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Adaptive Observer-based parameter estimation with

application to Road Gradient and Vehicle Mass

Estimation
Muhammad Nasiruddin Mahyuddin, Member, IEEE, Jing Na, Guido Herrmann, Senior Member, IEEE, Xuemei

Ren and Phil Barber

Abstract—A novel observer-based parameter estimation
scheme with sliding mode term has been developed to estimate
the road gradient and the vehicle weight using only the vehicle’s
velocity and the driving torque. The estimation algorithm exploits
all known terms in the system dynamics and a low pass filtered
representation of the dynamics to derive an explicit expression of
the parameter estimation error without measuring the accelera-
tion. The proposed parameter estimation scheme which features
a sliding-mode term to ensure the fast and robust convergence
of the estimation in the presence of persistent excitation is
augmented to an adaptive observer and analyzed using Lyapunov
Theory. The analytical results show that the algorithm is stable
and ensures finite-time error convergence to a bounded error even
in the presence of disturbances. In the absence of disturbances,
convergence to the true values in finite time is guaranteed. A
simple practical method for validating persistent excitation is
provided using the new theoretical approach to estimation. This
is validated by the practical implementation of the algorithm on a
small-scaled vehicle, emulating a car system. The slope gradient
as well as the vehicle’s mass/weight are estimated online. The
algorithm shows a significant improvement over previous results.

I. INTRODUCTION

In recent years, improving safety of the drivers and pro-

tecting the environment from excessive carbon emission and

fuel consumption have become the main agenda of automotive

companies. Several results in the literature evidently show the

motivation of harnessing the knowledge of road gradient and

vehicle’s mass [1]-[7], for the purpose of delivering safety

features and fuel efficiency in vehicular technology. Active

safety technologies such as vehicle stability control [8],[9] and

antilock braking systems [10],[11] promise better control of
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the vehicle in the midst of aggressive maneuvers, minimising

the likelihoods of rollover and skidding. UK research indicates

the effectiveness of reducing serious crashes involving loss of

control situations such as skidding, and rollover as much as

33% and 59% respectively [12]. These active safety technolo-

gies require information on the vehicle’s inertial parameter

such as mass in order to perform prior system calibration.

To add further challenge, trucks and SUVs are vehicles with

highly variable loads. Nominal loads may provide high load

safety but at the expense of the need of load calibration in case

of load changes [13], [2]. Adapting active safety systems to

variations in loading is the solution to the calibration problem,

in particular, the online estimation of mass of the vehicle

across all varying loads.

It has been shown that mass estimation without the knowl-

edge of road grade proves to be ineffective as the method

would contain an unacceptable level of error [1]. Knowledge

of the road grade can be used in engine and gearbox control

systems to assist the instantaneous power demand whilst

regulating fuel consumption and thus, keeping environmental

impact as low as possible [14]. Acceleration performance of

a vehicle on a steep downhill can be improved in terms of

hill holding, traction control and transmission shift scheduling,

simultaneously giving the vehicle the merits of safety and fuel

efficiency [6]. The reasons above prompt us to obtain the road

gradient and vehicle’s mass simultaneously in a reliable and

economic way.

Sensor-based methods to obtain road gradient information

are prevalent [14], [15], [16]. Extraneous hardware and wiring

complexity as consequence of additional sensors may not be

desirable for automotive manufacturers [5]. One may argue

that the cost of an accelerometer-based sensor, such as an

inclinometer may be acceptable. However, due to the nature of

the inclinometer’s construction, it is so susceptible to giving

out errors [17] as it is only suited to measure static inclination.

Exploiting remote sensing methods such as GPS, e.g. in [14],

may aid in road gradient estimation but at some cost. In [2], a

GPS or barometer sensor is utilized in addition to torque and

velocity sensors to obtain absolute road height information,

while Barrho, et al. [18] require accurate information of the

vehicle mass which is not always possible.

There is some work adopting a sensorless or model-based

approach in road gradient and vehicle’s mass estimation

[13],[1],[7],[19],[5],[4]. Mangan et al. [5] adopt a sensorless

longitudinal road gradient estimation method which proves



to be effective, although reliance on acceleration information,

through differentiated velocity, may expose estimation to be

over-sensitive to noise. Bae et al. [1] suggest a recursive least-

squares (RLS) approach which requires acceleration informa-

tion and then assumes the existence of sufficient data points

to solve for the missing parameters, i.e. vehicle mass and

gradient, by inverting a regressor matrix in a batch process.

Similarly, the work in [20] and [6] estimate the road grade

only using the position, velocity and driving torque or force

signal. In [7], an RLS-based observer is designed to estimate

the road gradient only, with the knowledge of the vehicle’s

mass.

In this paper, we revisit the online road gradient and

mass estimation of vehicular systems using only the vehicle’s

velocity and the driving torque. This is achieved based on a

novel adaptive nonlinear observer design. A novel estimation

algorithm guarantees finite-time convergence of the estimated

parameters to the true values. Moreover, auxiliary filtered

variables implicitly generate a parameter estimation error

which drives the adaptation algorithm with finite-time con-

vergence. Compared to previous results (e.g. [21]) concerning

the parameter estimation, some appropriate information of the

parameter error is derived, and then incorporated into the

parameter adaptation for the observer design. The proposed

method is verified experimentally in a reduced-scale vehicular

system, which provides a significant improvement over a

previous algorithm. Moreover, the adaptation scheme does

not rely on acceleration information due to some auxiliary

filters. In addition, the parameter estimation scheme uses a

filtered regressor matrix. Measurable system states, a regressor

vector and the known dynamics are collected and filtered

to form auxiliary variables. Owed to the special feature of

a sliding mode term, the adaptation algorithm guarantees

robust finite-time convergence to a compact set, provided

that there is a Persistent Excitation (PE) condition fulfilled

so that a filtered regressor matrix remains positive definite.

The parameter error information can be explicitly formulated

by virtue of the filtered auxiliary variables. The possible

instability and infinite growth found in [22] and [23] due

to the existence of an unstable integrator are prevented in

this paper. We also show robustness of our adaptive scheme

and we can verify the PE condition through computation of

the respective filtered regressor matrix’s condition number.

