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Abstract— Adaptive modulation has been shown to have sig-
nificant benefits for high-speed wireless data transmission when
orthogonal frequency division multiplexing (OFDM) is employed.
However, accurate channel state information (CSI) is required
at the transmitter to achieve the benefits. Imperfect CSI arises
from noisy channel estimates, which may also be outdated due
to a delay in getting the CSI to the transmitter. In this paper,
we study adaptive OFDM with imperfect CSI for the uncoded
variable bit rate case, where a target bit error rate is set. A
loading algorithm based on the statistics of the real channel is
proposed. Performance results in terms of the average spectral
efficiency are provided for adaptive OFDM systems when there
is noisy channel estimation or CSI delay. The use of multiple
estimates is then proposed to improve the performance. It is
shown that multiple estimates from different frequencies or times
can enhance the performance significantly, which enables the
system to tolerate larger errors in channel estimation or longer
delay in CSI.

Index Terms— Adaptive modulation, imperfect channel state
information, OFDM, variable bit rate.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is an attractive technique for combating

the effects of delay spread in high-speed wireless data
transmission [1]. By transmitting multiple data streams in
parallel over different low-rate subchannels, intersymbol
interference (ISI) can be reduced significantly. If each
subchannel is narrow enough such that the multipath fading
can be characterized as flat, the need for equalization can be
eliminated. The popularity of OFDM is evident by its use
in recent standards for digital audio and video broadcasting
(DAB/DVB) [2], [3], asymmetric digital subscriber line
(ADSL) [4], and wireless local area network (WLAN) [5]
applications.

In conventional OFDM, the same modulation scheme is
employed on all subchannels. However, the bit error rate
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can be dominated by a small set of severely faded sub-
channels. One way to improve the performance is to use
adaptive modulation, where the modulation used on each
subchannel is dependent on the multipath channel response
for that subchannel. Adaptive modulation takes advantage of
the frequency selectivity and time variation by adapting the
transmitted signal to match the multipath channel, which is
sometimes called “adaptive loading”. Both the power and the
data rate in each subchannel can be adapted. The benefits have
been described in previous works [6]-[12]. Moreover, adaptive
OFDM has already been used in ADSL [4]. To achieve
the performance advantages of adaptive modulation, however,
accurate receiver channel state information (CSI) is required
at the transmitter. In wireless communications, because the
channel is noisy and time-varying, the estimated channel
response may be noisy and outdated. Some researchers [11]-
[19] have studied the performance when imperfect or partial
CSI is available, and some of them have proposed possible
solutions for the imperfect CSI case. Adaptive transmission
based on imperfect or partial CSI for multiple-antenna OFDM
systems has also been studied, for example, in [20]-[23].

Adaptive OFDM can be employed for two different kinds of
services: constant bit rate (CBR) and variable bit rate (VBR).
Typically an average bit error rate (BER) requirement is set
for the VBR services. In [11], the performance degradation
from both Doppler and channel estimation error, in terms
of throughput and BER, was investigated when a subband
approach was employed. The impact of imperfect CSI was also
studied in [15] and [16] for the CBR case. A low-complexity
ordered subcarrier selection algorithm was proposed in [12],
and the robustness of this algorithm against Doppler was
studied. In [13], an algorithm underloading all subchannels is
proposed to combat the BER degradation which results from
the channel errors in coherent detection at the receiver. In
[14], channel prediction is employed to mitigate the impact
of outdated CSI for the CBR case. A statistical adaptive
modulation scheme based on the long-term channel statistics
(partial CSI) was proposed in [18]. In [19], optimal power
loading algorithms based on average and outage capacity
criteria were pursued when partial CSI was available at the
transmitter.

In this paper, we study adaptive OFDM for the uncoded
VBR case. The goal is to investigate how CSI errors due to
noise and delay impact the system performance and how we
can improve the performance. We quantify the performance
degradation due to CSI errors and propose the use of multiple
estimates to mitigate the effect of CSI errors. Section II
introduces the wireless channel model and the OFDM system
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model, together with the system parameters used in the sim-
ulations. The average spectral efficiency of non-adaptive and
adaptive OFDM with perfect channel information is derived in
Section III. Section IV presents a new loading algorithm and
discusses the performance of adaptive OFDM with imperfect
CSI. The effects of both channel estimation error and outdated
CSI are considered. In Section V, the use of multiple estimates
is proposed to improve the performance, and simulation results
are provided. Finally, conclusions are given in Section VI.

Throughout this paper, a continuous constellation size is
assumed (that is, the number of bits per symbol can range
from 0 to ∞), which provides easily interpreted results and
gives an upper bound on achievable performance. Power adap-
tation is not considered because it increases implementation
complexity and has been shown to have a very limited effect
on performance [14] [24]. For notation, we use (·)T and (·)†
to denote transpose and transpose conjugate, respectively.

