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Adaptive observer for fault estimation in nonlinear systems described

by a Takagi-Sugeno model

Atef Khedher, Kamel Benothman, Mohamed Benrejeb and Didier Maquin

Abstract— This paper deals with the problem of fault
estimation for linear and nonlinear systems. An adaptive
proportional integral observer is designed to estimate both
the system state and sensor and actuator faults which can
affect the system. The model of the system is first augmented
in such a manner that the original sensor faults appear
as actuator faults in this new model. The faults are then
considered as unknown inputs and are estimated using a
classical proportional-integral observer. The proposed method
is first developed for linear systems and is then extended to
nonlinear ones that can be represented by a Takagi-Sugeno

model. In the two cases, examples of low dimensions illustrate
the effectiveness of the proposed method.

Index Terms— fault diagnosis, fault estimation, adaptive ob-
server, proportional-integral observer, state estimation, Takagi-
Sugeno model

I. INTRODUCTION

State estimation is an important field of research with

numerous applications in control and diagnosis. Generally

the whole system state is not always measurable and the

recourse to its estimation is a necessity.

An observer is generally a dynamical system allowing

the state reconstruction from the system model and the

measurements of its inputs and outputs [15]. For linear

models, state estimation methods are very efficient [5],

[13], [14]. However for many real systems, the linearity

hypothesis cannot be assumed. In that case, the synthesis

of a nonlinear observer allows the reconstruction of the

system state. For example, let us cite sliding mode observers

[4], the Thau-Luenberger observers [21] and observer for

nonlinear systems described by Takagi-Sugeno models [2].

Approaches using Takagi-Sugeno model (also known

as multiple model [17]) are the object of many works

in different contexts including the taking into account of

unknown inputs or parameter uncertainties [1], [7], [8].

Various studies dealing with the presence of unknown inputs

acting on the system were published [1], [5], [20]. Some

of them tried to reconstruct the system state in spite of the

unknown input existence. This reconstruction is assured via

the elimination of unknown inputs [6], [20]. Other works
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choose to estimate, simultaneously, the unknown inputs and

system state [1], [5], [18]. Among the techniques that do

not require the elimination of the unknown inputs, Wang

[23] proposes an observer able to entirely reconstruct the

state of a linear system in the presence of unknown inputs

and in [16], to estimate the state, a model inversion method

is used. Using the Walcott and Zak structure observer [22]

Edwards et al. [3], [4] have also designed a convergent

observer using the Lyapunov approach.

Observers with unknown inputs are used to estimate

actuator faults which can be considered as unknown inputs.

This estimation can be obtained using a proportional integral

observer [12], [19]. In most cases, a physical process can

be subjected to disturbances which have as origin the noises

due to its environment, uncertainty of measurements, sensor

and/or actuator faults. These disturbances have harmful

effects on the normal behavior of the process and their

estimation can be used to conceive a control strategy able to

minimize their effects. In the case of sensor faults, Edwards

[5] proposes, for linear systems, to use a new state which is

a filtered version of the output, to conceive an augmented

system in which the sensor faults appear as unknown inputs.

This formulation was also used by [9]–[11], [24] to be able

to estimate the faults.

In many cases, systems are affected by faults of different

nature such as sensor or actuator faults, so, in this paper,

a proportional integral observer is conceived to estimate,

simultaneously, the state and theses two kind of faults. The

extension of this method to nonlinear systems described by

Takagi-Sugeno models is proposed thereafter.

The paper is organised as follows. Section II presents

the proposed method of faults estimation for linear systems.

In section III the extension of the proposed method for

nonlinear systems described by Takagi-Sugeno models is

made. Two simulations examples are proposed to validate

the method for linear and nonlinear systems.

II. LINEAR SYSTEM CASE

The objective of this part is to estimate a fault affecting

a linear system via an adaptive proportional integral state

observer.



