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Abstract

State-of-the-art object detection systems rely on an ac-

curate set of region proposals. Several recent methods use

a neural network architecture to hypothesize promising ob-

ject locations. While these approaches are computation-

ally efficient, they rely on fixed image regions as anchors

for predictions. In this paper we propose to use a search

strategy that adaptively directs computational resources to

sub-regions likely to contain objects. Compared to meth-

ods based on fixed anchor locations, our approach natu-

rally adapts to cases where object instances are sparse and

small. Our approach is comparable in terms of accuracy

to the state-of-the-art Faster R-CNN approach while using

two orders of magnitude fewer anchors on average. Code is

publicly available.

1. Introduction

Object detection is an important computer vision prob-

lem for its intriguing challenges and large variety of ap-

plications. Significant recent progress in this area has

been achieved by incorporating deep convolutional neu-

ral networks (DCNN) [15] into object detection systems

[5, 8, 10, 12, 17, 23, 25].

An object detection algorithm with state-of-the-art ac-

curacy typically has the following two-step cascade: a set

of class-independent region proposals are hypothesized and

are then used as input to a detector that gives each region

a class label. The role of region proposals is to reduce the

complexity through limiting the number of regions that need

be evaluated by the detector. However, with recently intro-

duced techniques that enable sharing of convolutional fea-

tures [9, 12], traditional region proposal algorithms such as

selective search [27] and EdgeBoxes [29] become the bot-

tleneck of the detection pipeline.

An emerging class of efficient region proposal meth-

ods are based on end-to-end trained deep neural networks

[5, 22]. The common idea in these approaches is to train

a class-independent regressor on a small set of pre-defined

anchor regions. More specifically, each anchor region is as-

signed the task of deciding whether an object is in its neigh-

borhood (in terms of center location, scale and aspect ratio),

and predicting a bounding box for that object through re-

gression if that is the case. The design of anchors differs for

each method. For example, MultiBox [5] uses 800 anchors

from clustering, YOLO [21] uses a non-overlapping 7 by 7

grid, RPN [22] uses overlapping sliding windows. In these

prior works the test-time anchors are not adaptive to the ac-

tual content of the images, thus to further improve accuracy

for detecting small object instances a denser grid of anchors

is required for all images, resulting in longer test time and a

more complex network model.

We alternatively consider the following adaptive search

strategy. Instead of fixing a priori a set of anchor regions,

our algorithm starts with the entire image. It then recur-

sively divides the image into sub-regions (see Figure 2) un-

til it decides that a given region is unlikely to enclose any

small objects. The regions that are visited in the process

effectively serve as anchors that are assigned the task of

predicting bounding boxes for objects nearby. A salient

feature of our algorithm is that the decision of whether to

divide a region further is based on features extracted from

that particular region. As a result, the generation of the set

of anchor regions is conditioned on the image content. For

an image with only a few small objects most regions are

pruned early in the search, leaving a few small anchor re-

gions near the objects. For images that contain exclusively

large instances, our approach gracefully falls back to exist-

ing methods that rely on a small number of large anchor

regions. In this manner, our algorithm adaptively directs its

computational resources to regions that are likely to contain

objects. Figure 1 compares our algorithm with RPN.

To support our adaptive search algorithm, we train a deep
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Figure 1. Comparison of our proposed adaptive search algorithm with the non-adaptive RPN method. The red boxes show region proposals

from adjacency predictions. Note that for small objects, RPN is forced to perform regression from much larger anchors, while our AZ-Net

approach can adaptively use features from small regions.

neural network we call Adjacency and Zoom Network (AZ-

Net). Given an input anchor region, the AZ-Net outputs a

scalar zoom indicator which is used to decide whether to

further zoom into (divide) the region and a set of bound-

ing boxes with confidence scores, or adjacency predictions.

The adjacency predictions with high confidence scores are

then used as region proposals for a subsequent object de-

tector. The network is applied recursively starting from the

whole image to generate an adaptive set of proposals.

To intuitively motivate the design of our network, con-

sider a situation in which one needs to perform a quick

search for a car. A good strategy is to first look for

larger structures that could provide evidence for existence

of smaller structures in related categories. A search agent

could, for example, look for roads and use that to reason

about where cars should be. Once the search nears the car,

one could use the fact that seeing certain parts is highly pre-

dictive of the spatial support of the whole. For instance,

the wheels provide strong evidence for a tight box of the

car. In our design, the zoom indicator mimics the process

of searching for larger structures, while the adjacency pre-

dictions mimic the process of neighborhood inference.