In contrast, the classical RLS algorithm fundamentally lacks

in fast convergence, specifically exponential convergence, let

alone finite-time convergence [21],[24].

Based on the discussions above, the contributions made in

the paper can be summarised as follows:

• The proposed estimation approach does not require the

knowledge of vehicle’s acceleration, i.e. only velocity and

torque is needed.

• The adaptive observer-based parameter estimation algo-

rithm proposed here incorporates a novel adaptive law

that captures the parameter estimation error.

• Finite-time convergence of parameter estimate to true

values is guaranteed in the presence of PE or sufficient

richness (SR), in the absence of unknown disturbances.

This is simultaneously achievable with being robust.

• The adaptive law incorporated in the proposed algo-

rithm scheme contains significant robustness against dis-

turbances. The sliding-mode term allows the switching

signal to effectively reject disturbances and uncertainties.

• Extensive comparative experimental analysis provide ev-

idence of the advantages of our approach in comparison

to the RLS-algorithm.

This paper is organised as follows: In Section II, a system

formulation is presented in a generic form along with the

required assumption. Section III presents the adaptive observer

design together with the novel adaptive law design in Section

IV. A stability analysis is discussed in Section V followed

by Section VI which presents the main contribution of the

paper; the parameter estimation algorithm in application to

road gradient and vehicle’s weight estimation. Section VII

describes the experimental process and the main results of

the contribution. Section VIII concludes the paper.

II. SYSTEM FORMULATIONS

Consider a nonlinear system of the following structure:

ẋ = Ax +B1u1 +B2f(x, u2) + ζ
y = Cx

(1)

where A ∈ R
n×n is the known system matrix, B1 ∈ R

n×m1

and B2 ∈ R
n×m2 are known input matrices, u1 ∈ R

m1

and u2 ∈ R
m̄2 are known inputs, whilst C ∈ R

p×n is

the corresponding output matrix and ζ ∈ L∞ is a bounded

disturbance. The function f(x, u2) : Rn × R
m̄2 → R

m2 is

partially unknown for which the detail will be outlined below

and the pair (A,B1) is controllable. It is assumed that p ≥ m2.

The following assumptions are made:

Assumption 1 (C,A,B2) is minimum phase and (CB2) is

full rank.

Assumption 2 The function f(x, u2) can be represented in

a linear parameterized form: f(x, u2) = ϕ(x, u2)Θ, where

ϕ : Rn × R
m2 → R

m2×l is a known Lipschitz continuous

function, while Θ = const.,Θ ∈ R
l is an unknown parameter

vector which is to be estimated.

Assumption 3 The signals x, u1 and u2 are measurable and

bounded.

Assumption 3 is a common assumption for observer design

and can be easily achieved by suitable choice of the control

signal u1 (e.g. [22] [26]).

Under these conditions, the system can take the following

structure
[

ẋ1

ẋ2

]

=

[

A11 A12

A21 A22

] [

x1
x2

]

+

[

B11

B12

]

u1 +

[

0
B̄2

]

ϕΘ+

[

ζ1
ζ2

]

y = [0 I]

[

x1
x2

]

(2)

where B̄2 ∈ R
p×m2 , I ∈ R

p×p and x2 = Cx. Note that

this reformulation is always possible from Assumptions 1

and 3 using Proposition 6.3 in [26]. Moreover, we make the

following assumption.

Assumption 4 A21 = 0, i.e. the second state equation in (2)

2



is decoupled.

Assumption 4 is possibly a strong assumption but it will fit the

generic practical system structures (e.g. vehicular) investigated

in this paper.

III. ADAPTIVE OBSERVER DESIGN

We will design an adaptive observer to estimate the state

vectors which will be suitably combined with a novel pa-

rameter estimation algorithm. The adaptive observer takes the

following form:

˙̂x = Ax̂ +B1u1 +B2ϕΘ̂ + L(y − Cx̂) (3)

where x̂ is the estimated state vector, Θ̂ is the estimated

parameter vector. L is the observer gain matrix such that

Ac = A−LC is a stable matrix and there exist, according to

Proposition 6.3 in [26], positive definite matrices, P and Q so

that,

AT
c P + PAc = −Q (4)

where,

P =

[

P1 0
0 P2

]

> 0, (5)

Q =

[

Q1 Q12

QT
12 Q2

]

> 0, PB2 = CTFT (6)

and F ∈ R
m2×p is a positive definite matrix. From (4), it

follows,
[

AT
c11P1 + P1Ac11 P1Ac12

AT
c12P1 P2Ac22 +AT

c22P2

]

= −Q (7)

and Ac21 = 0. Let x̃ = x − x̂ and Θ̃ = Θ− Θ̂. We can then

use (1) and (3) to define the error dynamics x̃ = x− x̂ as

˙̃x = (A− LC)x̃+B2ϕΘ̃ + ζ

= Acx̃+B2ϕΘ̃ + ζ
(8)

where Θ̃ = Θ− Θ̂ is the estimated parameter error vector.

In the next section, the adaptive laws that update the

estimated parameter vector Θ̂ are developed.

IV. ADAPTIVE LAW FORMULATION

In this section, we shall define the adaptive law for our

parameter estimator.

