
66 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/04/$20.00 © 2004 IEEE

M O B I L E C O M P U T I N G

Adaptive Offloading for
Pervasive Computing

R
unning complex applications on
mobile devices is challenging due to
their strict constraints on resources
such as memory capacity, CPU speed,
and battery power. A brute-force

approach to accommodate device diversity is to
rewrite applications for each individual device.
But this can be expensive and even impossible if
the application’s source code is proprietary. Var-
ious projects have addressed this problem using
application- or system-based adaptations.1–4

However, these approaches often require signifi-
cant degradation to an applica-
tion’s fidelity to fit that applica-
tion into a mobile device. (See
the “Related Work” sidebar for
additional work in this area.) To
deliver pervasive services with-
out modifying the application
or degrading its fidelity, we pro-
pose an adaptive offloading sys-
tem that includes two key parts:

a distributed offloading platform5 and an offload-
ing inference engine.6

System architecture
Figure 1 shows our offloading system’s archi-

tecture. Let’s say a user wants to access a memory-
intensive application on a resource-constrained
mobile device, such as a PDA. The application
can be either a distributed application, such as
content retrieval from a remote server, or a local
application such as an image editor. When the
application memory requirement reaches or

approaches the mobile device’s maximum mem-
ory capacity, the system initiates offloading. The
system partitions the application’s program
objects into two groups, offloading some to a
powerful nearby surrogate to reduce the device’s
memory requirement. The offloading platform
transparently transforms method invocations to
offloaded objects into remote invocations. Our
assumptions are that the application is written in
an object-oriented language such as Java or C#
and that the user’s environment contains power-
ful surrogates and plentiful wireless bandwidth.
A surrogate can be the user’s personal laptop, an
embedded server, or some other environmental
host. With the proliferation of computing devices
and wireless networks, such as IEEE Std. 802.11
for wireless LANs, we believe these assumptions
are realistic.

There are two important decision-making
problems for adaptive offloading: adaptive
offloading triggering and efficient application par-
titioning. Figure 2 shows the architecture for the
offloading inference engine. The engine doesn’t
require any prior knowledge to make offloading
decisions. Instead, it acquires execution and
resource information from the offloading plat-
form’s execution and resource monitors. To
simultaneously meet multiple user requirements
for offloading, the offloading inference engine
uses a composite partition cost metric to select
the best partition plan. The selected application
partition plan indicates which program objects
to offload to the surrogate and which to pull back
to the mobile device during the new offloading

Delivering a complex application on a resource-constrained mobile
device is challenging. An adaptive offloading system enables dynamic
partitioning of the application and efficient offloading of part of its
execution to a nearby surrogate.

Xiaohui Gu and Klara Nahrstedt
University of Illinois at
Urbana-Champaign

Alan Messer, Ira Greenberg, and
Dejan Milojicic
Hewlett-Packard Laboratories

action. Extensive trace-driven simula-
tions and prototype experiments show
that our adaptive offloading system can
efficiently support memory-intensive
applications on a mobile device in a per-
vasive computing environment.

Distributed offloading
platform

Here, we introduce the distributed
offloading platform, which includes
application execution monitoring,
resource monitoring, application-parti-
tioning candidate generation, and trans-
parent remote-procedure-call (RPC)
platform support.

Application execution monitoring
In the rest of the article, we use Java

programs to illustrate our approach. The
offloading platform characterizes appli-
cation execution with a weighted
directed graph called the application exe-
cution graph (AEG). Each graph node

represents a Java class. We choose a class
as the graph node for several reasons.
First, a class represents a natural com-
ponent unit for all object-oriented pro-

grams. Second, a class granule enables
more precise offloading decisions than
do coarser component granules. Third,
classes don’t require manipulation of a

JULY–SEPTEMBER 2004 PERVASIVEcomputing 67

O ur work is related to the Spectra project, which proposed a

remote execution system for mobile devices used in pervasive

computing.1 Spectra can generate a distributed execution plan that

balances the competing goals of performance, energy conservation,

and application quality. The Puppeteer project supports adaptations

without modifying applications.2 The MONET research group proposed

a dynamic-service-composition and distribution framework for deliv-

ering component-based applications in pervasive computing environ-

ments.3 To support application-specific adaptation, this framework

provides application developers with metalevel programming tools

for deploying applications in pervasive computing environments.4

However, this work assumes that applications are component based

and that they’ve exported component interfaces to the system. The

Coign project proposed a system to statically partition binary applica-

tions built from component object model (COM) components.5

Unlike Coign, our approach performs dynamic runtime partitioning

without any offline profiling. Furthermore, we don’t assume applica-

tions are component based or written in COM components.

