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Abstract—We propose a similarity measure based on a Spatial-color Mixture of

Gaussians (SMOG) appearance model for particle filters. This improves on the

popular similarity measure based on color histograms because it considers not

only the colors in a region but also the spatial layout of the colors. Hence, the

SMOG-based similarity measure is more discriminative. To efficiently compute the

parameters for SMOG, we propose a new technique with which the computational

time is greatly reduced. We also extend our method by integrating multiple cues to

increase the reliability and robustness. Experiments show that our method can

successfully track objects in many difficult situations.

Index Terms—Particle filters, mixture of Gaussians, appearance model, similarity

measure, color histogram, visual tracking, occlusion.
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1 INTRODUCTION

A tracked object can be located by maximizing the similarity
measure between a reference window and a candidate window.
The maximum can be realized through either a deterministic way
or a stochastic way.

Deterministic methods localize the tracked object in each frame

by iteratively searching for a region which maximizes the

similarity measure between this region and the target window.

For example, Comaniciu et al. [3] employed the Mean Shift

algorithm for object tracking. These methods are computationally

efficient. However, the methods may converge to a local max-

imum: They are sensitive to background distractors, clutter,

occlusions, and quick moving objects. These problems can be

mitigated by stochastic methods which maintain multiple hypoth-

eses in the state space and, in this way, achieve more robustness to

the local maximum.
Among various stochastic methods, Particle Filters (PF) [4], [6]

are very successful. Particle filters are simple, robust, and effective

and have obtained success in many challenging tasks. Particle

filters simultaneously track multiple hypotheses and recursively

approximate the posterior probability density function (pdf) in the

state space with a set of random sampled particles. Both the

appearance model and the similarity measure are very important

to the performance of particle filters. The particles are weighted

according to a similarity measure (i.e., the observation likelihood

function) and the sampling of particles is also dependent on the

similarity measure.

Indeed, the effectiveness and the robustness of the similarity
measure greatly affect the performance of both deterministic and
stochastic methods. This paper focuses on developing an effective
observation model and similarity measure in the context of
improving the performance of particle filters. The key contribu-
tions of this paper can be summarized as follows:

1. an effective SMOG appearance model and a SMOG-based
similarity measure,

2. a new technique for efficiently computing the parameters
of SMOG,

3. a new shape similarity measure, and
4. a complete SMOG tracking algorithm.

Experiments and comparisons with several other popular
methods show that our method can achieve very promising
performance in tracking objects in the presence of challenging
situations including fast movements, clutter, scaling, changing
appearance, color distractors, and occlusions.

2 THE PROPOSED METHOD

The histogram-based pdf modeling methods [9], [10] are often
preferred because of their simplicity and robustness to scaling and
rotation. However, the similarity measure based on color histo-
grams (e.g., Bhattacharyya coefficient) is often not discriminative
enough—see Fig. 1. In this section, we propose a SMOG
appearance model and a SMOG-based similarity measure.

2.1 Object Representation with SMOG

We represent an object O (which may be distinguished as the target
object O� or the target candidate Ov) by modeling the spatial-color
joint probability distribution of the corresponding region with a
mixture of Gaussians. We define SSi � ðxi; yiÞ to be the spatial
feature (i.e., the 2D coordinates) and CCi � fCj

igj¼1;...;d to be the color
feature with d color channels at pixel xi. We employ the normalized
ðr; g; IÞ color space as the color feature in our case, where
r ¼ R=ðRþGþ BÞ; g ¼ G=ðRþGþ BÞ; I ¼ ðRþGþ BÞ=3. We
can write the features of xxi as the Cartesian product of its spatial
position and the color: xxi � ðSSi; CCiÞ ¼ ðxi; yi; ri; gi; IiÞ. We assume
that the spatial feature (S) and the color feature (C) are independent
of each other. For themean and the covariance of the lthmode of the
Gaussian Mixtures at time t, we have �l;t ¼ ð�Sl;t; �

C
l;tÞ and

�l;t ¼
�S
l;t; 0

0; �C
l;t

 !