To validate this design we extensively evaluate our al-

gorithm on Pascal VOC 2007 [6] with fine-grained analy-

sis. We also report baseline results on the recently intro-

duced MSCOCO [18] dataset. Our algorithm achieves de-

tection mAP that is close to state-of-the-art methods at a

fast frame rate. Code has been made publicly available at

https://github.com/luyongxi/az-net.

In summary, we make the following contributions:

• We design a search strategy for object detection that

adaptively focuses computational resources on image

regions that contain objects.

• We evaluate our approach on Pascal VOC 2007 and

MSCOCO datasets and demonstrate it is comparable

to Fast R-CNN and Faster R-CNN with fewer anchor

and proposal regions.

• We provide a fine-grained analysis that shows intrigu-

ing features of our approach. Namely, our proposal

strategy has better recall for higher intersection-over-

union thresholds, higher recall for smaller numbers of

top proposals, and for smaller object instances.

This paper is organized as follows. In section 2 we sur-

vey existing literature highlighting the novelty of our ap-

proach. In Section 3 we introduce the design of our algo-

rithm. Section 4 presents an empirical comparison to exist-

ing object detection methods on standard evaluation bench-

marks, and Section 5 discusses possible future directions.

2. Previous Work

Lampert et al. [16] first proposed an adaptive branch-

and-bound approach. More recently, Gonzeles-Garcia et al.

[11], Caicedo and Lazebnik [3], and Yoo et al. [28] explored

active object detection with DCNN features. While these

approaches show the promise of using an adaptive algo-

rithm for object detection, their detectors are class-wise and

their methods cannot achieve competitive accuracy. Our ap-

proach, on the other hand, is multi-class and is compara-

ble to state-of-the-art approaches in both accuracy and test

speed.

The idea of using spatial context has been previously ex-

plored in the literature. Previous work by Torralba et al.

[26] used a biologically inspired visual attention model [2],

but our focus is on efficient engineering design. Divvala et

al. [4] evaluated the use of context for localization, but their

empirical study was performed on hand-crafted features and

needs to be reexamined in combination with more accurate

recent approaches.

Our method is closely related to recent approaches that
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Figure 2. As illustrated, a given region is divided into 5 sub-regions

(numbered). Each of these sub-regions is recursively divided if its

zoom indicator is above a threshold.

No zoom No zoom Zoom

Figure 3. Illustration of desired zoom indicator for common situa-

tions. The green boxes are objects, and the red boxes are regions.

Left: the object is small but it is mostly outside the region – there

is no gain in zooming in. Middle: the object is mostly inside but

its size is large relative to the region – there is no gain in zooming

in. Right: there is a small object that is completely inside the re-

gion. In this case further division of the region greatly increases

the chance of detection for that object.

use anchor regions for proposal generation or detection. For

example, Erhan et al. [5] use 800 data-driven anchors for re-

gion proposals and Redmon et al. [21] use a fixed grid of 49

non-overlapping regions to provide class-wise detections.

The former has the concern that these anchors could over-

fit the data, while the latter cannot achieve state-of-the-art

performance without model ensembles. Our work is most

related to the recent work by Ren et al. [22], which uses a set

of heuristically designed 2400 overlapping anchor regions.

Our approach uses a similar regression technique to predict

multiple bounding boxes from an anchor region. However,

our anchor regions are generated adaptively, making them

intrinsically more efficient. In particular, we show that it is

possible to detect small object instances in the scene with-

out an excessive number of anchor regions. We propose to

grow a tree of finer-grained anchor regions based on local

image evidence, and design the regression model strategi-

cally on top of it. We extensively compare the output of our

method against [22] in our experimental section and show

the unique advantages of our approach.

This paper is a follow-up to the work published in the

53rd Annual Allerton Conference [20]. Here, we introduce

a substantially improved algorithm and add extensive eval-

uations on standard benchmarks.
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Figure 4. Illustration of sub-region priors. From left to right: ver-

tical stripes, horizontal stripes, neighboring squares. The red rect-

angular box is the image. In the figure the numbered regions are

template sub-regions. The gaps between sub-regions are exagger-

ated for better visualization. The vertical stripes are used to detect

tall objects, the horizontal stripes are used to detect fat objects,

while the neighboring squares are used to detect objects that fall

in the gaps between anchor regions generated in the search pro-

cess.