II. CHANNEL MODEL AND SYSTEM PARAMETERS

We assume the wide-sense stationary uncorrelated scattering
(WSSUS) model for the frequency-selective mobile radio
channel. This has been widely used in the literature as a
physically reasonable approximation (for example, see [25]-
[27]), and the material presented will be based on this model.
Mathematically, the baseband impulse response of the channel
can be described by

h(t, τ) =
L∑

�=1

γ�(t)δ(τ − τ�), (1)

where L is the total number of paths, τ� is the delay of the
�th path, and γ�(t) is the corresponding complex amplitude.
Moreover, the γ�(t)’s are wide-sense stationary (WSS) com-
plex Gaussian processes and independent for different paths
with E{|γ�(t)|2} = q2

� . The channel is normalized such that∑L
�=1 q2

� = 1. It is further assumed that the γ�(t)’s have the
same normalized correlation function rt(Δt), which means
that

E{γ�(t + Δt)γ∗
� (t)} = q2

� rt(Δt). (2)

For the simulations in this paper, the time-varying fading
channel is generated based on Jakes’ model [28], in which
the correlation function is given by

rt(Δt) = J0(2πfDΔt). (3)

Here J0(·) is the zeroth-order Bessel function, and fD is the
maximum Doppler frequency.

Let B be the total bandwidth of the system and K the
total number of subchannels. This results in a subchannel
spacing of Δf = B/K and an OFDM block length of
T = 1/Δf = K/B, assuming that the guard interval (cyclic
prefix) is so small that it can be neglected. Then the sampling
interval is given by Ts = T/K = 1/B. We assume that each
subchannel is narrow enough so that it experiences flat fading.
Let H [n, k] denote the frequency response of the kth tone in
the nth OFDM block, given by

H [n, k] =
L∑

�=1

γ�(nT )W kp�

K , (4)

where WK = exp{−j2π/K} and p� = τ�/Ts. Then the
following properties regarding H [n, k] follow directly.

Property 1: H [n, k] is a complex Gaussian random variable
with zero mean and unit variance for any n and k.

Property 2: The correlation function of the frequency re-
sponse at different times and frequencies is given by

E {H [n + Δn, k + Δk]H∗[n, k]}

= E

{
L∑

�=1

L∑
m=1

γ�((n + Δn)T )γ∗
m(nT )W (k+Δk)p�

K W−kpm

K

}

= rt(Δn · T )
L∑

�=1

q2
� WΔk·p�

K . (5)

Note that the correlation function reduces to rt(Δn · T ) for
Δk = 0, and reduces to

∑L
�=1 q2

� WΔk·p�

K for Δn = 0.
In other words, the correlation function is separated as the
multiplication of the time-domain correlation (depending on
Doppler) and the frequency domain correlation (depending on
the multi-path delay profile).

Assuming the system parameters are chosen such that
no intercarrier or interblock interference exists, the received
signal is

Z[n, k] = H [n, k] S[n, k] + W [n, k], (6)

where S[n, k] is the transmitted signal, and W [n, k] is additive
white Gaussian noise, which is independent for different n and
k. Let Es be the symbol energy at the transmitter, and N0/2 be
the variance of the real/imaginary part of the Gaussian noise
W [n, k].

Two different sets of values for the system parameters will
be used in the simulation results that are presented in the
following sections:

• Indoor system: The parameters are similar to those for
IEEE 802.11a wireless local area networks (WLANs) [5]
and suitable for indoor environments. A total bandwidth
of 20 MHz is divided into 64 subchannels, resulting
in a block length of 3.2 μs. The carrier frequency is
5 GHz. An exponential delay profile is assumed with
rms and maximum delay spreads of 0.2 μs and 0.8 μs,
respectively.

• Outdoor system: The parameters correspond to an exten-
sion of IEEE 802.11a to wide-area outdoor environments
[29]. A total bandwidth of 5 MHz is divided into 1024
subchannels, resulting in a block length of 204.8 μs. The
carrier frequency is 2 GHz. An exponential delay profile
is assumed with rms and maximum delay spreads of 5
μs and 20 μs, respectively.

The average spectral efficiency is used as the performance
measure. Although we assume the overhead due to the guard
interval is ignored, the guard interval would reduce the spectral
efficiency by about 10-20% in practical OFDM systems. This
assumption, however, does not affect the comparison between
different OFDM systems.

III. SPECTRAL EFFICIENCY OF

ADAPTIVE OFDM WITH PERFECT CSI

There are two kinds of adaptive OFDM systems: in the first,
the modulation varies over both the subchannels and time;
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in the second, the modulation varies over time but all the
subchannels employ the same modulation at a given time. We
restrict our attention to the first kind only.

Assume QAM is employed for each subchannel, and β[n, k]
bits/symbol are sent for the kth tone in the nth block. We
investigate the spectral efficiency under a constrained average
BER requirement. According to [24], given the channel fre-
quency response H [n, k], the instantaneous BER for the kth
tone in the nth block can be approximated by

Pe[n, k] ≈ c1 exp

{
−c2

Es

N0
|H [n, k]|2

2β[n,k] − 1

}
, (7)

where c1 = 0.2, c2 = 1.6.