:

We represent both the target object O� and the target candidate Ov

by amixture of Gaussians with kmodes in a joint spatial-color space

ÔO�;t ¼ fN̂O�

l;t gl¼1;...;k; N̂
O�

l;t � N
�

!O�

l;t ; �
S;O�

l;t ; �C;O�

l;t ;�S;O�

l;t ;�C;O�

l;t

�

;

ÔOv;t ¼ fN̂Ov

l;t gl¼1;...;k; N̂
Ov

l;t � N
�

!Ov

l;t ; �
S;Ov

l;t ; �C;Ov

l;t ;�S;Ov

l;t ;�C;Ov

l;t

�

;
ð1Þ

where !l;t is the weight of the lth mode at time t and
Pk

l¼1 !l;t ¼ 1.
The joint spatial-color density estimate at the point xxi is

formulated as

p̂tðxxiÞ � p̂tðSSi; CCiÞ ¼
X

k

l¼1

!l;tpðSSijl
SÞpðCCijl

CÞ; ð2Þ

where : pðSSijl
SÞ ¼

exp � 1
2
ðSSi � �Sl;tÞ

T ð�S
l;tÞ

�1ðSSi � �Sl;tÞ
n o

2�j�S
l;tj

1=2
;

pðCCijl
CÞ ¼

exp � 1
2
ðCCi � �Cl;tÞ

T ð�C
l;tÞ

�1ðCCi � �Cl;tÞ
n o

ð2�Þd=2j�C
l;tj

1=2
:

ð3Þ
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2.2 Similarity Measure Based on SMOG

Our similarity measure is constructed by comparing the ordered

modes of the Mixture of Gausssian representations of target and

candidates—the ordering of modes is discussed in Section 2.4. We

denote by

�S
l;t N̂

O�

l;t ; N̂
Ov

l;t

� �

and

�C
l;t N̂

O�

l;t ; N̂
Ov

l;t

� �

;

respectively, the spatial match measure and the color match

measure between the lth modes of the target object O� and the

target candidate Ov at time t. We have:

�S
l;t N̂

O�

l;t ; N̂
Ov

l;t

� �

¼ exp �
1

2
ð�S;Ov

l;t � �S;O�

l;t ÞT ð�̂S�

l;t Þ
�1ð�S;Ov

l;t � �S;O�

l;t Þ

� �

;

ð4Þ

where �̂S�

l;t

� ��1

¼ �
S;Ov

l;t

� ��1

þ �
S;O�

l;t

� ��1

:

�C
l;t N̂

O�

l;t ; N̂
Ov

l;t

� �

¼ min !Ov

l;t ; !
O�

l;t

� �

: ð5Þ

In terms of this, we define the SMOG-based similarity function

between the target object O� and the target candidate Ov in the joint

spatial-color space as

�SMOG ÔO�;t; ÔOv;t

� �

¼
X

k

l¼1

�S
l;t�

C
l;t

¼
X

k

l¼1

exp

(

�
1

2
�S;Ov

l;t � �S;O�

l;t

� �T
�̂S�

l;t

� ��1

�S;Ov

l;t � �S;O�

l;t

� �

)

min !Ov

l;t ; !
O�

l;t

� �

:

ð6Þ

The SMOG-based likelihood function in our method is then

written as

LSMOGðYcolor;tjXtÞ / exp �
1

2�2b
ð1� �SMOGðÔO�;t; ÔOv;tÞÞ

� �

; ð7Þ

where Xt and Ycolor;t is, respectively, the hidden target state and the

image observation at time t. �b is the observation variance and we

experimentally set it to 0.2 in our case. For the influence of the

�b value on the results of particle filters, we refer to [8] for more

details.

Spatial information has been utilized in previous work [5], [7],

[13], [18]. The proposed method is different from these methods.

Compared to [5], [13], we use amodifiedMOG (i.e., SMOG), instead

of the kernel density technique, to estimate the spatial-color joint

density distribution. Our method is different from [18] and [7] in

that: 1) Neither background modeling nor background subtraction

procedures are used in our method. 2) In our method, tracking is

driven by both the region appearance of target candidates and the

region structure. In [18] and [7], tracking is driven at pixel level.