3. Design of the Algorithm

3.1. Overview of the Adaptive Search

Our object detection algorithm consists of two steps. In

step 1, a set of class-independent region proposals are gen-

erated using Adaptive Search with AZ-Net (see Algorithm

1). In step 2, an object detector evaluates each region pro-

posed in step 1 to provide class-wise detections. In our ex-

periments the detector is Fast R-CNN.

Our focus is on improving step 1. We consider a recur-

sive search strategy, starting from the entire image as the

root region. For any region encountered in the search pro-

cedure, the algorithm extracts features from this region to

compute the zoom indicator and the adjacency predictions.

The adjacency predictions with confidence scores above a

threshold are included in the set of output region proposals.

If the zoom indicator is above a threshold, this indicates

that the current region is likely to contain small objects. To

detect these embedded small objects, the current region is

divided into sub-regions in the manner shown in Figure 2.

Each of these sub-regions is then recursively processed in

the same manner as its parent region, until either its area

or its zoom indicator is too small. Figure 1 illustrates this

procedure.

In the following section, we discuss the design of the

zoom indicator and adjacency prediction.

3.2. Design of Building Blocks

The zoom indicator should be large for a region only

when there exists at least one object whose spatial support

mostly lies within the region, and whose size is sufficiently

small compared to the region. The reasoning is that we

should zoom in to a region only when it substantially in-

creases the chance of detection. For example, if an object is

mostly outside the region, dividing the region further is un-

likely to increase the chance of detecting that object. Sim-

ilarly, if an object is large compared to the current region,

the task of detecting this object should be handled by this
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Algorithm 1: Adaptive search with AZ-Net.

Data: Input image x (the whole image region bx). Yk is the region proposed at step k. Y k are the accumulated region

proposals up to step k. Zk are the regions to further zoom in to at step k. Bk are anchor regions at step k.

Result: Region proposals at termination Y K .

Initialization: B0 ← {bx}. Y
0 ← ∅, k ← 0

while (Bk is not an empty set) do
Initialize Yk and Zk as empty sets.

foreach b ∈ Bk do
Compute adjacency predictions Ab and the zoom indicator zb using AZ-Net.

Include all a ∈ Ab with high confidence scores into Yk .

Include b into Zk if zb is above threshold.
end

Y k ← Y k−1 ∪ Yk

Bk+1 ← Divide-Regions(Zk)
k ← k + 1

end

K ← k − 1

Figure 5. Illustration of the AZ-Net architecture.

region or its parents. In the latter case, further division of

the region not only wastes computational resources, but also

introduces false positives in the region proposals. Figure 3

shows common situations and the desirable behavior of the

zoom indicator.

The role of adjacency prediction is to detect one or mul-

tiple objects that overlap with the anchor region sufficiently

by providing tight bounding boxes. The adjacency predic-

tion should be aware of the search geometry induced by the

zoom indicator. More specifically, the adjacency predic-

tion should perform well on the effective anchor regions in-

duced by the search algorithm. For this purpose we propose

a training procedure that is aware of the adaptive search

scheme (discussed in Section 3.3). On the other hand, its

design should explicitly account for typical geometric con-

figurations of objects that fall inside the region, so that the

training can be performed in a consistent fashion. For this

reason, we propose to make predictions based on a set of

sub-region priors as shown in Figure 4. Note that we also

include the anchor region itself as an additional prior. We

make sub-region priors large compared to the anchor under

the intuition that if an object is small, it is best to wait until

the features extracted are at the right scale to make bound-

ing box predictions.

3.3. Implementation

We implement our algorithm using the Caffe [14] frame-

work, utilizing the open source infrastructure provided by

the Fast R-CNN repository [9]. In this section we intro-

duce the implementation details of our approach. We use

the Fast R-CNN detector since it is a fast and accurate re-

cent approach. Our method should in principle work for a

broad class of object detectors that use region proposals.

We train a deep neural network as illustrated in Figure

5. Note that in addition to the sub-region priors as shown

in Figure 4, we also add the region itself as a special prior

region, making in total 11 adjacency predictions per anchor.

For the convolutional layers, we use the VGG16 model [23]

pre-trained on ImageNet data. The fully-connected layers

are on top of a region pooling layer introduced in [9] which

allows efficient sharing of convolutional layer features.

The training is performed as a three-step procedure.