REFERENCES

1. J. Flinn, S. Park, and M. Satyanarayanan, “Balancing Performance,
Energy, and Quality in Pervasive Computing,” Proc. 22nd Int’l Conf.
Distributed Computing Systems (ICDCS 02), IEEE CS Press, 2002,
pp. 217–226.

2. E. de Lara, D.S. Wallach, and W. Zwaenepoel, “Puppeteer: Component-
Based Adaptation for Mobile Computing,” Proc. 3rd USENIX Symp. Inter-
net Technologies and Systems (USITS 01), Usenix Assoc., 2001,
pp. 159–170.

3. X. Gu and K. Nahrstedt, “Dynamic QoS-Aware Multimedia Service
Configuration in Ubiquitous Computing Environments,” Proc. 22nd Int’l
Conf. Distributed Computing Systems (ICDCS 02), IEEE CS Press, 2002,
pp. 311–318.

4. X. Gu et al., “An XML-Based QoS Enabling Language for the Web,” J.
Visual Language and Computing, vol. 13, no. 1, 2002, pp. 61–95.

5. G.C. Hunt and M.L. Scott, “The Coign Automatic Distributed Partition-
ing System,” Proc. 3rd USENIX Symp. Operating System Design and Imple-
mentation (OSDI 99), USENIX Assoc., 1999, pp. 187–200.

Related Work

Server

Surrogate

Distributed offloading platform

Offloading
inference engine

Local storage

Classes Classes Classes Classes

Client

Internet

Figure 1. Adaptive offloading system
architecture.

large execution graph with too many
fine-grained Java objects. For example,
a simple image-editing Java program cre-
ated 16,994 distinct Java objects during
174 seconds of execution.

The weight metrics associated with a
graph node include the following:

• Memory size describes the amount of
memory that the Java class’s objects
occupy.

• AccessFreq represents the number of
times that other classes access the
class’s methods or data fields.

• Location describes whether the Java
class’s objects reside in the mobile
device (local) or in the surrogate.

• IsNative indicates whether a class’s
objects can migrate from the mobile
device to the surrogate. Some classes,
such as those invoking device-specific
native methods, must always execute
on the mobile device.

Each graph edge represents the inter-
actions and dependencies between two
classes’ objects. Two fields annotate each
edge: InteractionFreq represents the
number of interactions between the two
classes’ objects; BandwidthRequirement
represents the total amount of informa-
tion transferred between those objects.
In the current prototype, the offloading
platform execution monitor maintains
the entire AEG on the mobile device.
After the first application split, the sys-

tem periodically collects execution infor-
mation on the surrogate and merges it
into the mobile device’s execution graph.

Resource monitoring
To adapt to resource changes, the

offloading platform must monitor the
resources of the mobile device, the surro-
gate, and the wireless network. The plat-
form monitors the mobile device’s and
surrogate’s available memory by tracking
the amount of free space in the Java heap.
The garbage collector of the Java Virtual
Machine (JVM) provides this heap. We
can estimate the wireless bandwidth and
delay by passively observing ongoing traf-
fic through the offloading platform or by
actively measuring this information with
measurement tools. Whenever some sig-
nificant change happens (for example,
the application consumes a certain
amount of memory, or a sufficiently
large wireless bandwidth fluctuation
occurs), the offloading inference engine
decides whether to trigger offloading.

Application-partitioning candidate
generation

The problem of optimal application
partitioning (finding the minimum cut
between two bounded sets) is nondeter-
ministic-polynomial (NP)-complete.7

However, we designed the offloading
system for resource-constrained devices.
Hence, the system uses an efficient par-
titioning heuristic derived from Frank

Stoer’s and Mechthild Wagner’s MINCUT

algorithm to generate a set of candidate
partition plans.8

Let G = (V, E) describe the current
AEG, where V is the set of nodes and E
is the set of edges. Each edge is associ-
ated with a cost value reflecting the inter-
class interactions and dependencies. Let
PM represent the partition on the mobile
device, and PS represent the partition on
the surrogate. At first, the system ini-
tializes both PM and PS as empty. The
partition candidate generation algorithm
performs the following steps:

1. Merge all nodes that cannot migrate
to the surrogate (those with their
IsNative field set to true) into one
node, v1. Given k edges from a node
to these merged nodes, the system
substitutes one edge for these k
edges. The new edge’s cost equals the
sum of the k old edges’ costs. If there
are n nodes after the merging, then
let PM = {v1}, and PS = {v2, …, vn}.