A. Problem formulation

Consider the linear model affected by a sensor fault, an

actuator fault and a measurement noise described by:

ẋ(t) = Ax(t) +Bu(t) + Efa(t) (1a)

y(t) = Cx(t) + Ffs(t) +Dw(t) (1b)

where x(t) ∈ IRn represents the system state, y(t) ∈ IRm is

the measured output, u(t) ∈ IRr is the known system input,

fa(t) and fs(t) represent respectively actuator and sensor

faults and w(t) is the measurement noise. A, B and C are

known constant matrices with appropriate dimensions. E, F

and D are respectively the actuator fault, the sensor fault

and the noise distribution matrices which are assumed to be

known. Consider also the state z(t) ∈ IRp that is a filtered

version of the output y(t) [5]. This state is given by:

ż(t) = −Āz(t) + ĀCx(t) + ĀFfs(t) + ĀDw(t) (2)

where −Ā ∈ IRp×p is a stable matrix. Let us introduce

the augmented state X(t) =
[

xT (t) zT (t)
]T

and the cor-

responding augmented system given by:

Ẋ(t) = AaX(t) +Bau(t) + Eaf(t) + Faw(t) (3a)

Y (t) = CaX(t) (3b)

with:

Aa =

[

A 0
ĀC −Ā

]

, Ba =

[

B

0

]

, Ea =

[

E 0
0 ĀF

]

Fa =

[

0
ĀD

]

, Ca =
[

0 I
]

, f(t) =

[

fa(t)
fs(t)

]

(4)

The structure of the chosen observer is as follows:










˙̂
X(t) = AaX̂(t) +Bau(t) + Eaf̂(t) +KỸ (t)
˙̂
f(t) = LỸ (t)

Ŷ (t) = CaX̂(t)

(5)

where X̂(t) is the estimated augmented state, f̂(t) represents

the estimated fault, Ŷ (t) is the estimated output, K is the

proportional observer gain and L is the integral gain to be

computed. Ỹ (t) = Y (t) − Ŷ (t). Let us define the state

estimation error x̃(t) and the fault estimation error f̃(t):

x̃(t) = X(t)− X̂(t) and f̃(t) = f(t)− f̂(t) (6)

The dynamics of the state estimation error is given by the

computation of ˙̃x(t) which can be written:

˙̃x(t) = Ẋ(t)− ˙̂
X(t)

= (Aa −KCa)x̃(t) + Eaf̃(t) + Faw(t) (7)

The dynamics of the fault estimation error is:

˙̃
f(t) = ḟ(t)− ˙̂

f(t)

= ḟ(t)− LCax̃(t) (8)

Let us introduce:

ϕ(t) =

[

x̃(t)

f̃(t)

]

and ε(t) =

[

w(t)

ḟ(t)

]

(9)

From (7) and (8), one can obtain:

ϕ̇(t) = A0ϕ(t) +B0ε(t) (10)

with:

A0 =

[

Aa −KCa Ea

−LCa 0

]

and B0 =

[

Fa 0
0 I

]

(11)

In order to analyse the convergence of the generalized

estimation error ϕ(t), let us consider the following quadratic

Lyapunov candidate function V (t):

V (t) = ϕT (t)Pϕ(t) (12)

where P denotes a positive definite matrix.

The problem of robust state and fault estimation reduces

to finding the gains K and L of the observer to ensure an

asymptotic convergence of ϕ(t) toward zero if ε(t) = 0 and

to ensure a bounded error when ε(t) 6= 0, i.e.:

lim
t→∞

ϕ(t) = 0 for ε(t) = 0

‖ϕ(t)‖Qϕ
≤ λ‖ε(t)‖Qε

for ε(t) 6= 0
(13)

where λ > 0 is the attenuation level. To satisfy the con-

straints (13), it is sufficient to find a Lyapunov function V (t)
such that:

V̇ (t) + ϕT (t)Qϕϕ(t) − λ2εT (t)Qεε(t) < 0 (14)

where Qϕ and Qε are two positive definite matrices.

The inequality (14) can also be written as:

ψ(t)TΩψ(t) < 0 (15)

with:

ψ(t) =

[

ϕ(t)
ε(t)

]

,Ω =

[

AT
0
P + PA0 +Qϕ PB0

BT
0
P −λ2Qε

]

(16)

The quadratic form in (15) is negative if Ω < 0. The

matrix A0 can be expressed as:

A0 = Ã− K̃C̃ (17)

with:

Ã =

[

Aa Ea

0 0

]

, K̃ =

[

K

L

]

, C̃ =
[

Ca 0
]

(18)

The presence of the terms PK̃ and λ2 let the inequality

Ω < 0 nonlinear, to linearize it, let us define the following

changes of variables G = PK̃ and m = λ2. The matrix Ω
can then be written as:

Ω =

[

PÃ+ ÃTP −GC̃ − C̃TGT +Qϕ PB0

BT
0
P −mQε

]

(19)

The resolution of the inequality Ω < 0, that is now linear

with regard to the different unknowns, leads to find the

matrices P and G and the scalar m. The gain matrix K̃

is determined via the resolution of K̃ = P−1G and the

attenuation level λ is given by λ =
√
m.