First, a set of regions is sampled from the image. These

samples should contain hard positive and negative exam-

ples for both the zoom indicator and the adjacency predic-

tion. Finally, the tuples of samples and labels are used in

standard stochastic gradient descent training. We now dis-

cuss how the regions are sampled and labeled, and the loss

function we choose.

3.3.1 Region Sampling and Labeling

Since a typical image only has a few object instances, to

provide sufficient positive examples for adjacency predic-
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Figure 6. Illustration of the inverse matching procedure. The red

box is the inverse match for the object (green box). The left figure

shows inverse matching of a neighboring square, the right figure

shows inverse matching of a vertical stripe.

tions our method inversely finds regions that will see a

ground truth object as a perfect fit to its prior sub-regions

(see Figure 6 for illustration). This provides k× 11 training

examples for each image, where k is the number of objects.

To mine for negative examples and hard positive exam-

ples, we search the input image as in Algorithm 1. Note

that the algorithm uses zoom indicators from the AZ-Net.

Instead of optimizing AZ-Net with an on-policy approach

(that uses the intermediate AZ-Net model to sample re-

gions), which might cause training to diverge, we replace

the zoom prediction with the zoom indicator label. How-

ever, we note that using the zoom label directly could cause

overfitting, since at test time the algorithm might encounter

situations where a previous zoom prediction is wrong. To

improve the robustness of the model, we add noise to the

zoom label by flipping the ground truth with a probability

of 0.3. We found that models trained without random flip-

ping are significantly less accurate. For each input image

we initiate this procedure with five sub-images and repeat it

multiple times. We also append horizontally flipped images

to the dataset for data augmentation.

Assignment of labels for the zoom indicator follows the

discussion of Section 3. The label is 1 if there exists an ob-

ject with 50% of its area inside the region and the area is

at most 25% of the size of the region. Note that here we

use a loose definition of inclusion to add robustness for ob-

jects falling between boundaries of anchors. For adjacency

prediction, we set a threshold in the intersection-over-union

(IoU) score between an object and a region. A region is

assigned to detect objects with which it has sufficient over-

lap. The assigned objects are then greedily matched to one

of the sub-regions defined by the priors shown in Figure 4.

The priority in the matching is determined by the IoU score

between the objects and the sub-regions. We note that in

this manner multiple predictions from a region are possible.

3.3.2 Loss Function

As shown in Figure 5, the AZ-Net has three output layers.

The zoom indicator outputs from a sigmoid activation func-

tion. To train it we use the cross-entropy loss function pop-

ular for binary classification. For the adjacency predictions,

the bounding boxes are parameterized as in Fast R-CNN

[22]. Unlike in Fast R-CNN, to provide multiple predic-

tions from any region, the confidence scores are not nor-

malized to a probability vector. Correspondingly we use

smooth L1-loss for bounding box output and element-wise

cross-entropy loss for confidence score output. The three

losses are summed together to form a multi-task loss func-

tion.

3.3.3 Fast R-CNN Detectors

The detectors we use to evaluate proposal regions are Fast

R-CNN detectors trained using AZ-Net proposals. As in

[22], we implement two versions: one with unshared con-

volutional features and the other that shares convolutional

features with AZ-Net. The shared version is trained using

alternating optimization.

4. Experiments

We evaluate our approach on Pascal VOC 2007 [6] and

MSCOCO [18] datasets. In addition to evaluating the accu-

racy of the final detectors, we also perform detailed compar-

isons between the RPN approach adopted in Faster R-CNN

and our AZ-Net on VOC 2007. At the end of the section,

we give an analysis of the efficiency of our adaptive search

strategy.

4.1. Results on VOC 2007

To set up a baseline comparison, we evaluate our ap-

proach using the standard average precision (AP) metric

for object detection. For AP evaluation we use the de-

velopment kit provided by the VOC 2007 object detection

challenge. We compare our approach against the recently

introduced Fast R-CNN [9] and Faster R-CNN [22] sys-

tems, which achieve state-of-the-art performance in stan-

dard benchmarks, such as VOC 2007 [6] and VOC 2012

[7]. A comparison is shown in Table 1. The results sug-

gest that our approach is comparable to or better than these

methods.

