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Abstract

Surveillance system involving hundreds of cameras be-

comes very popular. Due to various positions and orienta-

tions of camera, object appearance changes dramatically in

different scenes. Traditional appearance based object clas-

sification methods tend to fail under these situations. We

approach the problem by designing an adaptive object clas-

sification framework which automatically adjust to differ-

ent scenes. Firstly, a baseline object classifier is applied to

specific scene, generating training samples with extracted

scene-specific features (such as object position). Based on

that, bilateral weighted LDA is trained under the guide of

sample confidence. Moreover, we propose a bayesian clas-

sifier based method to detect and remove outliers to cope

with contingent generalization disaster resulted from utiliz-

ing high confidence but incorrectly classified training sam-

ples. To validate these ideas, we realize the framework

into an intelligent surveillance system. Experimental re-

sults demonstrate the effectiveness of this adaptive object

classification framework.

1. Introduction and Related Work

With the rapid development of video capture technol-

ogy and great demanding for Intelligent Video Surveil-

lance(IVS) systems, there has been significant interest in

classification of moving objects in video sequences. Most

methods[6, 9, 8] focus on classifying foregrounds extracted

from fixed background. While moving objects being de-

tected by background modeling successfully, object recog-

nition is reduced to correctly classifying the moving fore-

grounds. Specifically, our goal is to classify the moving
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foregrounds into pedestrian and vehicle. Typical applica-

tions include intelligent traffic surveillance. Such far-field

surveillance systems deployed throughout cities usually in-

volve hundreds of cameras which has different positions

and zooms. Thus objects extracted from these cameras

may have diverse visual appearance and vary significantly,

which straightly leads to interclass diversity. Obviously, tra-

ditional supervised learning on gathering enough labeled

training samples for each scene is impractical due to the

incredible workload on manually labeling training samples

and fixing the parameters of each camera. Further, cameras

used in surveillance systems usually set at relatively high

position and have a depressing angle to the moving objects,

making the classification task even more difficult: size of

moving objects is low and change greatly with the distance

to the camera. Last but not least, time complexity is ut-

most because applications embedded in video surveillance

systems should always be real-time.

Considering the above-mentioned aspects, constructing

such a real-time robust object classification system is de-

sired and challenging. We proceed with further discussion

on these three problems and simply introduce our corre-

sponding solution in the rest of this section.

Exploiting unlabeled data to help classifier training has

become a hot topic during the past few years. Currently

there are three main paradigms for learning with unlabeled

data[12], i.e., semi-supervised learning, transductive learn-

ing and active learning. One common principle is exploit-

ing large numbers of unlabeled samples to help improve

learning performance. As one paradigm of semi-supervised

learning, co-training[2] initially trains two separate classi-

fiers with few labeled samples on two respective sub-feature

sets and then teach each other using the most confident pre-

dicted labels generated by classifying the unlabeled sam-

ples. Different from co-training, which chooses and de-
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ploys unlabeled samples relying on the confidence of the

other classifier, tri-training[13] inducts the third classifier

and carries out updating based on voting rule. In this paper,

we design a full-automatically updating process to construct

a real on-line adaptive framework. The assumption is that

only one baseline classifier (which is trained off-line and in-

dependent of scenes) is available and no labeled samples is

offered. Under this situations where no labeled samples be

used to help updating multi-classifiers synchronously, we

directly apply the baseline classifier to classify the unla-

beled samples in each scene and utilize the predicted la-

bel(not reliable, we call it soft label[5]) to achieve a scene-

specific classifier.

In far-field video sequences, object detected often has

very few pixels. So it’s hard to extract appearance-based

features reliably. Besides, scene-independent features (e.g.

relative size and shape) to discriminate between vehicles

and pedestrians will change greatly because of the signif-

icant projective distortion. However, scene-dependent con-

text features (e.g. object-position, orientation and direction

of moving objects) will provide useful knowledge about

scene constraints. Bose et al.[4] demonstrate the effective-

ness of incorporating scene context features into adaptive

classifier learning. Enlightened by this, we exploit underly-

ing regularities within scenes by combining scene context

features with scene independent features to help improve

the performance of scene-specific classifier.