B. Example

Let us consider the linear system described by the follow-
ing matrices:

A =







−0.3 −3 −0.5 0.1
−0.7 −5 2 4
2 −0.5 −5 −0.9

−0.7 −2 1 −0.9






, B =







1 2
5 1
4 −3
1 2






,

D =







0.5 0.5
0.2 0.2
0.1 0.1
0 0.1






, F =







4 6
0 0
−4 2
7 6







C = I and E = B. The system input u(t) is defined by

u(t) =
[

uT
1
(t) uT

2
(t)

]T
, where u1(t) is a telegraph type

signal varying between zero and one and u2(t) is defined by

u2(t) = 0.4 + 0.25 sin(πt). The actuator fault fa(t) is made

up of two components

fa(t) =
[

fT
a1(t) fT

a2(t)
]T

(20)

with:

fa1(t) =

{

0.4 sin(πt), 15 s < t < 75 s
0, otherwise

,

fa2(t) =







0, t < 20 s
0.3, 20 s < t < 80 s
0.5, t > 80 s

and the sensor fault fs(t) is defined as follows:

fs(t) =
[

fT
s1(t) fT

s2(t)
]T

(21)

with:

fs1(t) =

{

0, t ≤ 35 s
0.6, t > 35 s

, fs2(t) =

{

0, t ≤ 25 s
sin(0.6πt), t > 25 s

To define the state z, one choose Ā = 25× I , where I is

the identity matrix.

Using the previously described method with Qϕ = Qǫ = I
leads to the obtention of the observer gain K and L. The
resulting attenuation level is λ = 0.3162 and:

K =





















116.0253 −40.0901 −23.0977 −37.0989
−16.9977 78.3129 30.9322 56.9434
−161.4062 149.2055 4.9692 135.7089
112.4707 −74.5075 34.8011 −91.8975
12.0452 18.2418 −3.6436 25.1209
−2.9528 22.0100 6.1366 22.9357
6.0123 −2.7081 5.2831 −1.9449
0.5412 −3.6433 2.3397 8.0328





















L =







−76.7558 122.3517 22.1039 125.0592
185.6710 −104.5700 −37.2061 −17.9442
6.9387 −25.9424 −107.0508 152.6953
49.4870 −71.5776 56.8719 108.1356







The simulation results are shown in the figures 1 and 2. This

method allows to estimate well the faults affecting the system

even in the case of time-varying faults.
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Fig. 1. Actuator faults and their estimation

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Fig. 2. Sensor faults and their estimation

III. EXTENSION TO MULTIPLE MODEL REPRESENTATION

The objective of this part is to extend the previous pro-

posed method to nonlinear systems represented by a Takagi-

Sugeno model.

A. Problem formulation

Consider the following nonlinear Takagi-Sugeno system

affected by sensor faults, actuator faults and a measurement

noise described by:

ẋ(t) =
M
∑

i=1

µi(ξ(t))(Aix(t) +Biu(t) + Eifa(t))(22a)

y(t) = Cx(t) + Ffs(t) +Dw(t) (22b)

where x(t) ∈ IRn represents the system state, y(t) ∈ Rm

is the measured output, u(t) ∈ IRr is the system input,

fa(t) and fs(t) represents respectively actuator and sensor

faults and w(t) is the measurement noise. Ai, Bi and C

are known constant matrices with appropriate dimensions.

Ei, F and D are respectively the actuator faults, the sensor



faults and the noise distribution matrices which are assumed

to be known. The scalar M represents the number of local

models. The weighting functions µi are nonlinear and depend

on the decision variable ξ(t) which must be measurable.