3) We apply our method in the framework of particle filters, where

multiple hypotheses are simultaneously tracked.

Our method is also different from the Spatiograms method in

[2]. Instead of computing the spatial mean and covariance of each

bin, we compute the spatial layout and color distributions of each

mode of SMOG. Thus, our method is more efficient in computation

and needs less storage space.

2.3 Demonstration of Discriminability

In Fig. 2, we test two properties of the proposed similarity

measure: 1) its discriminative ability and 2) the influence of the

k value (i.e., the number of modes or Gaussians) in SMOG on the

results. We repeat the experiment in Fig. 1. From Fig. 2, we can see
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Fig. 1. Color-histogram-based similarity measure. (a) We choose the face (within the middle rectangle with a size of 33� 39 pixels) as the target model. The score of the

similarity measure over (b) x-translation (in pixels), (c) y-translation (in pixels), and (d) scaling (the ratio to the size of target). When we increase the number of histogram

bins, the discriminative ability of the similarity measure slightly improves. However, it still obtains similar scores for different candidate regions even when the number of

bins is set to 16� 16� 16. (See text and compare with Fig. 2.)

Fig. 2. The scores by the SMOG-based similarity measure with different k values over (a) x-translation (in pixels), (b) y-translation (in pixels), and (c) scale (the ratio to the

size of target).



that: 1) The proposed similarity measure is more discriminative

than the color-histogram-based similarity measure and 2) SMOG is

more effective in representing the target object than the general

color histogram. Even if we use only five Gaussians (i.e., k ¼ 5) in

SMOG, the similarity measure is more discriminative than that

based on the color histogram with a total 4,096 bins (Fig. 1), and

3) when we increase the k value of SMOG from 5 to 9, the proposed

method becomes relatively more discriminative (however, the

difference is slight).

It is desirable to develop a robust tracking method that can work

effectively with weak dynamic models. In Fig. 3, we track the face in

Fig. 1a using aweak dynamicmodel (i.e., we employ a first orderAR

model [9], [20] despite the fast movement of the face). Fig. 3 shows

that the proposed method can work well with a weak dynamic

model and outperform the color histogram-based method.

2.4 Calculating and Updating the Parameters of SMOG

Given a region corresponding to the target object O� , we initialize

the parameters of SMOG for the target object by a standard K-means

algorithm (with k0 modes—k0 ¼ 7 in our experiments in Section 6)

followed by an EM algorithm. The k0 modes are sorted by the ratio

of the weight of each mode to its standard variance. We choose the

first k modes so that

k ¼ argmin
k0

X

k0

l¼1

!O�

l;1 > T�

 !

;

where T� is a constant value (e.g., 0.8). The reason that we use

kmodes out of the k0 modes ðk � k0Þ is that we are more interested

in the modes having the most supporting evidence and the least

variance. Once we initialize the k modes for the target object, we

maintain and update the kmodes of the target object in each frame.

Similarly to the target, each target candidate is represented by k

modes and we maintain the ordering of these modes by assigning

candidate pixels to the target modes and using the assigned pixels

(only) to calculate the parameters for the corresponding candidate

mode. Specifically, the parameters of a target candidate can be

calculated in the following way:

1. Calculate the Mahalanobis distances of each pixel xxi in the
target candidate region Ov to the k modes of SMOG of the
target object O� in the color space:

D̂2
l CCi; N̂

C;O�

l;t

� �

¼ CCi � �C;O�

l;t

� �T
�
C;O�

l;t

� ��1

CCi � �C;O�

l;t

� �

: ð8Þ

2. Assign every pixel xxi to one of the k modes of SMOG:

LB
�ðxiÞ ¼ argmin

l
D̂l

�

�

�

�: ð9Þ

The function LB
� : R2 ! f1; . . . ; kg associates to the pixel xxi

the index L�ðxiÞ of the k modes.