A. Filter design

From (2), the second state equation can be expressed as,

ẋ2 = (A22x2 +B12u1) + B̄2ϕΘ + ζ2 (9)

Let

ψ = A22x2 +B12u1 (10a)

φ = B̄2ϕ (10b)

then, the following filtered variables can be defined as,

kẋ2f + x2f = x2, x2f (0) = 0

kψ̇f + ψf = ψ, ψf (0) = 0

kφ̇f + φf = φ, φf (0) = 0

(11)

where k > 0. In addition, we may introduce an auxiliary filter

for the bounded disturbance (which is only used for analysis),

kζ̇2f + ζ2f = ζ2, ζ2f (0) = 0 (12)

i.e. ζ2f ∈ L∞. Consequently, we can obtain from (9) and (11)

that,

ẋ2f =
x2 − x2f

k
,

x2 − x2f
k

− ψf = φfΘ+ ζ2f (13)

B. Auxillary integrated regressor matrix and vector

The filtered variables introduced above will be used in the

definition of a filtered regressor matrix, M(t), and a vector,

N(t) as,

Ṁ(t) = −kFFM(t) + kFFφ
T
f (t)φf (t), M(0) = 0 (14)

Ṅ(t) = −kFFN(t) + kFFφ
T
f (t)

(

x2−x2f

k − ψf

)

(15)

where, kFF ∈ R
+, can be implemented as a forgetting factor

and the initial condition of N(t) is N(0) = 0. Note that (15)

is equivalent to:

Ṅ(t) = −kFFN(t) + kFFφ
T
f (t)(φf (t)Θ + ζ2f ), (16)

Consequently, we can find the solution to (14) and (15),

M(t) =
∫ t

0 e
−kFF (t−r)kFFφ

T
f (r)φf (r)dr

N(t) =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)

(

x2−x2f

k − ψf

)

dr
(17)

where

N(t) =M(t)Θ +
∫ t

0 e
−kFF (t−r)kFFφ

T
f (r)ζ2fdr

=M(t)Θ + ζ2N
(18)

and ζ2N =
∫ t

0 e
−kFF (t−r)kFFφ

T
f (r)ζ2fdr. Note that φ is

bounded since it is Lipschitz continuous and x, u2 are bounded

(Assumption 1). Thus, φf is bounded. Since ζ2f ∈ L∞, it

follows that N(t),M(t) and ζ2N are bounded.

Lemma 1: The auxiliary regressor matrix M(t) ∈ R
l×l is

positive definite, M(t) > 0, if and only if
∫ t

0
φTf φfdt > 0. •

Proof : It can be easily shown that
∫ t

T

φTf (r)φf (r)dr ≥
∫ t

T
e−kFF (t−r)φTf (r)φf (r)dr (19)

≥ e−kFF t
∫ t

T φ
T
f (r)φf (r)dr

when T < t. For T = 0, the claim follows. �

Thus, if φf is persistently excited, M(t) > λmI is positive

definite for some λm > 0. Clearly, if φ is persistently excited

for any time and a sufficiently large time interval (as derived

from the linear system (11) and definition (10b)), then φf is

also persistently excited [36], [34]. Thus, if φ is persistently

excited then M(t) > λmI for some λm > 0 and
∫ t

T
φTf φfdt >

λmI . In this paper, it is important to achieve M(t) > λmI
for our adaptation algorithm to work. This can be achieved

through persistent excitation of φ:

Remark 1: The Persistent Excitation (PE) condition for the

regressor φ can be achieved in the experiment through an

appropriate control signal, u1. For instance, the control signal

3



can be augmented by a noise signal or the controller can

introduce for the system states, x, a tracking demand which

achieves ‘sufficient richness’ (SR) of x and guaranteesM(t) >
λmI, λm > 0 as in [30]. Note also that some practical systems

may be subject to sufficient disturbances causing PE, e.g. [29].

◦

C. Parameter Estimation

We shall write our adaptive law as,

˙̂
Θ = Γ[ϕTF (y − Cx̂)−R(t)] (20)

The term R(t) contains a sliding mode type term to ensure

fast parameter convergence,

R(t) = M(t)ω1Ω
M(t)Θ̂−N(t)

∥

∥

∥
M(t)Θ̂−N(t)

∥

∥

∥

(21)

+M(t)ω2Ω(M(t)Θ̂−N(t))

where ω1 and ω2 are positive definite scalars. Γ and Ω are

positive definite and diagonal design matrices:

Γ = diag(γ1, . . . , γl), Ω = diag(ω1, . . . , ωl) (22)

It will be proven that the parameter error matrix, Θ̃, converges

to zero in finite time for systems without disturbance.

Remark 2: Compared to previous results (i.e. the parameter

adaptation is only driven by the observer error in (20)),

the extra term R(t), taking parameter error information,

M(t)Θ̂−N(t), is employed; this could enhance the parameter

convergence performance [35]. In particular, we incorporate

the sliding mode technique in (21) such that the finite-time

convergence is guaranteed as stated in the next section. ◦

V. STABILITY AND PERFORMANCE

The following theorem is the key technical result which is

to be applied to the mass and gradient estimation.

Theorem 1: Given a system (1), which satisfies Assumption

1-4, an adaptive observer (3) with adaptation law (20) and

(14) - (15) can be designed so that the unknown parameter

vector Θ can be estimated via Θ̂. The following holds for

persistently excited φ (10b):

a) Ultimate bounded stability can be satisfied for all

states (observer error and parameter estimation er-

ror).

b) For ζ = 0, the adaptive observer and parameter

estimation is exponentially stable for both states

(observer error and parameter estimation error).

c) For ζ = 0, finite-time convergence of the estimated

parameters can be guaranteed.

♦
Proof : a.) Note that we assume that φ is persistently

excited, i.e. M(t) is invertible. We shall prove the ultimate

boundedness at first for observer error x̃ and parameter esti-

mation error, Θ̃. The following Lyapunov candidate shall be

employed,

V (t) =
1

2
x̃TP x̃+

1

2
ÑTM−1Γ−1M−1Ñ (23)

Note that Ñ = N −MΘ̂, i.e. Ñ = MΘ + ζ2N −MΘ̂ and

Θ̃ =M−1[Ñ − ζ2N ]. We shall then decompose (23) into,

V (t) =
1

2
[x̃1 x̃2]

T

[

P1 0
0 P2

] [

x̃1
x̃2

]

+
1

2
ÑTM−1Γ−1M−1Ñ

=
1

2
x̃T1 P1x̃1 +

1

2
x̃T2 P2x̃2

+
1

2
ÑTM−1Γ−1M−1Ñ

= V1 + V2 + V3 (24)