2. Among the neighbors of v1 repre-
senting the partition on the mobile
device, select the one with the largest
edge cost to v1. If the selected node
is vi, merge vi with v1, and move vi
from PS to PM. Next, consider the
cut, , as one of the candi-
date partition plans. Then record
this partition plan with the infor-
mation about its partitioning cost
and the two partitions.

3. Repeat step 2 until all nodes have
merged with v1.

The offloading inference engine can then
select the best partitioning from these
candidate partition plans according to
its partition cost metric.

Transparent RPC platform support
To support transparent partitioning,

a mechanism for transparent RPCs
between virtual machines is necessary.
Java’s existing support for remote exe-

P PM S,

68 PERVASIVEcomputing www.computer.org/pervasive

M O B I L E C O M P U T I N G

Figure 2. Offloading inference engine
architecture.

Event filterApplication
execution monitor

Wireless
bandwidth monitor

Function invocation
Data access

Offloading
triggering inference

Candidate partition plan
generation module

Partition selection

Application-specific
offloading rules

cution, remote method invocation,
doesn’t provide transparent mapping of
calls and objects into RPCs between
machines. Hence, we modify Hewlett-
Packard’s Chai JVM to support trans-
parent migration of objects between the
mobile device and the surrogate. In a
JVM, an object reference uniquely iden-
tifies each object. To support remote
execution, we modify the JVM so that
it flags object references to remote
objects and intercepts accesses to those
objects. Using these hooks, the offload-
ing platform converts remote accesses
into transparent RPCs between two
JVMs. A JVM that receives an RPC
request uses a pool of threads to execute
that request on behalf of the other JVM.
This approach doesn’t migrate threads.
Instead, invocations and data accesses
follow the placement of objects.

However, to provide a single, trans-
parent distributed platform between two
JVMs, we must still address several
issues. First, it’s not possible to migrate
Java native methods, because their imple-
mentations use languages other than
Java and could have different implemen-
tations on different platforms. To solve
this problem, the system directs native
invocations back to the master JVM.
This gives an application the appearance
of executing on the mobile device even
though part of its execution is on a sur-
rogate. Second, application objects stat-
ically share some Java objects—for
example, System.properties, which
contains <key, value> pairs specify-
ing information such as the host operat-
ing system’s name. Therefore, to ensure
consistency, the system directs all
accesses to static data back to the mas-
ter JVM. Third, each JVM has a private
object reference name space and doesn’t
understand an object reference from
another JVM. To overcome these name-
space limitations, we modified the JVM
so that it maps a reference from another
JVM into its own name space. Each

JVM keeps local references for remote
objects as place holders. When one JVM
invokes a method or accesses an object
on the other JVM, the former uses its
local object reference to send an opera-
tion referring to the object on the other
JVM. The receiving JVM then maps the
first JVM’s local reference to its own real
local reference for the object. Each JVM
maintains its object reference mappings
when objects and object references move
between the two JVMs.

Adaptive offloading inference
engine

The offloading inference engine’s two
decision-making modules address the
problems of triggering offloading and
selecting partitioning. Offloading can
add overhead to the application’s exe-
cution. This overhead includes the cost
of transferring objects between the
mobile device and the surrogate, and the
cost of performing remote data accesses
and function invocations over a wireless
network. One of the inference engine’s
functions is to minimize the offloading
overhead while relieving the memory
constraint on the mobile device.

Offloading triggering inference
To perform offloading triggering infer-

ence, the offloading inference engine
examines the application’s current
resource consumption and the available
resources in the pervasive computing
environment. It then decides whether to
trigger offloading according to the user’s
offloading goals. If so, it decides what
level of resource utilization to use on the
mobile device—that is, how much mem-
ory to free up by offloading program
objects to the surrogate. At first glance, it
appears that we can solve the problem
using a simple threshold-based approach.