4.2. Quality of Region Proposals

We preform a detailed analysis of the quality of region

proposals from our AZ-Net, highlighting a comparison to

the RPN network used in Faster R-CNN. For all our ex-

periments, we analyze the recall on Pascal VOC 2007 test

set using the following definition: An object is counted as

retrieved if there exists a region proposal with an above-

threshold IoU with it. The recall is then calculated as the

proportion of the retrieved objects among all ground truth

object instances. To accurately reproduce the RPN ap-

proach, we downloaded the region proposals provided on

the Faster R-CNN repository 1. We used the results from

1https://github.com/ShaoqingRen/faster_rcnn
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Figure 7. Example outputs of our algorithm. The left column shows the original image. The middle column shows the anchor regions

induced by our adaptive search. The right column shows the top 100 adjacency predictions made around the anchor regions. The anchor

regions and the adjacency predictions are superimposed into a figure at the same resolution of the original image. We note that the anchor

regions and the region proposals in our approach are shared across object categories. For example, for the last image, the algorithm

generates anchor regions at proper scales near the dogs, the person, and the bottles.

Method boxes mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

AZ-Net 231 70.2 73.3 78.8 69.2 59.9 48.7 81.4 82.8 83.6 47.5 77.3 62.9 81.1 83.5 78.0 75.8 38.0 68.7 67.2 79.0 66.4

AZ-Net* 228 70.4 73.9 79.9 68.8 58.9 49.1 80.8 83.3 83.7 47.2 75.8 63.8 80.6 84.4 78.9 75.8 39.2 70.2 67.4 78.4 68.3

RPN 300 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

RPN* 300 68.5 74.1 77.2 67.7 53.9 51.0 75.1 79.2 78.9 50.7 78.0 61.1 79.1 81.9 72.2 75.9 37.2 71.4 62.5 77.4 66.4

FRCNN 2000 68.1 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5

Table 1. Comparison on VOC 2007 test set using VGG-16 for convolutional layers. The results of RPN are reported in [22]. The results

for Fast R-CNN are reported in [9]. The AZ-Net and RPN results are reported for top-300 region proposals, but in AZ-Net many images

have too few anchors to generate 300 proposals. * indicates results without shared convolutional features. All listed methods use DCNN

models trained on VOC 2007 trainval.

a model reportedly trained on VOC 2007 trainval. Cor-

respondingly we compare it against our model trained on

VOC 2007 trainval set. The comparisons concerning top-

N regions are performed by ranking the region proposals in

order of their confidence scores.

Figure 8 shows a comparison of recall at different IoU
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Figure 8. Comparison of recall of region proposals generated by

AZ-Net and RPN at different intersection over union thresholds

on VOC 2007 test. The comparison is performed at top-300 re-

gion proposals. Our approach has better recall at large IoU thresh-

olds, which suggests that AZ-Net proposals are more accurate in

localizing the objects.
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Figure 9. Number of proposals matched to ground truth (with

IoU= 0.5). This shows proposals from AZ-Net are more con-

centrated around true object locations.
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Figure 10. Comparison of recall of region proposals generated by

AZ-Net and RPN at different number of region proposals on VOC

2007 test. The comparison is performed at IoU threshold 0.5. Our

approach has better early recall. In particular, it reaches 0.6 recall

with only 10 proposals.
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Figure 11. Comparison of recall of region proposals generated by

AZ-Net and RPN for objects of different sizes on VOC 2007 test.

The comparison is performed at IoU threshold 0.5 with top-300

proposals. Our approach has significantly better recall for small

objects.

Method Anchor Regions Region proposals Runtime (ms)

AZ-Net 62 231 171

AZ-Net* 44 228 237

RPN 2400 300 198

RPN* 2400 300 342

FRCNN N/A 2000 1830

Table 2. Numbers related to the efficiency of the object detection

methods listed in Table 1. The runtimes for RPN and Fast R-CNN

are reported for a K40 GPU [22]. Our runtime experiment is per-

formed on a GTX 980Ti GPU. The K40 GPU has larger GPU

memory, while the GTX 980Ti has higher clock rate. * indicates

unshared convolutional feature version.

thresholds. Our AZ-net has consistently higher recall than

RPN, and the advantage is larger at higher IoU thresholds.

This suggests our method generates bounding boxes that in

general overlap with the ground truth objects better. The

proposals are also more concentrated around objects, as

shown in Figure 9.

Figure 10 shows a plot of recall as a function of the num-

ber of proposals. A region proposal algorithm is more effi-

cient in covering objects if its area under the curve is larger.

Our experiment suggests that our AZ-Net approach has a

better early recall than RPN. That means our algorithm in

general can recover more objects with the same number of

region proposals.