The weighting functions satisfy the convex sum property

expressed in the following equations:

0 ≤ µi(ξ(t)) ≤ 1,

M
∑

i=1

µi(ξ(t)) = 1 (23)

Let us consider the state z ∈ IRp given by:

ż(t) =
M
∑

i=1

µi(ξ(t))(−Āiz(t)+ ĀiCx(t)+ ĀiFfs(t)+ ĀiDw(t))

(24)
where −Āi, i ∈ 1, ..,M are stable matrices. The dynamics

of the augmented state X(t) =
[

xT (t) zT (t)
]T

is
governed by:

Ẋ(t) =

M
∑

i=1

µi(ξ(t))(AaiX(t) +Baiu(t) + Eaif(t) + Faiw(t))

(25a)

Y (t) = CaX(t) (25b)

with:

Aai =

[

Ai 0
ĀiC −Āi

]

, Bai =

[

Bi

0

]

, (26)

Eai =

[

E 0
0 ĀiF

]

, Fai =

[

0
ĀiD

]

(27)

The matrices Ca and f are given by the equation (4). The
structure of the proportional integral observer is chosen as
follows:

˙̂
X(t) =

M
∑

i=1

µi(ξ(t))(AaiX̂(t) +Baiu(t) + Eaif̂(t) +KiỸ (t))

(28)

f̂(t) =
M
∑

i=1

µi(ξ(t))LiỸ (t) (29)

Ŷ (t) = CaX̂(t) (30)

where X̂(t) is the estimated system state, f̂(t) represents

the estimated fault, Ŷ (t) is the estimated output, Ki are the

local model proportional observer gains and Li are the local

model integral gains to be computed and Ỹ (t) = Y (t)−Ŷ (t).

Using the expressions of x̃(t) and f̃(t) given by the
equation (6), the dynamics of the state reconstruction error
is given by:

˙̃x(t) =
M
∑

i=1

µi(ξ(t))((Aai −KiCa)x̃(t) + Eaif̃(t) + Faiw(t))

(31)

The fault estimation error can be expressed as:

˙̃
f(t) = ḟ(t)−

M
∑

i=1

µi(ξ(t))LiCax̃(t) (32)

Using the definitions of ϕ and ε given in (9) and omitting

to denote the dependance with regard to the time t, the

equations (31) and (32) can be written:

ϕ̇ = Amϕ+Bmε (33)

with:

Am =

M
∑

i=1

µi(ξ)Ã0i and Bm =

M
∑

i=1

µi(ξ)B̃0i (34)

where:

Ã0i =

[

Aai −KiCa Eai

−LiCa 0

]

, B̃0i =

[

Fai 0
0 I

]

(35)

By considering the Lyapunov function V (t) given in (12),

and following the same reasoning as for linear systems,

convergence of state and fault estimation errors as well as

attenuation level are guaranteed if:

ψ(t)TΩmψ(t) < 0 (36)

with:

ψ =

[

ϕ

ε

]

,Ωm =

[

AT
mP + PAm +Qϕ PBm

BT
mP −λ2Qε

]

(37)

The inequality (36) holds if Ωm < 0. Following the same

steps as for the linear case, let us define:

A0i = Ãi − K̃iC̃ (38)

with:

Ãi =

[

Aai Eai

0 0

]

, K̃i =

[

Ki

Li

]

, C̃ =
[

Ca 0
]

(39)

Using the changes of variables Gi = PK̃i and m = λ2,

the matrix Ωm can be written as:

Ωm =

M
∑

i=1

µi(ξ(t))Ωi (40)

with:

Ωi =

[

PÃi + ÃT
i P −GiC̃ − C̃TGT

i +Qϕ PBm

BT
mP −mQε

]

(41)

Sufficient conditions ensuring the negativity of Ωm can be

expressed as:

Ωi < 0, ∀i ∈ {1, . . . ,M} (42)

Solving LMI’s (42) leads to the determination of the

matrices P and Gi and the scalar m. The gain matrices are

then deduced: K̃i = P−1Gi.

B. Example
Consider the nonlinear system described by a the Takagi-

Sugeno model given by the equation (22) with:

A1 =







−0.3 −3 −0.5 0.1
−0.7 −5 2 4
2 −0.5 −5 −0.9

−0.7 −2 1 −0.9






, B1 =







1 2
5 1
4 −3
1 0







A2 =







−0.7 −7 −1.5 −7
−0.2 −2 0.6 1.3
5 −1.5 −9 −3.9

−0.4 −1 −0.3 −1






, B2 =







1 1
2 1
0 2
−1 −2







D =







0.5 0.5
0.2 0.2
0.1 0.1
0 0.1






, F =







3.25 5
0 0.5

−3.25 1.75
5.75 5







E1 = B1, E2 = B2, M = 2, ξ(t) = u(t), C = I



Considering u(t) = [u1(t) u2(t)]
T

, the signal u1(t)
is a telegraph type signal whose amplitude belongs

to the interval [0, 0.5]. The signal u2(t) is defined by

u2(t) = 0.4 + 0.25 sin(πt). The fault signals fa(t) and

fs(t) are given by the equations (20) and (21).