For example, we can hard-code thresh-
old-based rules in the offloading inference
engine, such as “If the mobile device’s free
memory is less than 20 percent of its total
memory, trigger offloading and offload
enough program objects to free at least
40 percent of the mobile device’s mem-
ory.” However, such a simple approach
can’t meet the challenges of adaptability,
configurability, and stability.

The offloading inference engine
addresses these challenges using the
Fuzzy Control model,9 which has proved
effective for flexible, expressive, and sta-
ble coarse-grained application adapta-
tions. Employing this approach in the
offloading inference engine is novel
because it applies the model to fine-
grained application adaptation through
runtime offloading. The Fuzzy Control
model includes system- or application-
developer-provided linguistic decision-
making rules, membership functions,
and a generic fuzzy inference engine
based on fuzzy logic theory. This model
lets us specify the offloading inference
engine’s offloading rules (see Figure 3).

The AvailMem and AvailBW variables
are input linguistic variables represent-
ing the current available memory and
available wireless bandwidth. The
NewMemSize variable is the output lin-
guistic variable representing the new
memory use on the mobile device. If cur-
rent system conditions match any of
these rules, the offloading inference
engine triggers offloading and derives the
offloading memory size using the differ-
ence between current memory con-
sumption and new memory use. If the
difference is negative, then the system
should pull back some program objects
from the surrogate to adapt to low wire-
less bandwidth. The application devel-
oper or the user can easily configure the

JULY–SEPTEMBER 2004 PERVASIVEcomputing 69

Figure 3. Offloading rules for the
offloading inference engine. if (AvailMem is low) and (AvailBW is high) then NewMemSize := low;

if (AvailMem is low) and (AvailBW is moderate)
then NewMemSize := average;

if (AvailMem is high) and (AvailBW is low) then NewMemSize := high;

70 PERVASIVEcomputing www.computer.org/pervasive

M O B I L E C O M P U T I N G

offloading inference engine using the lin-
guistic offloading rules.

However, to interpret these rules, the
offloading inference engine must estab-
lish mappings between numerical and
linguistic values for each linguistic vari-
able. Low, moderate, and high are lin-
guistic values. In fuzzy logic, a member-
ship function defines the mapping
between a linguistic variable’s numerical
value and its linguistic values.9 The
generic fuzzy inference engine imple-
ments the fuzzy-logic-based mapping
and nonlinear adaptation process. It
takes fuzzy sets’ confidence values (low,
moderate, and high) as inputs and gen-
erates outputs in a similar form. Hence,
the offloading inference engine provides
two functions to use the generic fuzzy
inference engine:

• Fuzzification prepares input fuzzy sets
for the generic fuzzy inference engine.

• Defuzzification converts the output
fuzzy sets into actual offloading deci-
sions, such as the new memory use on
the mobile device.

Application partition selection
The offloading inference engine selects

the best application partitioning from a
group of candidate partition plans gen-
erated by the offloading platform. First,
the offloading inference engine consid-
ers the target memory use on the mobile
device to rule out partition plans that
don’t meet this minimum requirement.
Then the offloading inference engine
selects the best partitioning from the
remaining candidate partition plans by
using a composite partition cost metric.
To overcome mobile devices’ memory

constraints, users can stipulate multiple
offloading requirements such as mini-
mizing wireless bandwidth overhead,
minimizing average response time
stretch, and minimizing total execution
time. The wireless bandwidth cost
depends on two factors: migration of
program objects during offloading, and
remote function calls and remote data
accesses. The total number of all remote
invocations decides the average response
time stretch. The total execution time
stretch caused by offloading includes
both migration delays and remote inter-
action delays.

To minimize the total offloading cost,
the offloading inference engine compre-
hensively considers different interclass
dependencies and interactions during
application execution. For each neighbor
node vk of vi, bi,k denotes the total
amount of data traffic transferred
between vi and vk, fi,k denotes the total
interaction number, and MSk represents
the memory size of vk. Thus, the offload-
ing inference engine uses a composite cost
metric, Ck = <bi,k, fi,k, MSk> for the AEG
edge between vi and vk. We’ve shown
that such a metric is effective for meeting
different offloading requirements.6 The
partition cost of a candidate partition
plan is the aggregated costs of all edges
whose endpoints belong to different par-
titions. The offloading inference engine
then selects the best partition plan that
minimizes the partition cost.