We now analyse the functions of V1 = 1
2 x̃

T
1 P1x̃1 and Ṽ =

V2 + V3 = 1
2 x̃

T
2 P2x̃2 +

1
2Ñ

TM−1Γ−1M−1Ñ separately for

convenience. Taking the derivative of Ṽ ,

˙̃V = 1
2

(

x̃T2 P2
˙̃x2 + ˙̃x2P2x̃2

)

+ d
dt

[

1
2Ñ

TM−1Γ−1M−1Ñ
]

= − 1
2 x̃

T
2 Q2x̃

T
2 + x̃T2 P2B̄2ϕΘ̃

+ÑTM−1Γ−1
(

dM−1Ñ
dt

)

+ x̃T2 P2ζ2

= − 1
2 x̃

T
2 Q2x̃

T
2 + x̃T2 P2B̄2ϕΘ̃+

ÑTM−1Γ−1
(

˙̃Θ +M−1ṀM−1ζ2N +M−1ζ̇2N

)

+x̃T2 P2ζ2

(25)

The matrix Ṁ (14) and the vector ζ̇2N (18) are bounded for

bounded x2 which implies boundedness for ζBD,

ζBD =M−1ṀM−1ζ2N +M−1ζ̇2N (26)

Then,

˙̃V = −1

2
x̃T2Q2x̃2 + x̃T2 P2ζ2 (27)

+ÑTM−1Γ−1( ˙̃Θ + ζBD) + (x̃T2 P2B̄2ϕΘ̃)

Adopting our adaptive law (20), it follows:

˙̃V = − 1
2 x̃

T
2 Q2x̃2 + x̃T2 P2ζ2

+ÑTM−1Γ−1(−Γ[ϕFCx̃−R] + ζBD)

+x̃T2 P2B̄2ϕΘ̃
= − 1

2 x̃
T
2 Q2x̃2 + x̃T2 P2ζ2 − ζT2NM

−1ϕFCx̃

+ÑTM−1R+ ÑTM−1Γ−1ζBD

= − 1
2 x̃

T
2 Q2x̃2 + x̃T2 P2ζ2 − ζT2NM

−1ϕB̄T
2 P

T
2 Cx̃2

+ÑTM−1[M(t)ω1Ω
M(t)Θ̂−N(t)

‖M(t)Θ̂−N(t)‖
+M(t)ω2Ω(M(t)Θ̂ −N(t))] + ÑTM−1Γ−1ζBD

(28)

Let Ω̃1 = ω1Ω and Ω̃2 = ω2Ω,

˙̃V ≤ −1

2
σ(Q2)‖x̃2‖2 − ‖Ñ‖σ(Ω̃1) (29)

+‖Ñ‖σ̄(M−1)σ̄(Γ−1)ζBD

−σ(Ω̃2)‖Ñ‖2 + σ̄(P2)‖ζ2‖‖x̃2‖
+‖P2‖λ−1

m ‖ζ2N‖‖φ‖‖x̃2‖
≤ −σ(Q2)σ(P

−1
2 )V2 (30)

−
√
2λmσ(Γ

1/2)σ(Ω̃1)
√
V 3

−2σ(Ω̃2)λ
2
mσ(Γ)V3

+
√
2σ̄(Γ−1/2)ζBD

√

V3

+
√
2σ̄(P

1/2
2 )̺

√
V 2

4



where ̺ = 2‖ζ2‖ + λ−1
m ‖ζ2N‖‖φ‖ and σ(·), σ̄(·) denote the

minimum and maximum singular values for a matrix. Note

that ζBD ∈ L∞ and ̺ ∈ L∞. Thus, the result of (30)

implies that the pair (x̃2, Ñ) will converge to a set of ultimate

boundedness. Considering the special system structure of

equation (2), Assumption 2 and the boundedness of ζ2N , it is

easily seen that also the pair (x̃, Θ̃) will enter a set of ultimate

boundedness.

b.) Now, we can prove exponential stability of both states.

In this case, it follows for ζ = 0 and (30);

˙̃V (t) ≤ −1

2
x̃2Q2x̃2 − σ(Ω̃1)‖Ñ‖ (31)

−σ(Ω̃2)‖Ñ‖2

≤ −1

2
σ(Q2)σ(P

−1
2 )V2

−λ−1
m

√
2σ(Ω̃1)σ(Γ

−1/2)
√

V3 (32)

−
√
2λ−2

m σ(Ω̃2)σ(Γ
−1)V3

Thus, the pair (x̃2, Ñ) will decay exponentially to 0. Note

that, now Ñ =MΘ̃ and M > λmI . Thus, under the condition

ζ = 0, it follows that the pair (x̃2, Θ̃) converges exponentially

to 0 and subsequently also the pair (x̃, Θ̃) due to Assumption

4.

c.) To prove finite-time convergence of Θ̃ for ζ = 0, we can

analyse V3 = 1
2Ñ

TM−1Γ−1M−1Ñ as follows for M(t) >
λmI ,

V̇3 = ÑTM−1Γ−1 (−Γ[ϕFCx̃−R]) (33)

= ÑTM−1 [− (ϕFCx̃−R)] (34)

= −Θ̃TϕB̄T
2 P

T
2 x̃+ Θ̃TM Ω̃1

MΘ̂−N

‖MΘ̂−N‖
(35)

+Θ̃TM Ω̃2(MΘ̂−N)

≤ −[σ(Ω̃1)λm − σ(P2)‖φ‖‖x̃‖]‖Θ̃‖ (36)

−σ(Ω̃2)λ
2
m‖Θ̃‖2

Exploiting again the fact that, M(t) > λmI , it follows

V̇3 ≤ −
√
2

σ̄(Γ−1/2)
[σ(Ω̃1)λm (37)

−σ(P2)‖φ‖‖x̃‖]
√
V 3

− 2

σ̄(Γ−1)
σ(Ω̃2)λ

2
mV3

Since x̃ → 0 and the scalar ‖φ‖ is bounded, there is a time

T1 where, for t > T1

σ(Ω̃1)λm > σ(P2)‖φ‖‖x̃‖ (38)

Thus, there is a time T2 so that for t > T2 and ǫ > 0 :
V̇3 ≤ −ǫ

√
V3. Hence, using results from [25] finite-time

convergence of the parameter error Θ̃ to zero can be achieved.