A. Non-Adaptive Modulation

Consider first the case of non-adaptive modulation, where
β[n, k] = β is a constant for all n and k. Since H [n, k] is
a complex Gaussian random variable and all H [n, k]’s have
identical distributions (Property 1), the overall average BER
becomes

P̄e = EH[n,k] {Pe[n, k]} ≈ c1

c2Es/N0
2β−1 + 1

. (8)

Assume Ptar is the target average BER. Then, by inverting
(8) with P̄e = Ptar, the maximum number of bits that can be
transmitted given the average BER constraint is

β = log2

[
c2

Es

N0
c1

Ptar
− 1

+ 1

]
. (9)

The spectral efficiency (number of bits per second per Hz)
is equal to β, under the assumption that the symbol interval
is the reciprocal of the subchannel bandwidth. The spectral
efficiency of non-adaptive OFDM for Ptar = 10−3 is plotted
in Fig. 1 (dashed line).

B. Ideal Adaptive OFDM

For adaptive OFDM, different modulation schemes are used
for different subchannels and the assignments vary over time.
In this subsection, we assume that perfect knowledge of the
receiver channel information is available at the transmitter.
One way to choose the modulation schemes to achieve the
target BER is to set the instantaneous BER Pe[n, k] equal to
Ptar. While this is just one way to achieve the constraint on
average BER, in a previous study [24], fixing the instantaneous
BER was shown to have negligible loss compared to the
optimum approach for single-carrier transmission. Using this
approach, the number of bits transmitted in each subchannel
can be derived by inverting (7) to obtain

βideal[n, k] = log2

[
c2

Es

N0
|H [n, k]|2

ln c1
Ptar

+ 1

]
. (10)

Therefore, the average spectral efficiency Rideal is

Rideal = EH[n,1],··· ,H[n,K]

{
1
K

K∑
k=1

βideal[n, k]

}
(11)

= EH[n,k]{βideal[n, k]}. (12)

The last equality holds because of the identical statistics of
H [n, k] for all k (Property 1). Therefore, the average spectral
efficiency Rideal does not depend on the system parameters
or the specific power delay profile of the WSSUS mobile
radio channel. However, it is important to remember that the
guard interval is ignored in Rideal. Since the guard interval
length depends on both the power delay profile and the system
parameters, so does the real average spectral efficiency. And
this comment also applies to the results presented later.

The average spectral efficiency of adaptive OFDM for a
target BER of 10−3, obtained through a Monte Carlo simula-
tion, is shown in Fig. 1 (solid line labeled “ideal”). The results
indicate that a significant improvement in spectral efficiency,
or equivalently bit rate, is potentially possible by matching the
modulation scheme in each subchannel to the corresponding
multipath channel response. For example, the average spectral
efficiency is increased from 0.87 b/s/Hz to 4.26 b/s/Hz when
Es/N0 = 20 dB. On the other hand, we also observe a 14-
dB power gain achieved by using adaptive OFDM when the
average spectral efficiency is 2 b/s/Hz.

IV. SPECTRAL EFFICIENCY OF

ADAPTIVE OFDM WITH IMPERFECT CSI

In practice, it is impossible to obtain perfect channel infor-
mation due to noisy channel estimation and the unavoidable
delay between when channel estimation is performed and
when the estimation result is used for actual transmission.
We will consider imperfect CSI in this section and study the
performance degradation in spectral efficiency resulting from
these CSI errors. We assume that the receiver has perfect
CSI for coherent detection so that the effect of CSI errors
on adaptive loading at the transmitter can be separated from
that on coherent detection at the receiver.

A. New Loading Algorithm

If perfect CSI is available, we fix the instantaneous BER and
determine the number of bits transmitted using (10). However,
with errors in CSI, this loading method will degrade the
performance and will not satisfy the BER requirement. The
proposed approach uses statistical information about the CSI
errors to exactly maintain the required average BER level and
gives the resulting performance in terms of spectral efficiency.

Suppose the estimated channel gain H ′[n, k] is the only
known information about the current CSI for the kth tone in
the nth block, and β[n, k] is computed based on this value
of H ′[n, k]. Since the instantaneous BER, Pe[n, k], depends
on the value of the true channel H [n, k], which is assumed
unknown, it is not possible to fix Pe[n, k] to be the target value.
However, we can define the average BER given H ′[n, k] for
the kth tone in the nth block as

P̄e[n, k] = EH[n,k] | H′[n,k] {Pe[n, k]} (13)

= E|H[n,k]| | H′[n,k] {Pe[n, k]} , (14)

where the expectation is evaluated over H [n, k] or |H [n, k]|.
The second equality holds because Pe[n, k] depends on
H [n, k] only through |H [n, k]|. Under certain circumstances,
as we will discuss in the following subsections, the conditional
probability density function (pdf) of H [n, k] or |H [n, k]|
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given H ′[n, k] can be estimated. Assuming this conditional
pdf is known, P̄e[n, k] can be calculated, and it becomes a
function of H ′[n, k]. The proposed algorithm employs the
β[n, k] which sets P̄e[n, k] to Ptar for the known H ′[n, k],
thus satisfying the final average BER requirement. Intuitively,
this loading algorithm tends to underload each subchannel to
account for the statistical properties of the errors in CSI. The
system performance is then measured by the average spectral
efficiency, which is

Rimp = EH′ [n,1],··· ,H′[n,K]

{
1
K

K∑
k=1

β[n, k]

}
. (15)

If the H ′[n, k]’s have the same distribution, this reduces to

Rimp = EH′ [n,k] {β[n, k]} . (16)

In this case, the performance does not depend on the system
parameters or the power delay profile of the WSSUS channel
when the guard interval is ignored, as in Section III-B.