Trace-driven simulation
experiments

We conducted trace-driven simulation
experiments on an IBM Thinkpad T22
running Red Hat Linux 7.1. We first col-

lected the execution traces using the
three benchmark applications described
in Table 1. The execution trace collector
records method invocations, data field
accesses, and object creations and dele-
tions in the trace file by querying the
instrumented JVM. For the JVM, we
used HP’s ChaiVM for embedded and
real-time systems. Using the bandwidth
measurement tool, we collected the wire-
less network traces on the same laptop
equipped with an IEEE 802.11 Wave-
LAN network card. A desktop in an
office room acted as the surrogate.

Our mobile roaming scenario took
place in the Computer Science Depart-
ment building of the University of Illinois
at Urbana-Champaign. We obtained the
wireless network trace by having a per-
son with a mobile device begin in the
office room, enter an elevator and ride
it to the basement, and then exit the ele-
vator and walk through the basement
toward a stairway. The measured wire-
less bandwidth maintained around 4.8
Mbps until the person entered the ele-
vator, when it dropped to about 2.4
Mbps. It then rose to about 3.6 Mbps
when the person walked through the
basement toward the stairway. Because
the interface parameters used for func-
tion interactions and data accesses was
small (less than 64 bytes for all execu-
tion traces), we measured only the
round-trip time (RTT) for small data
packets, which was about 2.4 ms.

The execution and network traces just
described drove the simulator, which
emulated a remote interaction by stretch-
ing the total execution time. The remote
data access delay is the time duration
between sending a request to the remote

TABLE 1
The benchmark applications we used in our experiments.

Benchmark program Description Operation Lifetime (s) Peak memory
requirement (Kbytes)

DIA Java image editor Open a 180-Kbyte picture 174 8,949
image and drag it around

Biomer Graphical molecular Create three complex 261 10,668
editor molecules

JavaNote Java text editor Open a 600-Kbyte text file 268 7,972

site and receiving the requested data,
which approximately equals the RTT.
The remote function call delay is the time
to redirect a function request to the
remote site, which is close to half of the
RTT. We simulated the migration delay
using the expression MC/BW to
increase execution time, where MC is
the memory size of all the classes to
be migrated, and BW is the current
available bandwidth. We set the Java
heap size to 8 Mbytes for the DIA and
Biomer programs, and 7 Mbytes for
JavaNote—according to their peak
memory requirements.

We consider three performance metrics:

• Total offloading delay includes the
delays for migration, remote data
access, and remote function calls,
which all extend an application’s total
execution time.

• Average interaction stretch represents
the average interaction delay stretch
caused by remote data accesses and
remote function calls.

• Total bandwidth requirement is the
sum of the migrated objects’ total size
and the total size of the parameters of
the remote procedure calls that pass
between two distributed JVMs during
remote interactions.

For comparison, we implemented the
least recently used (LRU) common-
memory-management heuristic algo-
rithm. The LRU algorithm adopts a sim-
ple offloading rule that triggers
offloading when the available memory
is lower than 5 percent of total memory,
and sets a new target memory use of 80
percent of total memory. During appli-
cation partitioning, the LRU algorithm
offloads the classes that are least recently
used according to each class’s AccessFreq
field. To enhance the LRU algorithm, we
use the SplitClass algorithm, which splits
large-class nodes into smaller-class ones

with memory sizes smaller than 500
Kbytes. We then use the Fuzzy Trigger
algorithm to enhance the SplitClass algo-
rithm. Fuzzy Trigger replaces SplitClass’s
simple threshold-based rules with fuzzy-
control-based offloading triggering.
Finally, we run Our Approach, a com-
plete offloading inference engine algo-
rithm that enhances the Fuzzy Trigger
algorithm with our composite-metric-
based partition selection algorithm.

In an earlier work, we reported the
performance comparisons between the
composite and other simple metrics (for
example, access frequency or bandwidth
requirement alone).6 We began by com-
paring the total offloading delay among
the four different decision-making algo-
rithms. We normalized the delay value
of SplitClass, Fuzzy Trigger, and Our
Approach to the LRU algorithm’s value.
The results in Figure 4 show that Split-
Class can reduce the total offloading
delay by as much as 60 percent com-
pared to the simple LRU algorithm. The
Fuzzy Trigger algorithm can further
reduce this delay by up to another 44
percent. Finally, Our Approach, the off-
loading inference engine algorithm, con-
sistently achieved the lowest offloading
delay for all three applications.