�

Remark 3: The result in Theorem 1 in fact is quite generic.

It also allows for analysis of measurement errors of x2 and φ.

For this reason, we may have in the observer some measure-

ment errors affecting both x2 and also ϕ(x, u2) measurement

and in reality x̌2 and ϕ̌(x, u2) are provided in the practical

system. Thus, the observer equation is

˙̂x = Ax̂+B1u1 +B2ϕ̌Θ̂ + L(x̌2 − Cx̂) (39)

VEHICLE'S MASS ADAPTATION LAW

velocity

torque

ROAD GRADIENT

observer error

ADAPTVE

OBSERVER 

CONCEPTUAL FRAMEWORK OF THE ALGORITHM IMPLEMENTATION

MASS 

PARAMETER ESTIMATION

FRICTIONAL FORCE 

Fig. 1. Parameter Estimation Algorithm Implementation Concepts

The plant dynamics in (9) can be rewritten as,

˙̌x = (Ax̌+B1u1) +B2ϕ̌Θ+ ζ + ( ˙̌x− ẋ)
+A(x− x̌) +B2(ϕ− ϕ̌)Θ

(40)

where x̌ = [xT1 x̌T2 ]
T . Assuming the measurement errors and

its derivative are bounded, (i.e. (x−x̌), (ẋ− ˙̌x), (ϕ−ϕ̌) ∈ L∞),
so that x̌2, ˙̌x2 ∈ L∞, then the plant dynamics (9) are,

˙̌x = (Ax̌ +B2u1) +B2ϕ̌Θ+ ζ̌ (41)

where

ζ̌ = ζ + ( ˙̌x− ẋ) +A(x− x̌) +B1(ϕ− ϕ̌)Θ (42)

can be regarded as a bounded disturbance. Defining the error

dynamics as ˜̌x = (x̌ − x̂) it follows that,

˙̌̃x = Ac ˜̌x+B2ϕ̌Θ+ ζ̌ (43)

Under the assumption that ζ̌ is bounded, we can continue the

analysis as for Theorem 1. Further discussions are omitted

here due to space reasons. ◦

VI. PARAMETER ESTIMATION IN THE VEHICLE DYNAMICS

In this section, we will discuss the previously formulated

parameter estimation algorithm in the context of its application

to road gradient and vehicle’s weight estimation. The concept

of the proposed algorithm application can be depicted in

Figure 1 where only velocity and torque of the vehicle are

needed as inputs to the estimation algorithm. Figure 2 shows

the simplified model of the small-scaled model car used in the

experiment to validate the parameter estimation algorithm.

A. Vehicle model

The parameters to be estimated are the road inclination, θ,

on which the vehicle traverses, the mass of the vehicle, m
and the viscous friction coefficient, Cvf . Referring to Figure

2, assuming the air drag Fdrag is negligible at low speeds1

below 0.2 m/s and the braking force Fbrake is subsumed in

the driving force, Fengine , we may model the small-scaled

model car using Newton’s Second Law in the longitudinal

direction to yield,

mẍ = Fengine −mgsin(θ)− CvF ẋ− Cµmgcos(θ) (44)

1In real-sized vehicles, the air drag cannot be neglected. In this case, the
term Fdrag will have to be estimated in a similar way as presented for the
other forces below. Relevant detail is avoided here due to space reasons.
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where m is the mass of the vehicle, θ is the road gradient

on which the vehicle traverses, ẋ is the vehicle’s velocity,

CvF is the viscous damping/friction coefficient and Cµ is the

rolling friction coefficient. Adhering to the structure presented

in (1), we may represent the system in the following state

space representation,

[

ẋ
ẍ

]

=

[

0 1
0 0

] [

x
ẋ

]

+

[

0
1
m

]

Fengine−
[

0
sinθ + Cµcosθ

]

g −
[

0
CvF

m

]

ẋ

y =

[

1 0
0 1

] [

x
ẋ

]

(45)

which will be used to develop our extended adaptive parameter

estimator.

B. Observer Design

Following the general structure presented in (3), the adaptive

observer with finite-time parameter estimation can be written

as,

˙̂x = Ax̂ +

[

0
1

]

[−g Fengine − ẋ]





ŝ

b̂

f̂



 (46)

+L(y − ŷ)

y = Cx̂ (47)

where x̂ = [x̂ ˙̂x] is the observed state vector. The observer’s

system matrix, A and its output matrix, C are defined as

A =

[

0 1
0 0

]

, C =

[

1 0
0 1

]

(48)

ŝ, b̂, f̂ are the estimated parameters of sinθ + Cµcosθ, 1
m

and CV F

m respectively whereas L is the observer gain chosen

to deliver the positive definite Lyapunov matrix P such that it

satisfies (4). The engine driving force Fengine is assumed to be

bounded (as it implements a velocity controller) to ensure that

the system states x remain bounded. Thus, using this structure,

it follows,

B2 =

[

0
1

]

, Θ̂ =





ŝ

b̂

f̂



 , ϕ =





g
Fengine

ẋ





T

(49)

The observer adaptive weights are lumped such that,

Γ = diag(γs, γb, γf ), Ω = diag(ωs, ωb, ωf) (50)

VII. PRACTICAL APPLICATION RESULTS

This section presents the practical implementation of our

proposed novel estimation algorithm. The hardware realisation

is briefly described at first followed by the estimation perfor-

mance characterisation methodology. This section elucidates

the method to assess the performance of the algorithm. The

Mean Integral Absolute Error (mean IAE), which will be ex-

plained is used in the characterisation as a performance index

computed across different sets of test condition (various slope

profiles) and settings (noise level and velocity variations).

Results on road gradient estimation performance are discussed

which are then followed by mass estimation results.