Usually low-confidence samples are close to the deci-

sion boundary, thus more informative for classifier learning.

However, these samples are more likely to be incorrectly la-

beled. Similar work like[3] impose the problem of a trade-

off between the risk of using low-confidence samples and

their value of discriminative information. They propose a

weighted SVM which varies the Lagrange multipliers for

soft labeled samples in proportion to their confidences. As

a large Lagrange multiplier heavily penalizes an incorrect

classification, it allows samples near the decision boundary

to modify the adapted solution slightly while reduces the

risk of disrupting the training process by incorrect samples

with low-confidence. Different from weighted SVM used

in[3], for each sample we assign different weights to both

classes. This can be regarded as constructing two instances

from the original sample and assigning its memberships of

positive and negative classes respectively. The intuition is

that we can make more efficient use of the training sample.

In addition, to achieve real-time performance, we deploy

LDA instead of SVM as the classifier methods. One prob-

lem in consequence of weighted classifier is also empha-

sized: incorrectly classified samples with high-confidence

will greatly affect the training process and thus disrupt it

much more. In this paper, we introduce outlier detection to

remove those incorrectly labeled samples and possible sam-

ples of unknown classes.

Our method performs object classification on detected

moving objects. Simple background subtraction based on

Gaussian Mixture Model (GMM) [11] is used to detect the

moving objects. The baseline classifier is trained on large

number of samples off line. We apply AdaBoost learning

algorithm with appearance-based features[14]. The frame-

work of online updating comprises three steps:
1. applying the baseline classifier on objects to obtain

soft labeled training samples for each scene;

2. performing outlier detection in each scene to remove

incorrectly classified samples with high confidence;

3. training scene-specific classifier using BW-LDA

based on extracted scene context features.

We realize this framework into an intelligent surveillance

system and demonstrate the effectiveness on a large data

from different scenes.

The rest of this paper is organized as follows. Section 2

describes the scene context features we used and introduces

original classifier updating process. In section 3 we deduce

the BW-LDA and explain the biased naive bayesian based

outlier detection. Experimental results are shown in Section

5. The final section concludes our contributions.

2. Scene Context Features and Classifier Up-

dating

With the assumption that moving objects being detected

and tracked successfully, we focus on classifying the sepa-

rated foregrounds. One important step in all object classifi-

cation methods is to extract effective features for data rep-

resentation. Features that help discriminate between objects

of interest like vehicles and pedestrians involve two types:

scene-independent features(e.g. appearance-based features

like descriptor of shape[1] and common features like rela-

tive size) and scene-dependent context features(e.g. object-

position, orientation and direction of moving objects). Be-

cause size of objects is relative low and may change greatly

with the distance to the camera, scene-independent features

may fail to be reliably extracted. Bose et al.[4] demon-

strate the effectiveness of incorporating scene context fea-

tures into adaptive classifier learning.

Within the standard supervised learning paradigm, large

number of hand-labeled training samples are required in

each scene. It is too cumbersome to implement this scheme

in practical surveillance systems with hundreds of cameras.

Therefore, we first apply the baseline object classifier to un-

labeled samples from each scene, and then use the obtained

soft label to update a LDA based scene-specific classifier.

2.1. Scene Context Features

Scene context features are defined as those are useful

for classification in any single scene, but fail when training

in one scene and testing in another scene. In other words,



context features are scene-dependent, which cannot transfer

across scenes because their different distributions in differ-

ent scenes.