Consider the special case when H [n, k] given H ′[n, k] is
complex Gaussian with mean s and variance σ2. It follows that
r = |H [n, k]| conditioned on H ′[n, k] is Ricean distributed.
Using (7) and the conditional pdf of |H [n, k]| to calculate the
expectation in (14), the average BER becomes

P̄e[n, k]

≈
∫ ∞

0

c1 exp

{
− c2

Es

N0
r2

2β[n,k] − 1

}

· 2r

σ2
exp

{
−r2 + |s|2

σ2

}
I0

(
2r|s|
σ2

)
dr (17)

= c1
2β[n,k] − 1

a + (2β[n,k] − 1)
exp

{
− b

a + (2β[n,k] − 1)

}
,(18)

where
a = c2σ

2 Es

N0
(19)

and
b = c2|s|2 Es

N0
. (20)

Here I0(·) is the zeroth-order modified Bessel function of the
first kind. By taking the derivative of (18) with respect to
β[n, k], we have

d P̄e[n, k]
d β[n, k]

=
c1 ln 2 · 2β[n,k][

a + (2β[n,k] − 1)
]2

[
a +

b(2β[n,k] − 1)
a + (2β[n,k] − 1)

]

· exp
{
− b

a + (2β[n,k] − 1)

}
, (21)

> 0 for β[n, k] > 0. (22)

Therefore, P̄e[n, k] is a monotonically increasing function of
β[n, k], with P̄e[n, k] = 0 for β[n, k] = 0. This means that
there is a unique solution for β[n, k] when we use the proposed
loading algorithm. Although it is not easy to find a closed-
form solution for β[n, k], a numerical approach can easily be
used to find the solution. For example, in our simulations, we
use the function fzero provided by Matlab to solve this non-
linear equation. The two different sources of imperfect CSI,

noisy estimation and delay, will be considered separately in
the following subsections.

B. Noisy Channel Estimation

Channel estimation in OFDM systems has been studied
in many papers (for example, see [30]-[34]). The channel
estimation error is often measured by the mean square error
(MSE), which can be defined as

MSE = E

{
1
K

K∑
k=1

|H ′[n, k] − H [n, k]|2
}

. (23)

Generally speaking, the statistics of the channel estimation
error is very complicated, and it highly depends on the
estimation approach used and the system details. To avoid such
complications, we choose to characterize the estimation error
as additive Gaussian noise. The estimated channel response
is H ′[n, k] = H [n, k] + e[n, k], where the estimation error
e[n, k], independent from H [n, k], is a complex Gaussian
random variable with zero mean and a variance, σ2

e , equal
to the MSE in (23). This simplified model, which has also
been used in the literature (for example, [35][36]), enables us
to roughly evaluate the impact of estimation errors.

Using the Gaussian error assumption, it can be shown that
H [n, k] given H ′[n, k] is complex Gaussian with mean

s1 =
1

1 + σ2
e

H ′[n, k] (24)

and variance

σ2
1 =

σ2
e

1 + σ2
e

. (25)

Replacing s and σ2 in (19) and (20) with s1 and σ2
1 , respec-

tively, yields the average BER P̄e[n, k] for the case under
consideration. Note that for ideal CSI (σe = 0), this P̄e[n, k]
reduces to (7), as expected.

Using the proposed loading algorithm, the average spectral
efficiency obtained from Monte Carlo simulations is shown
in Fig. 1 for different levels of error in the channel estimate
with Ptar = 10−3. Since all the H ′[n, k]’s have the same
distribution, these results do not depend on the system para-
meters or the power delay profile with the given assumptions
according to (16). Performance loss is moderate when the
MSE in the channel estimate is less than -15 dB. We conclude
that noisy channel estimation will not be a significant problem
in the application of adaptive OFDM, as long as we have a
reasonably good channel estimator to achieve an MSE of -15
dB [31] [33]. Note that H [n, k] is normalized as explained
in Section II. Therefore, the MSE here indicates how channel
estimation error compares to the true channel energy.

C. Delay in CSI

Now, consider the component of the CSI error caused by
the channel information delay, while assuming perfect channel
estimation. In this case, the channel estimate is given by
H ′[n, k] = H [n−Δn, k], where τD

Δ= Δn·T is the delay time
between the channel estimation and the actual transmission.
According to (5) and (3), the correlation coefficient between
H [n, k] and H ′[n, k] is ρ = rt(τD) = J0(2πfDτD). In
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Fig. 1. Average spectral efficiency for adaptive OFDM with Gaussian noise
in CSI for Ptar = 10−3.
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Fig. 2. Snapshots of the estimated channel and the results of the bit allocation
algorithm.

practical systems, if we can estimate the maximum Doppler
frequency [37], then this correlation coefficient can be calcu-
lated. Considering the fact that both H [n, k] and H ′[n, k] are
complex Gaussian with zero mean and unit variance, H [n, k]
given H ′[n, k] is complex Gaussian with mean

s2 = ρH ′[n, k] (26)

and variance
σ2

2 = 1 − ρ2. (27)

The average BER P̄e[n, k] is given by (18) with s = s2 and
σ2 = σ2

2 . This P̄e[n, k] reduces to (7) when fDτD = 0 (ideal
CSI). Note that a similar idea has been described in [38] for
the single-carrier case.