A. Hardware implementation

A previously built small-scale model car [27] was used in

the experiment to evaluate the estimation algorithm. There

were two parameters to be estimated:- the vehicle’s mass

(nominally weighs ∼ 10kg) and the road gradients on which it

traverses. An inclinometer, SCA61T, was installed for gradient

measurements solely for reference purpose and not to be used

in the algorithm. Figure 3 shows the implemented controller

system network and architecture which emulates the system

network of a road vehicle.

Fdrag

Fviscous

Ffriction

Fgravity

Froll
Fengine

x

Fig. 2. Simplified model of the small-scaled model car and the slope profile

TABLE I
TESTED SLOPE PROFILE

Slope profile θ1 θ2
1 10◦ 15◦

2 18◦ 0◦

3 15◦ 20◦

4 22.3◦ 11.8◦

TABLE II
CHARACTERISATION THROUGH VARIATION IN NOISE AND VELOCITY

DEMAND

Experimental set for variation in noise

set 1 2 3 4 5 6

noise ×2 ×4 ×8 ×10 ×20 ×40

Experimental set for variation in velocity demand [m/s]

set 7 8 9 10 11 12 13

velocity 0.1 0.12 0.14 0.18 0.2 Sines Steps

Fig. 3. Functional Structure of the System Onboard

Together with MatlabTM , the dSPACE MicroAutoBox, used

in the experiment, is a dedicated Rapid Prototyping embedded
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system suited to test the proposed estimation algorithm. The

drive train comprises of an EPOS 24/5 motor driver and

the brushless DC motor (EC-i 40 Maxon) representing the

vehicle’s engine. The motor is current-controlled via the

MicroAutoBox which subsequently provides the driving force,

Fengine , proportional to the current signal, being controlled.

Two Agilent HEDL5540 encoders are installed, one is attached

to the driving motor and the other one is attached to the front

wheel which is passive and not coupled to the drive train. The

reasons for such attachment are two-fold. The first reason is to

provide the true speed measurement of the vehicle. Secondly,

they were used to help us in monitoring any sign of slippage on

the rear driving wheel which may be caused by the excessive

jerkiness or acceleration by the motor due to over excitation

of the control signal. In our experiment, we would avoid the

occurrence of significant slippage as this would invalidate our

estimation effort. The tyre pressure of the test rig is kept at a

reasonably high value to allow true velocity measurement, i.e.

introducing fairly stiff tyres. Slippage was avoided by keeping

vehicle acceleration/velocity limited.
The test slope rig, constructed from two stiff wooden planks

of 2 m in length each, were tilted and bolted together to give

various slope profiles (Figure 2). There were four slope profiles

(Table I) chosen to characterise the performance of our novel

estimation algorithm. The starting slope would be always zero,

i.e. flat ground start-up. Two load masses (of 1.85kg each)

were used in the experiment to evaluate the mass estimation

performance of the proposed algorithm on a flat surface.

B. Methodology

Tests were carried out in accordance to different segments

of the designated slope profile (Table I) to investigate the

effectiveness of our novel estimation algorithm across different

road gradients. The following cardinal performance measures

are outlined to evaluate the proposed novel algorithm:

• Algorithm effectiveness in the presence of deliberate

injection of white noise of different levels to the control

signal i.e. the torque to the engine with purpose to aid

the learning.

• Effects on the convergence of the parameter estimation

for different levels of vehicle’s traversal velocity and

demand signal.

• Algorithm effectiveness in mass estimation

Referring to Table II, characterisation tests were carried

out requiring the small-scaled model car to traverse up the

designated slope at various constant velocity ranges from

0.1 m/s till 0.2 m/s followed by a demand with sinusoidal

variation containing two distinct frequencies (y[m/s] = 0.15+
0.01sin(0.5t)+ 0.01sin(t)+ 0.01cos(0.25t)) and a Step type

velocity demand signal ranging between 0.14 ∼ 0.17 m/s.

Table II also shows various levels of white noise injected into

the control signal for PE condition enhancement. Figure 2

shows the simple model depicting the dynamics of the vehicle

and the generic test slope profile representation. The mean

Integral Absolute Error (IAE) is computed by taking the sums

of absolute error between the inclinometer reading and the

estimated road gradient and divide the sums by the discrete

time unit (nT ), i.e.

E ¯IAE =

∑

nT ‖θinclinometer − θestimated‖
nT

(51)

This is used as the performance index to characterise the algo-

rithm’s performance over various levels of noise and different

types of velocity demands across the designated slope profiles

(Table I). The performance, marked by the computed mean

IAE, of our proposed novel algorithm will be compared against

the conventional least-square based algorithm (equivalently

setting the term R(t) = 0). Another useful performance index

used in the experiment was the condition number of M(t).
A low condition number is favored (ideal numerical value

is 1) as this signifies that the system is Persistently Excited.

A sampling rate of Ts = 0.0008s was used throughout the

experiment.

Remark 4: It is to note that for real-sized vehicles, the

torque originated from the engine may already contain a per-

sistently exciting signal. Thus, the need for artificial excitation

signals might be removed. In addition to varying road surface

conditions, the driver’s behaviour may also introduce PE

condition. Small continuous changes of velocity may provide

sufficient information for identification. It is well known that

practical “real-life” conditions can enhance the performance

of adaptation algorithms, e.g. [29]. ◦

C. Parameter tuning

In our experiment, there were important parameters (see

Table III) of the adaptive observer algorithm needed to be

tuned to achieve satisfactory results. It is to be noted that

universal adaptation gains and tuning knobs were obtained

via the Lyapunov design, achieved in the preceding Section

V. For practical implementation, the algorithm of (20) was

slightly modified and a projection method [21] was introduced

to limit the parameter values via realistic lower and upper

bounds (Table IV). Assuming the algorithm is stable, it will

remain within the bounds and avoid hitting them most of the

time. This will be discussed later in the practical tests. In

particular, we will be interested in a performance index ¯̂m%
which represents the ability of the algorithm to stay away from

the practically imposed bounds. It can be calculated by

¯̂m% =
tb
td
100 (52)

where tb is the sum of the periods of the estimated mass

touching the bounds, divided by the overall estimation period,

td. The forgetting factor, kFF which corresponds to the

auxiliary regressors (formulated in Section IV-B equation (14)

and (15) ) was chosen to prevent the regressor matrix from

growing unboundedly, compromising the need for conserving

the immediate past horizon data (for better learning) and at

the same time, ensuring faster parameter convergence. The

corresponding values of the parameters displayed in the table

are used in the experiment. Figures 4(a) and 4(b) show
the effects of estimation performance (measured by mean