For classification task of separating pedestrians from ve-

hicles, features like object position and direction of motion

are demonstrated as scene-context features[3]. In traffic

scenes where car lane, bicycle lane and crosswalk are fixed,

by simply using spatial information of objects, we may by

and large discriminate pedestrians from vehicles. This is

clearly demonstrated in Fig. 1

We define bounding-box as the minimum area of en-

circling the moving object, occupancy-percentage as the

ratio of moving objects to the bounding-box. Obviously,

these features are scene-independent features and can be

used to separate pedestrian from vehicle. Discriminative

features used in this paper include scene-context features

like x- and y- object coordinates and aspect ratio. Simple

scene-independent features like area of the bounding-box,

occupancy-percentage and speed of motion are combined

with the above scene context features in the classifier up-

dating process.

2.2. LDA Based Scene Specific Classifier

Linear Discriminant Analysis (LDA)[10] has been suc-

cessfully used as a dimensionality reduction technique to

many classification problems, such as speech recognition,

face recognition and multimedia information retrieval. The

objective is to find a projection W that maximizes the ratio

of between-class scatter SB against within-class scatter SW

(Fisher’s criterion):

arg max
W

WT SBW

WT SW W

First the baseline classifier is applied to unlabeled sam-

ples from each new scene and soft-labeled samples with ex-

tracted features mentioned in Section 2.1 are obtained. With

the assumption that incorrectly classified objects will have

lower confidence, obviously it is risky to utilize all soft-

labeled samples (this will be further discussed in Section

4.2.1). Thus we choose the top 50% highest confident sam-

ples in each scene to train LDA based scene-specific clas-

sifier. In this way, we manage to afford some robustness

to gross outliers. The updated scene-specific classifiers will

then act on corresponding scenes.

3. Bilateral Weighted LDA and Outlier Re-

moving

For unlabeled samples, true labels are not available. It’s

a waste throwing away low-confidence samples, as they are

relatively close to the decision boundary and thus more in-

formative. A balance can be obtained by assigning different

weights to samples with weight in proportion to confidence.

Figure 1. (a)Video frame showing scene3. (b)Scatter plot illustrat-

ing spatial distribution of pedestrians and vehicles in scene3.

Figure 2. Decision surface for outlier detection. Red-marked sam-

ples which incorrectly classified by mutually biased classifier C2

and C3 are detected as outliers

One problem resulted from assigning different weights

to samples is that high-confidence samples with high weight

tend to affect the classifier-training process even more.

Thus high-confidence but incorrectly classified samples will

disrupt the training process severely. Outlier detection and

removing is proposed to help concern and handle with this

trouble.

3.1. Bilateral Weighted LDA

Assigning weights according to confidence is also pre-

sented in[3]. We have two improvements. First, in previous

proposed weighted SVM one sample uniquely belongs to

single class, while in our new method we treat each sam-

ple as both of positive and negative classes. The intuition

is we can make more use of training sample and manage to

achieve better generalization ability. As in the new method

each sample contributes two errors to the total error term in

the final objective function, we call it as Bilateral Weighted

LDA(BW-LDA), while the previous method as unilateral-

weighted SVM(UW-SVM). Second, the issue of time com-

plexity is considered. With different distribution of training

data, the number of support vector in the SVM classifier be-

comes unpredictable, thus making time cost beyond control.

To achieve real-time performance, we deploy LDA instead

of SVM as the classifier methods.

One can easily gets the matrix format of LDA[10]. Orig-

inal between-class scatter matrix SB and within-class scat-



ter matrix SW are defined as follows:

SB =
K

∑

l=1

Nl(µl − µ)(µl − µ)
T

=
K

∑

l=1

Nlµlµl
T − NµµT

= Y ΛcY
T − NµµT (1)

SW =
K

∑

l=1

∑

xi∈Cl

(xi − µl)(xi − µl)
T

=
K

∑

l=1

(XlXl
T − Nlµlµl

T )

= XXT − Y ΛKY T (2)

where K is the number of class, Nl is the number of

samples in the l-th class, N is the number of all sam-

ples, µl = 1

Nl

∑

xi∈Cl
xi is the mean vector of the l-th

class, µ = 1

N

∑N

i=1
xi is the total mean vector. X =

[X1, X2, · · · , XK ] = (x1, x2, · · · , xN ) be the data ma-

trix of training sets with N labeled samples belonging to K

classes, Y = [µl, µ2, · · · , µK ] is matrix composed by mean

vector of K class, and ΛK =











N1

N2

. . .