Snapshots of the estimated channel frequency response and
the results of the loading algorithm are shown in Fig. 2 for
the case fDτD = 0.1 and Es/N0 = 20 dB. The conventional
loading results using (10) are also shown for reference. It
turns out that the new loading algorithm always allocates less
bits for each subchannel than the conventional one, called
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Fig. 3. Average spectral efficiency for adaptive OFDM with CSI delay for
Ptar = 10−3.

“underloading” in [13]. However, here underloading is used
to combat the effects of CSI errors on adaptive loading at the
transmitter rather than the effects of those errors on coherent
detection at the receiver as in [13]. It is interesting to note
that the most severe underloading occurs for subchannels in
deep fades. To see why this is so, note that the variance of
the conditional pdf of H [n, k] does not depend on H ′[n, k],
while the mean does. Thus the uncertainty in H [n, k] relative
to the size of the actual value of H [n, k] increases as the mean
becomes smaller, which makes a more severe underloading
reasonable. This type of underloading is different from that in
[13], where the underloading was more severe for subchannels
with higher gains.

In Fig. 3, the average spectral efficiency is shown for several
different values of the Doppler-delay product, fDτD , with
Ptar = 10−3. As explained in (16), these results do not
depend on the system parameters or the power delay profile
under the given assumptions. The performance degradation
is very small for small values of the Doppler-delay product,
specifically for fDτD ≤ 0.03. For indoor environments, as
in WLANs with 802.11a parameters, if a user is moving at
the speed of 10 miles per hour, even when the delay is quite
large, for example, τD = 100T , we have fDτD ≈ 0.024.
Therefore, the performance loss will be very small. However,
for outdoor environments, due to the higher Doppler rates and
the longer block length, fDτD could be larger than 0.1, which
will cause significant degradation. For example, a delay of 3
OFDM blocks in the outdoor system with a user velocity of 60
miles per hour results in an fDτD of 0.12, and around 50%
reduction in average spectral efficiency when Es/N0 = 20
dB.

V. MULTIPLE ESTIMATES

We have been using a single estimate for the real channel
H [n, k]. However, in some scenarios, multiple estimates can
be available. These multiple estimates can come from either
different frequencies or different times or both. So the natural
questions are: what is an efficient way to employ multiple
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estimates? If we use them, can we obtain more accurate
information of H [n, k] and improve the performance?

To answer these questions, we begin with the distribution of
a random variable given multiple estimates. Consider a random
variable H and a M ×1 random vector He. Assume that both
H and He are Gaussian distributed with zero mean, and the
covariance matrix is given by

E

{(
H
He

) (
H∗ H†

e

)}
=

[
1 a†

a B

]
. (28)

Then it can be shown that H given He is Gaussian distributed
with mean

sH = a†B−1He (29)

and variance
σ2

H = 1 − a†B−1a. (30)

Suppose we have multiple estimates and we know the joint
distribution of the real channel and the multiple estimates,
then the conditional pdf of the real channel can be obtained
as just described. With this conditional distribution, (18) holds
directly with s = sH and σ2 = σ2

H , and the loading algorithm
proposed in Section IV-A can be easily extended to the case
with multiple estimates, while still satisfying the average
BER constraint. In the following subsections, we will use
this loading algorithm to investigate the benefit of multiple
estimates.

A. Multiple Estimates From Different Frequencies

So far for H [n, k], only the estimate in the same sub-
channel H ′[n, k] has been used. However, the estimates
of the frequency responses in all subchannels, that is,
H ′[n, 1], · · · , H ′[n, K], are available in many scenarios. For
example, in the IEEE 802.11a standard, training symbols are
sent out before the actual data transmission, which enables
channel estimation in all subchannels. So all these estimates,
instead of H ′[n, k] alone, can be employed to form the
distribution of H [n, k]. We will consider the case with channel
estimation error and the case with CSI delay separately, and
see whether the performance can be improved by using all of
the available information.

1) Noisy Channel Estimation: As in Section IV-B, we
assume H ′[n, k] = H [n, k]+e[n, k], where e[n, k] is complex
Gaussian with zero mean and variance σ2

e . Moreover, the
e[n, k]’s are assumed to be independent from each other. We
first focus on the case when H ′[n, k] and H ′[n, i] (i �= k) are
employed to form the distribution of H [n, k], where

H ′[n, k] = H [n, k] + e[n, k], (31)

H ′[n, i] = H [n, i] + e[n, i]. (32)

Here e[n, k] and e[n, i] are independent. Therefore, the covari-
ances between H [n, k], H ′[n, k] and H ′[n, i] are given by

E{H [n, k]H ′[n, k]∗} = E{H [n, k]H [n, k]∗} = 1,(33)

E{H [n, k]H ′[n, i]∗} = E{H [n, k]H [n, i]∗}

=
L∑

�=1

q2
� W

(k−i)p�

K
Δ= η, (34)

E{H ′[n, k]H ′[n, i]∗} = E{H [n, k]H [n, i]∗} = η. (35)
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Fig. 4. Average spectral efficiency for the indoor adaptive OFDM system
with CSI estimation error (σ2

e = −10 dB, M estimates) for Ptar = 10−3.