3. Label all pixels fxxigi¼1;...;N as follows:

LBðxiÞ ¼
LB

�ðxiÞ if D̂L� ðxiÞ
�

�

�

� � 2:5
0 Otherwise:

�

ð10Þ

The value 2.5 is used so that 98 percent of a Gaussian

distribution (i.e., a mode) is identified as inliers.
4. Calculate the parameters of the target candidate Ov:

!Ov

l;t ¼
P

N

i¼1

� LBðxxiÞ�lð Þ

� �

P

k

l¼1

P

N

i¼1

� LBðxxiÞ�lð Þ

� �	

�Ov

l;t ¼ �S;Ov
l;t

;�C;Ov
l;t


 �

¼
P

N

i¼1

xxi� LBðxxiÞ�lð Þ

� �

P

N

i¼1

� LBðxxiÞ�lð Þ

� �	

�Ov

l;t ¼ �
S;Ov
l;t

;�C;Ov
l;t


 �

¼
P

N

i¼1

xxi��
Ov
l;tð Þ

T
xxi��

Ov
l;tð Þ� LBðxxiÞ�lð Þ

� �

P

N

i¼1

�

� LBðxxiÞ � lð Þ

	 �

;

ð11Þ

where � is the Kronecker delta function. We normalize the

coordinate space so that the coordinates of every pixel in

the target candidate are within the range of [0, 1].

Similarly to [21] and [14], we assume that the target appearance

ÔO�;t is exponentially forgotten and new information ÔO�
t is

gradually added to the appearance model. Here, we use an

adaptive learning rate �t, the value of which is proportional to the

similarity measure �SMOGðÔO�;t; ÔO
�
t Þ. We handle occlusion in a

heuristic way: We update the appearance only if the value of

� ÔO�;t; ÔO
�
t

� �

is larger than a threshold value Tu (e.g., 0.7);

otherwise, we stop updating the appearance model.

3 IMPROVING THE COMPUTATIONAL EFFICIENCY

When we work in the framework of particle filters, the most

expensive part in implementing our method is to evaluate the

similarity measure in (6). This is because the regions correspond-

ing to the set of particles may have many overlapped areas. The

same calculation steps in Section 2.4 may be repeated many times

over these areas. Recently, some solutions (e.g., [12], [15]) to

overcome the computational inefficiency of such situations have

been proposed. In our case, we construct a new feature space using

the rectangle features.

Given a target model ÔO� , we need to calculate the parameters

f!Ov

l ; �
S;Ov

l ;�S;Ov

l gl¼1;...;k of a target candidate to evaluate the

similarity measure in (6). We can write ð!Ov

l ; �
S;Ov

l ;�S;Ov

l Þ as follows:

!Ov

l ¼ nl
X

k

l¼1

nl

,

;�S;Ov

l ¼ ð�xl ; �
y
l Þ; �

S;Ov

l ¼
ð�xl Þ

2
0

0 ð�yl Þ
2

� �

; ð12Þ
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Fig. 3. An example of tracking a face with a weak dynamic model: (a) 100 particles configurations out of the 5,000 particles. (b), (c), and (d) The results using the

color histogram-based similarity measure with (b) 4� 4� 4 bins, (c) 8� 8� 8 bins, and (d) 16� 16� 16 bins. (e) The results for the proposed method with k ¼ 5,

k ¼ 7, and k ¼ 9.



where

nl ¼
X

N

i¼1

�ðLBðxxiÞ � lÞ; �xl ¼
X

N

i¼1

xi�ðLBðxxiÞ � lÞ

 !,

nl;

�yl ¼
X

N

i¼1

yi�ðLBðxxiÞ � lÞ

 !,

nl;

�xl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

x2i �ðLBðxxiÞ � lÞ

 !,

nl � ð�xl Þ
2

v

u

u

t ;

�yl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

y2i �ðLBðxxiÞ � lÞ

 !,

nl � ð�yl Þ
2

v

u

u

t :

ð13Þ

In order to avoid repeating the same operators over the overlapped

regions of the set of particles, we construct an image � ¼

f�igi¼1;...;N� for each mode (corresponding to each label). We write

the features of the pixel �i in the � image as:

��i ¼ fLBðxx
�
i Þ; x

�
i ; y

�
i ; ðx

�
i Þ

2; ðy�i Þ
2g; ð14Þ

where LBðxx
�
i Þ is the label at the pixel x

�
i ; x

�
i and y�i are, respectively,

the x and y coordinate values of that pixel x�i in the region R�.
The detailed procedure of the algorithm is given as follows:

. Predicting a region R�, which covers all regions of the
target candidates in the 2D image.