NK











is

diagonal matrix whose diagonal element is sample number

of each class.

For bilateral weighted LDA (BW-LDA), we first in-

troduce the weight matrix F ∈ RN×K , and Fil is the

probability that the i-th sample belongs to the l-th class. It

is obvious that
∑K

l=1
Fil = 1. We further define

nl =
∑N

i=1
Fil n =

∑K

l=1
nl

µ̂l =
∑

N

i=1
Filxi

nl

µ̂ =
∑

K

l=1

∑
N

i=1
Filxi

n

The new between-class scatter matrix and within-class

scatter matrix can be written as following:

nŜB =
K

∑

l=1

nl(µ̂l − µ̂)(µ̂l − µ̂)
T

(3)

nŜW =
K

∑

l=1

N
∑

i=1

Fil(xi − µ̂l)(xi − µ̂l)
T

(4)

Equ.(1) and Equ.(2) are particular cases of Equ.(3) and

Equ.(4) when Fil =

{

1 if xi ∈ Cl

0 otherwise
.

With

n =
K

∑

l=1

nl

=
K

∑

l=1

N
∑

i=1

Fil =
N

∑

i=1

(
K

∑

l=1

Fil) = N

By analogy, Equ.(3) and Equ.(4) becomes

NŜB = Ŷ Λ̂K Ŷ T − Nµ̂µ̂T (5)

NŜW = XXT − Ŷ Λ̂K Ŷ T (6)

where

Ŷ = [µ̂1, µ̂2, · · · , µ̂K ]

Λ̂K =











n1

n2

. . .

nK











With weight matrix F defined, the proposed BW-LDA is

reduced to solving the following objective function:

arg max
W

WT ŜBW

WT ŜW W

3.2. Biased Naive Bayesian Based Outlier Detection
and Removing

Delegation learning algorithm[7] focuses on separating

difficult samples and delegates them to train another clas-

sifier. It decomposes the classification task into two steps:

a first classifier chooses which samples to classify and then

delegates the ’difficult’ samples to train a second classifier.

As in Fig.2, C2 and C3 are the classifier in the first step,

which classifies the ’easy’ samples in the top right and left

bottom corner. ’Difficult’ samples near the centerline are

left for classifier C1 to handle.

Delegation is utilized to detect outliers. To identify sam-

ples that are confidently classified, biased classifiers can be

utilized. As classifier biased towards predicting positives

usually has a high precision on negative samples and vice

versa, we treat those who are incorrectly classified by both

the bias-towards-positive and bias-towards-negative classi-

fiers as incorrectly labeled samples or samples of unknown

classes, i.e. outliers. In Fig.2, classifier C2 biases towards

the cross class and classifier C3 biases towards the circle

class. Red-marked samples are detected as outliers and re-

moved from the training set.

Considering m classes, C = C1, C2, · · · , Cm. One sam-

ple X is presented as x1, x2, · · · , xn. Naive Bayesian clas-

sifier (NBC) can be constructed as follows:

c(X) = arg max
Ci∈C

n
∏

k=1

P (Ci)P (xk|Ci)



(a) (b) (c)

(d) (e) (f)

Figure 3. Clips from different testing scenes. (a)scene 1 (b)scene

2 (c) scene 3 (d) scene 4 (e) scene 5 (f) scene 6.

Figure 4. Classification correct ratio versus the ratio of training

samples in each scene.

where P (Ci) is the prior probability for i-th class,

P (xk|Ci) is the conditional probability for feature xk in i-

th class.