Figure 11 shows a comparison of recall for objects with

different sizes. The “small object” has an area less than

322, a “medium object” has an area between 322 and 962,

and a “large object” has an area greater than 962, same as

the definition in MSCOCO [18]. Our approach achieves

higher recall on the small object subset. This is because

when small objects are present in the scene our adaptive

search strategy generates small anchor regions around them,

as shown in Figure 7.

4.3. Efficiency of Adaptive Search

Our approach is efficient in runtime, as shown in Table

2. We note that this is achieved even with several severe in-
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Figure 12. Distribution of the number of anchor regions evaluated

on VOC 2007 test set. For most images a few dozen anchor regions

are required. Note that anchors are shared across categories.

efficiencies in our implementation. First, for each image

our algorithm requires several rounds of fully connected

layer evaluation, which induces expensive memory trans-

fer between GPU and CPU. Secondly, the Faster R-CNN

approach uses convolutional computation for the evaluation

of anchor regions, which is highly optimized compared to

the RoI pooling technique we adopted. Despite these in-

efficiencies, our approach still achieves high accuracy at a

state-of-the-art frame rate, using lower-end hardware. With

improved implementation and model design we expect our

algorithm to be significantly faster.

An interesting aspect that highlights the advantages of

our approach is the small number of anchor regions to eval-

uate. To further understand this aspect of our algorithm,

we show in Figure 12 the distribution of anchor regions

evaluated for each image. For most images our method

only requires a few dozen anchor regions. This number is

much smaller than the 2400 anchor regions used in RPN

[22] and the 800 used in MultiBox [5]. Future work could

further capitalize on this advantage by using an expensive

but more accurate per-anchor step, or by exploring applica-

tions to very high-resolution images, for which traditional

non-adaptive approaches will face intrinsic difficulties due

to scalability issues. Our experiment also demonstrates the

possibility of designing a class-generic search. Unlike per-

class search methods widely used in previous adaptive ob-

ject detection schemes [3, 28] our anchor regions are shared

among object classes, making it efficient for multi-class de-

tection.

4.4. Results on MSCOCO

We also evaluated our method on MSCOCO dataset and

submitted a “UCSD” entry to the MSCOCO 2015 detection

challenge. Our post-competition work greatly improved ac-

curacy with more training iterations. A comparison with

other recent methods is shown in Table 3. Our model is

Method AP AP IoU=0.50

FRCNN (VGG16) [9] 19.7 35.9

FRCNN (VGG16) [22] 19.3 39.3

RPN (VGG16) 21.9 42.7

RPN (ResNet) 37.4 59.0

AZ-Net (VGG16) 22.3 41.0

Table 3. The detection mAP on MSCOCO 2015 test-dev set. The

RPN (ResNet) entry won the MSCOCO 2015 detection challenge.

Updated leaderboard can be found in http://mscoco.org.

trained with minibatches consisting of 256 regions sampled

from one image, and 720k iterations in total. The results

for RPN(VGG16) reported in [22] were obtained with an

8-GPU implementation that effectively has 8 and 16 images

per minibatch for RPN and Fast R-CNN respectively, each

trained at 320k training iterations. Despite the much shorter

effective training iterations, our AZ-Net achieves similar

mAP with RPN(VGG16) and is more accurate when eval-

uated on the MSCOCO mAP metric that rewards accurate

localization.

Our best post-competition model is still significantly

outperformed by the winning “MSRA” entry. Their ap-

proach is a Faster-R-CNN-style detection pipeline, replac-

ing the VGG-16 network with an ultra-deep architecture

called Deep Residual Network [13]. They also report signif-

icant improvement from using model ensembles and global

contextual information. We note that these developments

are complementary to our contribution.

5. Conclusion and Future Work

This paper has introduced an adaptive object detection

system using adjacency and zoom predictions. Our al-

gorithm adaptively focuses its computational resources on

small regions likely to contain objects, and demonstrates

state-of-the-art accuracy at a fast frame rate.

The current method can be further extended and im-

proved in many aspects. Better pre-trained models [13]

can be incorporated into the current system for even bet-

ter accuracy. Further refining the model to allow single-

pipeline detection that directly predicts class labels, as in

YOLO [21] and the more recent SSD [19] method, could

significantly boost testing frame rate. Recent techniques

that improve small object detection, such as the contextual

model and skip layers adopted in Inside-Outside Net [1],

suggest additional promising directions. It is also interest-

ing to consider more aggressive extensions. For instance, it

might be advantageous to use our search structure to focus

high-resolution convolutional layer computation on smaller

regions, especially for very high-resolution images.
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