We conducted a similar comparative
study for the other two performance
metrics: average interaction stretch and

total bandwidth requirement. The
results show that splitting large classes
can reduce the average interaction
stretch by as much as 90 percent and
decrease the bandwidth requirement by
as much as 54 percent, compared to the
LRU algorithm. The Fuzzy Trigger algo-
rithm reduced the average interaction
stretch by up to 100 percent over that of
SplitClass and decreased the bandwidth
requirement by as much as 47 percent.
Our Approach further reduced the aver-
age interaction stretch by as much as 62
percent over that of Fuzzy Trigger and
decreased the bandwidth requirement by
up to another 52 percent.

Finally, we compared the inference
time of the naïve approach (that is, using
simple, hard-coded rules) to our fuzzy-
control offloading triggering approach.
In the experiments just described, the
fuzzy-control-based offloading inference
required about twice the inference time
used by the simple threshold-based trig-
gering, which was about 0.06 ms.

Prototype experiments
We developed a prototype of the dis-

tributed runtime offloading system. The
prototype uses a modified version of
HP’s ChaiVM to monitor applications
and resources, and uses that information
to partition applications. In the proto-
type, we extended ChaiVM to support

JULY–SEPTEMBER 2004 PERVASIVEcomputing 71

0

0.2

0.4

0.6

0.8

1.0

1.2

LRU SplitClass Fuzzy Trigger Our Approach

Decision-making approaches

C
o

m
p

ar
is

o
n

 r
at

io
 (

to
ta

l o
ff

lo
ad

in
g

 d
el

ay
)

DIA

Biomer

JavaNote

Figure 4. Comparison of total offloading
delay for four different decision-making
algorithms.

72 PERVASIVEcomputing www.computer.org/pervasive

M O B I L E C O M P U T I N G

transparent RPCs. We used an old 266-
MHz HP laptop with an 11-Mbps IEEE
802.11b wireless card operating on a
shared network to emulate a PDA-style
mobile device. We used a 733-MHz HP
Kayak PC workstation with 128 Mbytes
of memory for the surrogate server. We
attached the surrogate at 10 Mbps to the
corporate wireless network using a net-
work switch leading to the access point.
Both machines ran Red Hat Linux 6.2
with the Linux 2.4.16 kernel. We used
JavaNote and Biomer as our case study
applications. We performed the same
operations as in the simulation study
described in Table 1.

To investigate the monitoring over-
head, we evaluated the JavaNote appli-
cation running on our prototype in a
single-site mode that performs only
monitoring. Because the system uses an
8-Mbyte Java heap, the application can
execute without running out of mem-
ory. We also ran this configuration with-
out enabling monitoring. Our unopti-
mized implementation using hashed
arrays indicates that the monitoring
overhead is about 7 percent of the total
execution time.

Next, we evaluated the additional
memory footprint required by the
offloading platform. Because the virtual
machine already maintained many of the
states we needed, this memory footprint

growth was mainly the result of the AEG.
In several runs of the JavaNote applica-
tion, we observed that a memory foot-
print of 15 Kbytes was necessary for the
JavaNote application. We believe such
results are acceptable for the offloading
system but can be optimized further.

To evaluate memory-offloaded appli-
cations’ runtime performance, we com-
pared JavaNote’s and Biomer’s execu-
tion times on the offloading prototype
against normal execution on an unmod-
ified JVM. First, we used the prototype
to determine the baseline memory that
lets each application successfully run to
completion. Then we selected a smaller
memory size to emulate the memory
constraint.

Figure 5 shows the experiment results.
Without offloading, the constrained
memory caused the application to crash
when the heap became full. When run-
ning with enough memory, the applica-
tions took longer because they required
more processing and were a better base-
line for comparison to an offloaded run.
When running with offloading under a
constrained heap, the system ran
between 1.5 percent and 5.7 percent
more slowly than the baseline heap size
without offloading. This increased exe-
cution cost is the difference between
improved performance by borrowing
memory from the surrogate and the cost

of monitoring, remote accesses, and par-
titioning. Nevertheless, this low-perfor-
mance cost is well worth the benefit of
allowing applications to execute nor-
mally rather than crash because of insuf-
ficient memory.