We utilize NBC to construct biased classifiers. It is easy

to bias a Bayesian classifier by either modifying the prior

probabilities or to impose biased thresholds on the poste-

rior probabilities. In this paper, negative-biased classifier

is formed by setting P (Cpositive) = 2 × P (Cnegative))
and positive-biased classifier by setting P (Cnegative) =
2 × P (Cpositive))

Further remarks are discussed. While outliers are those

deviate from distribution of the same class, there are good

chances that these samples are more informative to train-

ing. How can we distinguish informative samples from out-

liers (noise)? In Fig.2, we assume that the centerline is the

ground truth decision boundary. Thus samples close with

the centerline are regarded as informative samples, those

far away from centerline and incorrectly classifier by both

biased classifiers are recognized as outliers. Experimental

results in Section 4 validate this assumption.

4. Experiment

4.1. Data Set

Video sequences are collected from outdoor far-field

cameras. Clips from 6 scenes for test are shown in Fig.3.

We construct a surveillance system which involves back-

ground subtraction, moving objects extraction and tracking.

For every scene, we first collect more than 4, 000 samples

for each class to obtain a scene-specific classifier and then

apply the updated classifier to the corresponding scene for

classification task. There are totally 24,218 pedestrians and

36,092 vehicles in the collected training samples. Testing

samples are extracted from tracked object sequences involv-

ing 4, 010 pedestrians and 4, 822 vehicles.

4.2. Experimental Results

4.2.1 Using All Soft-Labeled Samples

In order to measure the influence with the ratio of soft-

labeled samples utilized, we vary the ratios of training sam-

ples in each scene for constructing the new scene-specific

classifier. Soft-labeled samples are ranked according to

confidence in each scene and only the certain top ratio of

them are utilized to train the new classifier.

As shown in Fig.4, for each scene when ratio exceeds

50%, correct rates even tend to decline. Lower ratio leads

to less training samples and the achieved decision boundary

is more likely far from the real one, thus classifier gener-

alization ability is limited. However, higher ratio increase

the risk of using low-confidence samples which have higher

probability to be incorrectly labeled. It also narrow the per-

formance of the new classifier.

Enlightened by this, it is unreasonable to directly in-

crease the ratio or even exploit all training samples. How-

ever, cautiously employing the low-confidence with low

weight to construct the new classifier achieve a balance.

4.2.2 Performance Evaluation and Analysis

For BW-LDA, the construction of weight matrix F is very

important. In this paper, we make use of the confidence ob-

tained by applying the baseline classifier to unlabel samples

to construct it. For each scene, confidence of samples from

every class is first normalized to 0 − 1. It is noted as Sil,

where i(i = 1, 2, · · · , N) means the i-th sample and l de-

notes the l-th class (l = 0 denotes positive, l = 1 denotes

negative). Then we define the weight

Fil =
1

1 + e−Sil

and

Fi,1−l = 1 − Fil



Table 1. Classification correct rates comparison between different methods

Scene1 Scene2 Scene3 Scene4 Scene5 Scene6

Sample

number (p/v)

Training Samples 4000/6567 4000/6117 4000/5459 4000/4175 4218/4000 4000/5774

Testing Samples 539/769 510/707 818/1021 677/712 877/812 589/801

Classification

correct ratio

Baseline Classifier 90.6% 81.5% 90.4% 90.6% 86.7% 89.5%

LDA 92.9% 88.9% 91.5% 93.7% 91.4% 92.3%

UW-SVM 93.8% 89.2% 92.9% 95.5% 93.1% 94.1%

BW-LDA 93.7% 89.6% 94.1% 94.9% 93.3% 94.4%

BW-LDA

+ Outlier Removing

95.4% 91.1% 95.3% 96.1% 94.2% 95.1%

In original LDA based method, we choose top 50% high-

confidence training samples for constructing scene-specific

classifier. We also implement UW-SVM [3] and com-

pare its performance with the proposed BW-LDA method.

As low-confidence samples may disturb the performance

of the NBC and outliers in low-confidence samples affect

slightly to the final updated scene-specific classifier, NBC

based outlier detection is only applied to the top 50% high-

confidence soft-labeled samples in each scene.