IAE) of varying the adaptation gains γs, γb (see Equation

(50)). As shown in Figure 4(a), increasing γs enhances the

gradient estimation performance as this adaptive weight is

associated with the gradient term, (sinθ). On the other hand,
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TABLE III
ADAPTATION MECHANISM PARAMETERS

Parameter Description Symbols Values

Observer Adaptive weights, Γ
γ1 700
γ2 10
γ3 100

Sliding-Mode Adaptive weights, Ω
ωs 3.2× 10−15

ωb 1× 10−15

ωf 0.18

Adaptation Gain within the leakage term,R
ω1 13.5

ω2 0.5

Forgetting Factor kFF 0.5

Filter Poles k 0.001

TABLE IV
SATURATION LIMITS

Plant Parameters Estimation Lower Limit Upper Limit

Mass(m,kg)
m̂ 10 20

b̂ = 1/m̂ 0.05 0.1

Gradient(θ,◦)
θ̂ -20 20

sin(θ̂) -0.5 0.5

Friction Coefficient CV F 0 1

(CV F ,kg/s) f̂ = CV F /m̂ 0 0.1

γb, associated with the mass estimation and correlated with

the engine force, needs to be selected at a right magnitude so

as to have the algorithm sufficiently sensitive to changes in

gradient but not to over-excite the adaptation. The adaptation

gains associated with the leakage term, R (see Equation (21))

comprised of ω1 and ω2 which are constant scalars chosen to

be sufficiently large by virtue of Lyapunov Design as analysed

in Section V. It is also evident in Figure 4(c) that there is a

compromise in selecting ω1 to be significantly larger than ω2 to

drive the estimated parameters to the true values in finite-time.

Having ω1 too large may subject the algorithm to be over-

sensitive to noise. For instance, the over-sensitised algorithm

to noise and system changes at high magnitude of ω1 shows a

sharp spike during the track gradient transition. It is apparent

to observe the term ω1 works in concert with ω2, whereby,

adhering to the requirement of a sufficiently large ω1, a lower

ω2 improves the convergence rate.

800 900 1000 1100 1200 1300
0

1

2

3

Sliding mode adaptation, γs with γb = 22.5

m
ea

n
IA

E

12.5 22.5 32.5 42.5 52.5 62.5 
0

2

4

6

Sliding mode adaptation, γb with γs = 1700

m
ea

n
IA

E

3.89 4.89 5.89 6.89 7.89 8.89 
0

1

2

3

4

Adaptation Gain, ω1 with ω2 = 0.32

m
ea

n
IA

E

0.32 0.37 0.42 0.47 0.52 0.57
0

2

4

6

Adaptation Gain, ω2 with ω1 = 6.89

m
ea

n
IA

E

Fig. 4. Effects on the estimation performance by tuning (a) γs, (b) γb, (c)
ω1 and (d) ω2.

D. Determination of Rolling Friction Coefficient, Cµ

Another component of the vehicle’s dynamic model re-

quired to be known is the rolling friction coefficient, Cµ.

This was determined by allowing the vehicle to traverse in

a constant velocity on a flat surface, i.e. θ = 0, thereby the

algorithm would estimate Ĉµ with a notion that sinθ = 0 and

cosθ = 1 were kept constant. The surface material on which

the vehicle was tested was of cement floor type. The value

of Ĉµ was found to be in the range of 0.1 ∼ 0.15. The value

Cµ = 0.12 was employed as a known constant in the dynamic

model. Hence, the algorithm would be then used to estimate

the road gradient.

E. Road Gradient Estimation

Road gradient estimation performance will be evaluated

under two sets of settings:- i.) different levels of noise content

in the control signal and ii.) different velocity profiles.

1) Influence of noise content in the control signal on the

estimation performance: Figure 5 shows the distribution of

computed mean IAE across four types of slope profiles for

various levels of magnitude of white noise injected into the

control signal. From the figure, it clearly shows that a white

noise multiplied by 8 times of the nominal level enhanced the

estimation.
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Degree(0◦-22◦-12◦)

Fig. 5. Mean IAE distribution for all slope profiles with different level of
noise multiplier

2) Influence of the velocity profile in the control signal on

the estimation performance: Using the characterisation result

from Section VII-E1, the optimal noise level (8 times of

nominal) is used in this section. Figure 6 shows the distribution

of computed mean IAE for different velocity level and demand

type across four types of slope profile. The figure also shows

that 0.14 m/s would be the optimal velocity for the algorithm

to best perform. Having this knowledge at our expense, the

proposed algorithm was compared with the conventional least-

square (LS) based algorithm [1], [24], [13], [20], [19] across

all four types of slope profiles. Estimation performance results

for two slopes are shown in Figure 7 and 9. Figure 10

also shows that our proposed algorithm supersedes the LS
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algorithm in terms of the performance index, ¯̂m% (52). Figure

8 shows that all the three estimated components, i.e. ŝ, b̂ and

f̂ remained within the realistic practical bounds. Interestingly,

f̂ , associated with the coefficient of viscous friction, Ĉvf ,

remained constant in between 0.015 ∼ 0.02. Assuming the

nominal mass of the vehicle was 10 kg, this translates to

having Ĉvf ≈ 0.2 which is of an acceptable value.
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Fig. 6. Mean IAE distribution for all slope profiles with various velocity
demand
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Fig. 7. Comparative gradient estimation for slope profile 1 with the optimal
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F. Mass Estimation Performance

A test was also carried out to evaluate the performance

of the proposed estimation algorithm in estimating the step

changes of mass on the vehicle. This is, in reality, equivalent

to the unloading of cargo boxes or passengers from a truck or a

SUV(sports utility vehicle) vehicle (See section VII-D for test

procedure to determine Cµ). Figure 11 shows the estimated

mass of the vehicle together with the preloaded masses. The

original signal of the estimated mass (shown by the lighter

(vigorous) shades of the plot) was filtered by a Butterworth

low pass filter with a 3 rad/s cut-off frequency. The test rig
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masses of total 3.7kg.

