Monotone convergence and effective stopping criteria for numerical

processes," BIT. (To appear.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