Table.1 illustrates the classification correct rates com-

parison between different methods. Scene1 and scene2 are

video sequences from the same camera, extracted from dif-

ferent period of time. Fig.3 shows that foreground objects in

scene2 have obvious shadows, having an heavy influence on

the appearance-based baseline classifier. It is shown that ex-

ploiting scene context knowledge greatly improve the per-

formance. Comparing row6 with 7, BW-LDA achieves bet-

ter results than UW-SVM. More prior improvement lies in

time complexity of the new algorithm. We achieve a real-

time performance on a 4 channel surveillance system in a

PC with 3.0GHz dual CPUs and 1GB memory. Experimen-

tal results from the bottom row shows that implement of

outlier removing reduces the risky that high-confidence but

incorrectly classified training samples breach fatally to the

training process.

5. Conclusions

In this paper we exploit the scene context information

and propose a full-automatically updating framework for

object classification in practical surveillance systems. Our

main contributions can be summarized as follows: First, we

construct an intelligent surveillance system based on pro-

posed adaptive object classification framework. Then Bi-

lateral Weighted LDA (BW-LDA), which exemplifies the

reliability of the predictions is introduced. Last, Naive

Bayesian Classifier (NBC) based outlier detection and re-

moving is employed to reduce the risk of high-confidence

but incorrectly classified samples and manage to exploit the

unlabel samples to the utmost. Experimental results vali-

date the effectiveness of our method on a large data from

different scenes. Future research will focus on cooperating

outlier detection into construction of weight matrix.

Acknowledgement

This work was supported by the following fund-

ings: National Natural Science Foundation Project

#60518002, National Science and Technology Support Pro-

gram Project #2006BAK08B06, National Hi-Tech (863)

Program Projects #2006AA01Z192, #2006AA01Z193, and

#2008AA01Z124, Chinese Academy of Sciences 100 Peo-

ple Project, and AuthenMetric R&D Funds.

References

[1] B. Belongie, J. Malik, and J. Puzicha. ”Shape matching and

object rcognition”. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2002. 2

[2] A. Blum and T. Mitchell. ”Combining labeled and unlabeled

data with co-training”. COLT 1998. 1

[3] B. Bose and E. Grimson. ”Improving Object Classification

in Far-Field Video”. CVPR 2004. 2, 3, 6

[4] B. Bose and E. Grimson. ”Learning to Use Scene Context

for Object Classification in Surveillance”. VS-PETS, 2003.

2

[5] O. Chapelle, B. Scholkopf, and A. Zien. ”Semi-Supervised

Learning”. MIT Press, Cambridge, MA, 2006. 2

[6] R. Cutler and L. Davis. ”Robust real-time periodic motion

detection, analysis, and applications”. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2000. 1

[7] C. Ferri, P. Flach, and J. Hernandez-Orallo. ”Delegating

Classifiers”. ICML, 2004. 4

[8] O. Javed and M. Shah. ”Tracking and object classification

for automated surveillance”. ECCV, 2002. 1

[9] A. Lipton, H. Fujiyoshi, and R. Patil. ”Moving target classi-

fication and tracking from real-time video”. IEEE Workshop

on Applications of Computer Vision, 1998. 1

[10] N. Peter, P. Joao, and J. Devid. ”Eigenfaces vs. Fisher-

faces: Recognition Using Class Specific Linear Projection”.

TPAMI, 1997. 3

[11] C. Stauffer and W. Grimson. ”Adaptive background mixture

models for real-time tracking”. CVPR 1999. 2

[12] Z. Z-H. ”Learning with unlabeled data and its application to

image retrieval”. PRICAI 2006. 1



[13] Z. Z-H and M. Li. ”Tri-training: Exploiting unlabeled data

using three classifiers”. IEEE Transactions on Knowledge

and Data Engineering, 17(11):1529–1541, 2005. 2

[14] L. Zhang, S. Z. Li, X. Yuan, and S. Xiang. ”Real-time Object

Classification in Video Surveillance Based on Appearance

Learning”. CVPR 2007. 2