Moreover, the variance of H ′[n, k] and H ′[n, i] is 1 + σ2
e .

Define v1 = [H [n, k], H ′[n, k], H ′[n, i]]T , then

E{v1v
†
1} =

⎡
⎣ 1 1 η

1 1 + σ2
e η

η∗ η∗ 1 + σ2
e

⎤
⎦ . (36)

According to (29) and (30), the pdf of H [n, k] given
H ′[n, k] and H ′[n, i] is a Gaussian distribution with mean

s3 =
(1 + σ2

e − |η|2)H ′[n, k] + ησ2
eH ′[n, i]

(1 + σ2
e)2 − |η|2 (37)

and variance

σ2
3 =

σ2
e(1 + σ2

e − |η|2)
(1 + σ2

e)2 − |η|2 . (38)

The uncertainty of H [n, k] directly affects the performance,
and it is determined by the variance σ2

3 . Consider two extreme
cases: η = 0 and |η| = 1. For η = 0, as expected, (37) and
(38) reduce to (24) and (25), respectively. Because H [n, k]
and H ′[n, i] are independent, the knowledge of H ′[n, i] does
not provide any additional information about H [n, k]. On the
other hand, if |η| = 1, we have s3 = 1

2+σ2
e
(H ′[n, k]+H ′[n, i])

and σ2
3 = σ2

e

2+σ2
e

. In this case σ2
3 is reduced almost by half when

σe is small, which means the variance is about 3 dB smaller.
For 0 < η < 1, the actual value of η determines the gain
achieved by using these two estimates.

The derivation can be easily extended to the cases with
more than two estimates. We simulate the performance of
both the indoor and outdoor systems introduced in Section II,
assuming M estimates are available. Specifically, to obtain
the distribution of H [n, k], we use the estimated channel in
the M subchannels closest to the kth subchannel, that is,
H ′[n, mod(k − J + i − 1, K) + 1], i = 0, · · · , M − 1, where
J = �(M − 1)/2�. For example, for M = 3, H ′[n, k −
1], H ′[n, k], H ′[n, k+1] are used to estimate H [n, k]. In Fig. 4,
the average spectral efficiency for the indoor system is shown
for different values of M with σ2

e = −10 dB and Ptar = 10−3.
On the one hand, using the information in all subchannels
(M = 64) greatly enhances the performance compared to
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Fig. 5. Magnitude of the covariance between two subchannels with distance
Δk for the indoor system.

M = 1. In particular, σ2
e = −10 dB and M = 64 gives

similar performance as σ2
e = −15 dB and M = 1. Therefore,

by using these estimates, we create an extra 5 dB margin
in the MSE of the estimation error, thus making the channel
estimation much easier. On the other hand, by using only a
few subchannels (M = 3), we can achieve a performance very
close to M = 64. So, in practice, it is enough to use only a few
adjacent subchannels to obtain the majority of the gain, while
reducing the complexity. This makes perfect sense if we look
at the covariance between different subchannels. As shown in
Fig. 5, the magnitude of the covariance decreases rapidly as
the distance between the two subchannels increases. Similar
performance curves for the outdoor system are given in Fig. 6.
Here we see that σ2

e = −6 dB and M = 1024 provides
similar performance as σ2

e = −15 dB and M = 1, which
gives 9 dB difference in MSE. Also, M = 7 performs quite
closely to M = 1024. We note that the achieved performance
gain is directly related to the covariance between different
subchannels, which is mainly decided by the delay spread and
the subchannel spacing.

2) Delay in CSI: For the case with CSI delay, we have
a completely different conclusion. In particular, we have the
following theorem, which states that knowing the information
in other subchannels does not provide additional knowledge
about the desired channel information, thus giving no perfor-
mance enhancement.

Theorem 1: Assuming the channel model introduced in
Section II, we have

I(H [n, k]; H [n − Δn, 1], · · · , H [n − Δn, K])
= I(H [n, k]; H [n − Δn, k]). (39)

Here I(· ; ·) denotes the mutual information.
So even when H [n−Δn, 1], · · · , H [n−Δn, K] are known,

H [n−Δn, k] alone contains all the information about H [n, k].
And there is no need to use the information other than H [n−
Δn, k].

Proof: For illustration purpose, we prove the theorem for
k = 1. The case for any other k can be proved in the same
way.
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Fig. 6. Average spectral efficiency for the outdoor adaptive OFDM system
with CSI estimation error (σ2

e = −6 dB, M estimates) for Ptar = 10−3.