Removal of another loadmass
weighing 1.85kg after 50
seconds startup

Removal of one load mass
weighing 1.85kg after20
seconds startup.

filtered by Low Pass filter
with corner frequency of 3 rad/s

Fig. 11. Mass Estimation,m̂ (kg)

was preloaded with two extra load masses, weighing each

1.85 kg giving a total mass of 13.70 kg (since the net mass

of the vehicle is 10 kg). Then, two load masses of 1.85 kg

were removed consecutively at two intervals. The load masses
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were placed (at the initial position) at almost center position

to allow equal distribution of mass addition on the test rig.

The vehicle was controlled to travel on a flat ground with

constant velocity of 0.14 m/s assuming a constant rolling

friction was present. White noise was also injected to the

control signal supplied to the motor for regulated PE condition.

The choice of the noise multiplier level and suitable traversal

velocity were based on the test conducted in the previous road

gradient performance characterisation test. Figure 11 shows

that the novel estimation algorithm is sufficiently sensitive

to the changes in the vehicle’s mass, awarding a very good

mass estimation performance in its trait. Owing to the sliding-

mode term in the adaptive law of the proposed estimation

algorithm, the performance concurs with the initial theory and

analysis in terms of its guaranteed finite-time convergence

feature. Again, the finite-time convergence can be only ensured

if (14) and (15) satisfy the PE condition. The result shows

relatively good performance in terms of its responsiveness and

accuracy. To strain the estimation effort further, the integrator

of the algorithm’s filtered regressor were reset at the time of

load masses removal with a purpose to see the convergence

effect on it. Figures 12-13 show the effects of resetting the

integrators and remarkably that the estimation was responsive

to settle at the true value within a short time as proven in

the theory by virtue of Lyapunov analysis. Hence, the results

of Figure 11 are not influenced by the resetting or lack of

resetting of the filtered regressor matrix (14) and vector (15)

during experimentation.
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Fig. 12. Filtered Regressor (a) Matrix, M(t) and (b) Vector, N(t)

G. Effects of Viscous Friction, Cvf , and Persistent Excitation

Prudent observation of the behavior of the estimated param-

eters in the experiment revealed that the viscous friction com-

ponent, Cvf , imposed an insignificant influence on the overall

dynamic of the system. Hence, the estimation performance

would not be adversely affected by the component. Figure

8 (c) shows the key component associated with Cvf , i.e. f̂ .

It displays a constant value without much erratic behaviour.

To investigate the rationale behind the phenomena, Table V

illustrates the numerical disparity of Ĉvf in terms of its
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Fig. 14. Condition Number of filtered regressor, (14) for (a) slope profile 1,
(b) slope profile 2, (c) slope profile 3 and (d) slope profile 4.

dynamic effect in comparison to the rest of the components,

in particular, Fengine . Observing the dynamic contribution of

Ĉvf in both extremities, the magnitude of f̂ · ẋ is very small

in comparison to the rest of the key dynamic components

such as (sinθ + Cµ) · g and 1
m · Fengine . Referring back to

Section VII-E2, Ĉvf is estimated to be approximately 0.2,

and the velocity was set at 0.14 m/s. The computed condition

number of the filtered regressor matrix in (14) with all the three

regressors involved (Fengine, g, ẋ) is about 1× 107 which is

very high. A very high condition number indicates that the

regressor, ẋ, in particular, has either a strong correlation with

any of the two regressors, possibly regressor g, i.e. gravity

or the magnitude of the regressor value is insignificant. In

this case, the huge difference in magnitude of ẋ and Fengine

explains this ill-conditioning of the filtered regressor matrix

as the filtered regressor matrix involves the squaring of these

disparate regressors.
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TABLE V
THE MAGNITUDE OF VISCOUS FRICTION, Ĉvf IN COMPARISON WITH

OTHER DYNAMIC COMPONENTS

ẍ = −sinθ · g − Cµ · cosθ · g + 1

m
· Fengine −

Cvf

m
· ẋ

Component values at two extremities

Extremity sinθ · g Cµ · cosθ 1

m
· Fengine

Cvf

m
· ẋ

Upper bounds 4.27 0.09 6 0.002

Lower bounds 0.974 0.1 2 0.0028

Therefore, in retrospect, the PE condition of (14) should

be investigated by computing the condition number of the

filtered regressor, (14), involving only two key regressors, g
and Fengine . Velocity, v, which relates to the viscous friction,

was omitted from the filtered regressor matrix in (14). This

creates a well conditioned filtered regressor matrix with a

condition number of about 3000. This verifies that the PE

condition has been fulfilled in this case. Figure 14 shows

the respective condition number computed for experiments

involving all slope profiles. Hence, the PE condition is fulfilled

for all the experiments. The results without the inclusion of

Cvf into the model and estimation are in fact fully consistent

with the results where the Cvf estimation was included (see

prior sections).
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IX. CONCLUSION

An adaptive observer with novel sliding-mode based pa-

rameter estimation algorithm to estimate the road gradient and

vehicle’s mass is presented. The proposed parameter estimator

with the sliding-mode term has been proven analytically to

be finite time convergent to an error of well defined bound.

The algorithm shows significant levels of robustness to dis-

turbances and a particular class of measurement errors. The

analytical results are further supported and validated by the

practical implementation in a form of experiments conducted

on a small-scale vehicle traversing a designated test slope

profile with certain parameters tuned. Performance charac-

terisation has been conducted to evaluate the effectiveness

of the proposed road gradient estimation algorithm given a

certain level of noise introduced in the control signal and

under a certain traversal velocity. The practical results show a

significant improvement over the LS-based algorithm in terms

of realistic values within the physical bounds and convergence.
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