Choosing Qϕ = Qǫ = I , Ā1 = 5×I and Ā2 = 10×I , the

set of LMI (42) can be solved, leading to the determination

of the different gains of the proposed observer: λ = 3.3166
and

K1 =





















21.7261 −5.3236 −16.5771 −43.8763
−6.4652 53.0576 −2.8775 2.0534
−30.8514 56.1659 −10.6775 46.8992
−18.6032 −8.8603 10.1258 −24.4917
17.1705 −2.4699 −8.9768 −8.2040
3.0258 10.0009 −1.7346 2.1461
2.9950 −0.0968 3.4689 −0.2700
−0.3535 −0.4946 −0.0403 4.6610





















K2 =





















25.7725 −48.4503 −10.4671 −33.1388
−41.2285 139.0493 3.4662 10.8503
−61.0689 183.0421 19.4017 36.0392
−3.8613 −25.6660 9.6924 −4.3148
15.4687 −23.0853 −7.4343 −11.5565
−0.8234 22.9419 1.1660 1.3886
2.3609 0.8733 −2.5571 0.0073
−0.7383 0.4161 1.0880 0.5716





















L1 =







9.4356 55.9749 −0.3767 29.5858
65.1988 −19.9203 0.8819 −35.5076
5.0431 5.9123 −32.3952 75.0141
22.6533 −19.8043 32.9891 57.6045







L2 =







−38.0795 158.8227 4.1724 16.5804
62.4301 −113.0505 −19.4454 −43.9582
−4.2585 33.6689 −33.0954 46.4728
19.5100 −47.1125 9.7380 27.7166







The simulation results are shown in the figures 3 to 5. As

for the previous linear case, the proposed method provides

good estimates of the system state (Figure 3 shows the four

state estimation errors), and the faults affecting the system

(Figure 4 presents the actuators faults and their estimation

while Figure 5 depicts the sensor faults).

IV. CONCLUSION

This communication has presented an adaptive propor-

tional integral observer able to estimate simultaneously actu-

ator and sensor faults. Initially developed for linear models

(simple case), the design has been extended to nonlinear

models through the use of Takagi-Sugeno model. Small

size examples have illustrated the efficiency of the proposed

approach either for constant and time-varying faults. For the

considered examples, the matrices which filter the output of

the actual system has been chosen on an empirical manner.

Further research work would include the analysis of the

influence of this extra dynamics with regard to the noise

acting on the system and the specifications of fault detection

problem. Clearly, the obtained fault estimates could also be

used through a fault tolerant control law.
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Fig. 3. State estimation errors
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Fig. 4. Actuator faults and their estimation
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Fig. 5. Sensor faults and their estimation
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Netherlands, June 28 - July 1, 1993.

[17] Murray-Smith R., Johansen T. Multiple model approaches to modeling
and control. Taylor and Francis, London, 1997.

[18] Orjuela R., Marx B., Ragot J. and Maquin D., On the simultaneous
state and unknown inputs estimation of complex systems via a multiple
model strategy. IET Control Theory & Applications, 3(7):877-890,
2009.

[19] Orjuela R., Marx B., Ragot J. and Maquin D., Proportional-Integral
observer design for nonlinear uncertain systems modelled by a multi-
ple model approach, 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 9-11, 2008

[20] Sharma R., Aldeen M. Estimation of unknown disturbances in non-
linear systems. Control 2004, University of Bath, UK, September 6-9,
2004.

[21] Thau F.E. Observing the state of non-linear dynamic systems. Inter-
national Journal of Control, 17(3):471-479, 1973.

[22] Walcott B.L., Zak S.H. Observation of dynamical systems in the pres-
ence of bounded nonlinearities/uncertainties. 25th IEEE Conference
on Decision and Control, Athens, Greece, December 10-12, 1986.

[23] Wang S.H., Davison E.J., Dorato P. Observing the states of systems
with unmeasurable disturbances. IEEE Transactions on Automatic
Control, 20:716-717, 1975.

[24] Zhang K., Jiang B., Coquempot V. Adaptive observer-based fast fault
estimation. International Journal of Control, Automation, and Systems,
6(3):320-326, 2008.