. Labeling all pixels fx�i gi¼1;...;N� in the region R� by Steps 1
to 3 in Section 2.4.

. Building an integral � image for each label. For each pixel
��0
i in the integral � image f��0

igi¼1;...;N� we have
��0
i ¼

P

x�i�x0i^y
�
i�y0i

��i, where x0i and y0i are respectively the
x and y coordinate values of the pixel ��0

i.
. Calculating the parameters of target candidates by four

table lookup operations, similar to [15].

Fig. 4 shows a rough estimation of the computational time of

the proposed method. We implement our method with k ¼ 9 and

the color histogram-based method using 16� 16� 16 bins. In

Fig. 4b, we increased the number of particles from 200 to 2,000. We

also double the size of the tracked region (those results are marked

with a “�”). As we can see, a major advantage of our method

compared with the color histogram-based method is that its

computational complexity is not significantly influenced by the

number of particles or the size of the target candidate regions.

Fig. 4c shows that our method can process around 15-20 frames per

second (we use 200 particles for the video sequence with image

size 384� 288 pixels).

4 FUSING MULTIPLE CUES

The SMOG tracking method proposed in the previous section

works effectively in most situations. However, it may work poorly

when the target appearance experiences greatly changes. Edges (or

contours) are robust to the changes of illuminations. However, one

problem with the edge features is that images with heavily

cluttered backgrounds can lead to a high rate of false alarm. This

problem can be significantly reduced by fusing the color

appearance with the edge features [1], [11], [19], [20]. Next, we

propose a new shape similarity measure considering three features

of edge points: their spatial distribution, their gradient intensity,

and the size of edge points.
In order to represent the spatial distributions of the object

shape, we use a spatial histogram Ĥ ¼ f�̂hugu¼1;...;h with h bins

(h ¼ 16 in our case) for the edge points along the hypothesized

contour (the rectangle in our case). Let & : R2 ! f1; . . . ; hg be the

function which associates to the edge pixel at location xyi in the

edge image a number &ðxyi Þ corresponding to the index of the

histogram bin. The probability of the edge points falling into the

uth bin of the spatial histogram can be written as:

�̂hu ¼
X

m

i¼1

� &ðx
y
i Þ � u

� �

=
X

h

u¼1

X

m

i¼1

� &ðx
y
i Þ � u

� �

; ð15Þ

where m is the number of edge points around the object contour

and
Ph

u¼1 �̂hu ¼ 1.

Let �� and �v be two sets of the edge points along the contours

of the target object O� and a target candidate Ov and let GðxyÞ be

the gradient intensity at the edge point xy. The shape similarity

measure between O� and Ov is formulated as:

�
Shape

ĤO�
; ĤOv


 �

¼
X

h

u¼1

min �̂hO�
u ; �̂h

Ov
u

� �

 Nu O� ; Ovð Þ Gu O� ; Ovð Þ
h i

; ð16Þ

where  Nu ðO� ; OvÞ and  Gu ðO� ; OvÞ are, respectively, the match

function between the uth bin of Ot and Ov in the data size and the

gradient intensity. We can write them as:

 Nu O� ; Ovð Þ ¼

min
P

xy2��

� &ðxyÞ � u
� �

;
P

xy2�v

� &ðxyÞ � u
� �

0

@

1

A

max
P

xy2��

� &ðxyÞ � u
� �

;
P

xy2�v

� &ðxyÞ � u
� �

0

@

1

A

; ð17Þ
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Fig. 4. Evaluation of the computational time per frame (in MATLAB code): (a) A frame. (b) Computational time versus the number of particles and the region size,

(c) versus the frame index.