Firstly, according to Property 2, for any i �= k, we have

E{H [n, k]H∗[n − Δn, k]} = rt(Δn · T )
= ρ, (40)

E{H [n− Δn, k]H∗[n − Δn, i]} =
L∑

�=1

q2
� W

(k−i)p�

K

= η, (41)

E{H [n, k]H∗[n − Δn, i]} = ρη. (42)

Define v2 = [H [n−Δn, 1], · · · , H [n−Δn, K]]T , with the
covariance matrix denoted by

Σ2 = E{v2v
†
2} =

[
1 c†

c D

]
. (43)

Then for v3 = [H [n, 1], H [n−Δn, 1], · · · , H [n−Δn, K]]T ,
the covariance matrix is given by

Σ3 = E{v3v
†
3} =

⎡
⎣ 1 ρ ρc†

ρ∗ 1 c†

ρ∗c c D

⎤
⎦ Δ=

[
1 b†

b Σ2

]
. (44)

The mutual information between complex Gaussian random
vectors x and y is known [39] as

I(x;y) = log2

detΣx · detΣy

detΣxy
, (45)

where Σx, Σy and Σxy are the covariance matrices of x, y
and the stacked vector of x and y, respectively. Therefore, it
follows that

I(H [n, 1]; H [n− Δn, 1]) = log2

1

det
[

1 ρ
ρ∗ 1

] (46)

= log2

1
1 − |ρ|2 , (47)

and

I(H [n, 1]; H [n− Δn, 1], · · · , H [n − Δn, K])

= log2

detΣ2

detΣ3
. (48)
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Fig. 7. Average spectral efficiency for adaptive OFDM with CSI delay with
two outdated estimates for Ptar = 10−3.

Using the identities on the inverse and determinant of a
partitioned matrix [40], we have (49) and (50), shown at the
bottom of the page. Then (48) becomes

I(H [n, 1]; H [n− Δn, 1], · · · , H [n − Δn, K])

= log2

detΣ2

detΣ2(1 − b†Σ−1
2 b)

(51)

= log2

1
1 − |ρ|2 (52)

= I(H [n, 1]; H [n− Δn, 1]). (53)

This completes the proof.
Note that Theorem 1 is derived based on the key property

that the time-domain and frequency-domain correlation are
decoupled and separated, as stated in Property 2.

B. Multiple Estimates From Different Times

Multiple estimates from different times can also be available
in some scenarios. For example, if the receiver gets multiple
OFDM training symbols before the actual data, or the receiver
has multiple packets from the same transmitter in a short time
period, the receiver can have multiple channel estimates at
different times. In this subsection, we will focus on the case
with CSI delay.

Previously, we have used the outdated information H [n −
Δn, k] as the estimate. If we assume we store previous channel
estimates, produced prior to H [n − Δn, k], these estimates
could potentially be used in combination to reduce the un-
certainty in H [n, k]. For example, assume we have one more
previous channel estimate H ′′[n, k] = H [n − 2Δn, k]. Now
β[n, k] is determined based on the values of both H ′[n, k] and
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Fig. 8. Average spectral efficiency for adaptive OFDM with CSI delay with
multiple outdated estimates for Ptar = 10−3 and fDτD = 0.2.

H ′′[n, k]. Define ρ1 = J0(2πfDτD) and ρ2 = J0(2πfD2τD).
It can be shown that the conditional pdf of H [n, k] given
H ′[n, k] and H ′′[n, k] is complex Gaussian with mean

s4 =
ρ1(1 − ρ2)H ′[n, k] − (ρ2

1 − ρ2)H ′′[n, k]
1 − ρ2

1

(54)

and variance

σ2
4 =

(1 − ρ2)(1 + ρ2 − 2ρ2
1)

1 − ρ2
1

. (55)

The average spectral efficiency obtained by using the proposed
loading algorithm based on (18) with s = s4 and σ2 = σ2

4

is shown in Fig. 7. The performance loss is very small when
fDτD = 0.1, which is a great improvement over the case when
only a single estimate, H [n − Δn, k], is known (Fig. 3).

Results for more than two outdated estimates can be derived
in a similar way. Assuming M estimates, H [n−Δn, k], H [n−
2Δn, k], · · · , H [n−MΔn, k], are available, then the correla-
tion coefficient is given by

E{H [n− iΔn, k]H∗[n − jΔn, k]} = J0(2πfD(j − i)τD).
(56)

Given this, we can derive the mean and the variance of H [n, k]
conditioned on these M estimates according to (29) and
(30). Then, using the proposed loading algorithm, the average
spectral efficiency can be calculated. The results are shown
in Fig. 8 for fDτD = 0.2 when 1, 2, 3, 4, and 5 estimates
are available. It is obvious that multiple estimates can offer a
significant advantage. For fDτD = 0.2, the adaptive system
performs similarly to the non-adaptive system when only a
single estimate is available, but performs quite close to the
ideal adaptive system when 4 or 5 estimates are available.

b†Σ−1
2 b = ρ [ 1 c† ]

[
(1 − c†D−1c)−1 −(1 − c†D−1c)−1c†D−1

−D−1c(1 − c†D−1c)−1 D−1 + D−1c(1 − c†D−1c)−1c†D−1

]
ρ∗

[
1
c

]
(49)

= |ρ|2 [ 1 0 ]
[

1
c

]
= |ρ|2, (50)



BLUM et al.: ADAPTIVE OFDM SYSTEMS WITH IMPERFECT CHANNEL STATE INFORMATION 3263

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

ES/N0 (dB)

A
ve

ra
ge

 S
pe

ct
ra

l E
ffi

ci
en

cy
 (b

/s
/H

z)

              
σH

2  = 0
                 
σH

2  = 0.02
                 
σH

2  = 0.05
                
σH

2  = 0.1
                
σH

2  = 0.2
                
σH

2  = 0.4
                
σH

2  = 0.6
              
σH

2  = 1

Fig. 9. Average spectral efficiency for different σ2
H values for Ptar = 10−3.