 Gu O� ; Ovð Þ ¼

min

P

x
y
2��

Gðx
y
Þ� &ðx

y
Þ�u

� �

,

P

x
y
2��

� &ðx
y
Þ�u

� �

;
P

x
y
2�v

Gðx
y
Þ� &ðx

y
Þ�u

� �

,

P

x
y
2�v

� &ðx
y
Þ�u

� �

0

@

1

A

max

P

x
y
2��

Gðx
y
Þ� &ðx

y
Þ�u

� �

,

P

x
y
2��

� &ðx
y
Þ�u

� �

;
P

x
y
2�v

Gðx
y
Þ� &ðx

y
Þ�u

� �

,

P

x
y
2�v

� &ðx
y
Þ�u

� �

0

@

1

A

:

ð18Þ

The joint observation likelihood function is formulated as

LðYtjXtÞ ¼ L
SMOG

ðY
color;t

jXtÞLShape
ðY

edge;t
jXtÞ; ð19Þ

where the likelihood function of shape L
Shape

ðY
edge;t

jXtÞ can be
written as

L
Shape

ðY
edge;t

jXtÞ / exp �
1

2�2b
1� �

Shape
ĤO�

; ĤOv


 �
 �

� �

: ð20Þ

Although we consider the size and the gradient intensity of the
edge points in the shape similarity measure (16), the values of the
spatial histogram f�̂hugu¼1;...;h in the target template are adaptive
and are updated at each frame. As shown in the experiments in
Section 6, our method is robust to both scaling and changes of
gradient intensity.

5 THE COMPLETE ALGORITHM

In the previous sections, we have developed all of the ingredients

for a robust SMOG tracker. Now, we put them together to yield a

complete tracking algorithm (as detailed in Fig. 5).

6 EXPERIMENTS

In Section 6.1, we compare the proposed method with two popular
color histogram-based methods: the Mean Shift (MS) tracker and
the Condensation (C) tracker. For the purpose of comparisons
between the techniques, we evaluate the proposed method using
the SMOG-based color cue only (which we refer to as SMOG1). In
Section 6.2, we show the performance of the proposed SMOG
tracker using multiple cues (called SMOG2). Quantitative experi-
mental comparisons of the four methods (MS, C, SMOG1, and
SMOG2) are given in Section 6.3.

6.1 Using the SMOG-Based Color Cue

We test the behavior of the three trackers in the face of a weak
dynamic model, appearance changes, scaling, color distractor, and
occlusions. In Fig. 6a, the human face is moving to the left and right
very quickly. The first-order AR dynamic model is weak and not
well suited to this. Both the MS tracker and the C tracker do not
achieve a good result: The MS tracker fails to track the face very
soon; the results of Condensation are not accurate. In comparison,
our method never loses the target and achieves the most accurate
results. The relative ability of the three methods to handle
appearance changes and scaling is demonstrated in Fig. 6b. A man
rotates his face from one side to another. Both the appearance and
the scale of the head keep changing throughout the sequence. We
use variable scale for the three methods. Our method achieves the
most accurate tracking results and scale estimation. Both the MS
tracker and the C tracker perform less accurate in tracking and scale
estimation. In Fig. 6d (an 80 frame subsequence of the girl sequence),
two human faces with very similar colors get close to each other and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 9, SEPTEMBER 2007 1665

Fig. 5. The complete SMOG tracking algorithm.



one occludes the other.Weuse variable scale for allmethods.We can

see that, when the man’s face gets close to and occludes the girl’s

face, the tracking results with the MS tracker and the C tracker are

greatly influenced by the man’s face. Our method achieves the best

accuracy in both tracking and scale estimation.

6.2 Using Multiple Cues

In this subsection, we will examine the performance of SMOG

using both the color and edge cues. Fig. 7 demonstrates the

capability of SMOG2. In Fig. 7a, SMOG2 shows the robustness to

the changing appearance and resists the influence of the floor

(similar color to the person’s body) and successfully tracks the

person despite the variable illumination, scaling, and occlusion.

Fig. 7b shows another advantage of SMOG2. We use 500 frames of

the girl sequence, which contains rotation, scaling, variable

illumination, color distractor, and occlusions. The MS, the C, and

the SMOG1 trackers cannot track the girl’s face throughout the

whole sequence. Only SMOG2 succeeds. In Fig. 7c, we test our

method using a challenging video sequence (a football sequence).

This sequence includes high clutter and color distractors. The fast

moving head of a player is tracked (the first-order AR model is

weak for such motion) and the appearance of the head changes

frequently (including rotation, occlusion, blurring, and changes in

the spatial and color distributions of the appearance). SMOG2

succeeds in tracking the head of the sportsman throughout the

video sequence.

6.3 Quantitative Performance

Table 1 shows the results of the four methods on 30 video clips,

covering challenging difficulties including changing appearance

(e.g., rotation, illumination changes, etc.), scaling, weak dynamic

model, and occlusions (including both partial and complete

occlusions). The length varies from 29 to 500 frames (the average

is about 120 frames). A lost track is declared when the centroid of

the estimated state does not fall into the target region. We use a

variable scale for all methods on the clips with scaling and a fixed

scale on the rest of the clips.
Overall, SMOG2 achieves the best results (Table 1). SMOG(1/2)

outperform the MS and the C trackers in terms of the number of

successful tracks: SMOG2 in 27 out of 30 clips, SMOG1 24 clips,

while C succeeds in 13, andMS does in 9.MS is not good at handling

occlusion and scaling. The C tracker is slightly better in handling

occlusion and scaling, but worse than SMOG(1/2). MS and C are

more easily affected by color distractors. When the video includes

fast movements, neitherMS nor C achieves good results: C succeeds

in one out of three clips;MS never succeeds. In contrast, SMOG(1/2)

succeed in tracking objects in all the three clips.
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Fig. 6. Tracking results with the MS tracker (second column), the C tracker (third

column), and SMOG1 (fourth column). The first column shows the initial target

state. For the MS and C trackers, we use 16� 16� 16 color histogram bins. For

the C and SMOG1 trackers, we use the first-order AR dynamic model [9], [20].

Fig. 7. The tracking results with SMOG2 (a) First row: frames 1, 160, 315, and 400; (b) second row: frames 1, 215, 387, and 453; (c) third row: frames 1, 38, 59, and 73.

TABLE 1
Testing Results of the Four Methods on a Data Set Consisting of 30 Clips

The fourth to the seventh rows show the number of the clips correctly tracked by the corresponding methods. (A: appearance changes. S: scaling. W: weak dynamic
model. O: occlusion.).



There are some cases where SMOG(1/2) fail. All failure modes

involve several difficult conditions simultaneously. For example,

SMOG2 fails in three clips out of 30 testing clips: (first failure)

rotation and camera zooming at the same time; (second failure) a

man rotates his head with large scaling and with clothes of similar

color to his face; (third failure) occlusion and a color distractor occur

simultaneously. However, all tested trackers fail on these clips.

7 CONCLUSION

We have described an effective appearance model (SMOG) in a

joint spatial-color space, and an associated similarity measure. The

SMOG appearance model and similarity measure consider both

the spatial distributions and the color information of objects.

Hence, SMOG more effectively represents objects and the SMOG-

based similarity measure is more discriminative than the color

histogram-based appearance model and similarity measure. We

also propose a new technique which greatly improves the

computational efficiency of our method with which the number

of particles and the size of target candidate region can be greatly

increased without significant change in the processing time of the

proposed method. We also propose a new shape similarity measure

which considers the spatial distribution of the size of, and the

corresponding gradient intensities of the edge points and we

integrate this shape similarity measure with the SMOG-based color

similarity measure.
Experiments on a variety of video sequences show SMOG

(using color cue only or multiple cues) achieves very promising

results in handling a variety of challenges.
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