The use of multiple outdated estimates also enables the
system to tolerate longer delay (that is, longer delay time or
higher Doppler). When only one estimate is available, fDτD

up to 0.03 gives performance close to the ideal system. When
2 estimates are available, we obtain very good performance
for fDτD up to 0.1, which means the system can tolerate 3
to 4 times longer delay after adding one additional piece of
outdated information. Further, when 5 estimates are available,
fDτD up to 0.2 gives very good performance. Similarly, as in
(16), we can see that the results in Fig. 7 and Fig. 8 do not
depend on the system parameters or the power delay profile
under the given assumptions.

It is worth noting that, although the idea of using multiple
outdated estimates might seem similar to channel prediction
[14], here, we are using the extra data to better characterize
the statistical properties of the error in the estimates instead
of trying to produce a single predicted value for the channel
gain.

C. The Role of σ2
H

Throughout the discussion of multiple estimates, the vari-
ance of the conditional pdf of H [n, k], which determines the
uncertainty of the real channel based on the given estimates,
plays a very important role. In fact, the average spectral
efficiency is uniquely determined by this variance. To show
this, we consider the most general case when a vector He

composed of multiple estimates is used to form the distribution
of H [n, k], with the covariance matrix following (28). Then
the mean sH and the variance σ2

H of the conditional pdf
of H [n, k] is given by (29) and (30). We know that after
inverting (18) with s = sH and σ2 = σ2

H , β[n, k] can be
represented as a function of sH and σ2

H , namely g(sH , σ2
H).

Given the covariance matrix in (28), sH is a function of He

according to (29), while σ2
H is a deterministic value. Since He

is a random vector, sH can also be considered as a random
variable. Therefore, the average spectral efficiency is

R = EHe{β[n, k]} = EHe{g(sH , σ2
H)} (57)

= EsH{g(sH , σ2
H)}. (58)
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of estimates for the indoor system with Gaussian noise in CSI.

The third equality follows because the variance σ2
H does not

depend on He, and the function g(·) depends on He only
through sH . Further, based on (29), we have E{sH} = 0
because E{He} = 0, and the variance of sH is

σ2
sH

= a†B−1E{HeH†
e}B−1a (59)

= a†B−1a (60)

= 1 − σ2
H . (61)

Therefore, for any fixed σ2
H , the distribution of sH is uniquely

determined, as is the average spectral efficiency according to
(58). This means that, no matter how many estimates are
available and whether these estimates come from different
frequencies or times, the system performance can be fully
characterized by the variance σ2

H .
Moreover, (58) provides another way to calculate the av-

erage spectral efficiency given the variance σ2
H . To be more

specific, for any fixed σ2
H , we can first generate sH according

to the complex Gaussian distribution with zero mean and vari-
ance 1−σ2

H , then evaluate the expectation in (58) numerically.
The average spectral efficiency calculated in this way is plotted
for different σ2

H values in Fig. 9. We note that σ2
H = 0

and σ2
H = 1 correspond to the ideal adaptive system and

non-adaptive system, respectively. It is seen that the adaptive
system has very small performance loss compared to the ideal
system if σ2

H ≤ 0.02. The degradation is moderate as long as
σ2

H ≤ 0.05. On the other hand, if σ2
H ≥ 0.4, the advantage

over the non-adaptive system diminishes.
Since the variance σ2

H uniquely determines the average
spectral efficiency, knowing σ2

H is enough to determine the
performance according to Fig. 9, without doing the actual
simulations. As one example, the variance σ2

H is plotted
in Fig. 10 for the indoor system with estimation error in
CSI when multiple estimates from different subchannels are
available. Another example is given in Fig. 11 for the case
with CSI delay when multiple estimates from different times
are available. Combining these figures with Fig. 9, we can
easily figure out the system performance. For the second case,
it is seen that, when only 1 estimate is available, fDτD needs
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Fig. 11. Variance of the conditional pdf of H[n, k] given different number
of outdated estimates.

to be smaller than 0.03 to achieve negligible loss. But when
5 estimates are available, fDτD can be as large as 0.2 to
give similar performance. All these agree with the previous
observations.

Note that the analysis in this section can also be extended
to the case when multiple estimates from both different
frequencies and different times are available. Since it is quite
straightforward, no further details will be given here.

VI. CONCLUSIONS

In this paper, the large potential gain of adaptive OFDM
was investigated when ideal channel information is known.
The performance degradation due to CSI errors, caused by
noisy channel estimation and delay, was studied using the
proposed loading algorithm. Simulation results show that the
degradation is moderate for the level of error which can
be achieved by a good channel estimator, but is severe for
CSI delay when fDτD ≥ 0.1, which can occur in outdoor
environments.

To improve the performance, we proposed to use multi-
ple estimates, and the loading algorithm is extended to the
case when multiple estimates are available. These multiple
estimates can come from either different frequencies or times
or both. Simulation results showed that the average spectral
efficiency can be improved significantly by using multiple
estimates, which also means that the system can tolerate larger
channel estimation error or longer delay to achieve reasonable
performance.
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