O
ur extensive trace-driven eval-
uations show that with the
offloading inference engine,
runtime offloading can

effectively relieve memory constraints
for mobile devices with far lower over-
head than other common approaches.
Our prototype experiments indicate that
the execution and memory overheads
introduced by the adaptive offloading
system are acceptable. Future research
directions for the adaptive offloading
system include applying the offloading
approach to relieve other resource con-
straints on mobile devices, such as con-
straints related to CPU speed and bat-
tery lifetime, and supporting the use of
multiple surrogates for offloading.

ACKNOWLEDGMENTS

We completed most of this work when Xiaohui Gu
was a summer intern at HP Labs. NASA grant NAG
2-1406 and National Science Foundation grants
9870736, 9970139, and EIA 99-72884EQ partially
supported this work. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not neces-
sarily reflect the views of the NSF, NASA, or the US
government.

REFERENCES
1. A. Fox et al., “Adapting to Network and

Client Variation Using Active Proxies:
Lessons and Perspectives,” IEEE Personal
Comm., Aug. 1998, pp. 10–19.

2. B.D. Noble, “System Support for Mobile,
Adaptive Applications,” IEEE Personal
Comm., Feb. 2000, pp. 44–49.

0

50

100

150

200

250

300

350

JavaNote Biomer
Applications

Ex
ec

ut
io

n
tim

e
(s

) No offloading, constrained memory
No offloading, sufficient memory
Offloading, constrained memory

X

X

Figure 5. Execution time of two applications
under the offloading prototype. The bars
show the time until the executions exited.
The X’s indicate that the applications
failed before completion.

3. B.D. Noble et al., “Agile Application-Aware
Adaptation for Mobility,” Proc. 16th ACM
Symp. Operating Systems Principles (SOSP
97), ACM Press, 1997, pp. 276–287.

4. E. de Lara, D.S. Wallach, and W.
Zwaenepoel, “Puppeteer: Component-
Based Adaptation for Mobile Computing,”
Proc. 3rd USENIX Symp. Internet Technolo-
gies and Systems (USITS 01), Usenix Assoc.,
2001, pp. 159–170.

5. A. Messer et al., “Towards a Distributed Plat-
form for Resource-Constrained Devices,”
Proc. 22nd Int’l Conf. Distributed Comput-
ing Systems (ICDCS 2002), IEEE CS Press,
2002, pp. 43–51.

6. X. Gu et al., “Adaptive Offloading Infer-
ence for Delivering Applications in a Per-
vasive Computing Environment,” Proc. 1st

IEEE Int’l Conf. Pervasive Computing and
Comm. (PerCom 03), IEEE CS Press, 2003,
pp. 107–114.

7. M. Garey and D. Johnson, Computers and
Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, 1979.

8. M. Stoer and F. Wagner, “A Simple Min-
Cut Algorithm,” J. ACM, July 1997, pp.
585–591.

9. B. Li and K. Nahrstedt, “A Control-Based
Middleware Framework for Quality-of-Ser-
vice Adaptations,” IEEE J. Selected Areas
in Comm., Sept. 1999, pp. 1632–1650.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

JULY–SEPTEMBER 2004 PERVASIVEcomputing 73

the AUTHORS

Xiaohui Gu is a PhD candidate in computer science at the University of Illinois at
Urbana-Champaign. Her research interests include pervasive computing, grid com-
puting, and overlay networks. She received her MS in computer science from the
University of Illinois at Urbana-Champaign. She is a student member of the IEEE.
Contact her at the Thomas M. Siebel Center for Computer Science, 3101 SC, Univ.
of Illinois at Urbana-Champaign, 201 N. Goodwin, Urbana, IL 61801; xgu@cs.uiuc.
edu; http://cairo.cs.uiuc.edu/~xgu.

Alan Messer is a project manager at Samsung Electronics’ Corporate Technology
Operations. His research interests include pervasive computing, distributed systems,
systems software, and consumer electronics. He received his PhD in computer sci-
ence from City University, London. He is a member of the IEEE and the ACM. Con-
tact him at Samsung Information Systems America, 75 W. Plumeria Dr., San Jose, CA
95134; alan.messer@samsung.com.

Ira Greenberg is an independent software consultant. His research interests include
pervasive computing, distributed database systems, distributed middleware, and
system security. He received his MS in computer science from the University of Mass-
achusetts Amherst. Contact him at 953 Foxglove Dr., Sunnyvale, CA; ira.greenberg@
comcast.net.

Dejan Milojicic is a senior scientist and a project manager at Hewlett-Packard Labora-
tories. His research interests include operating systems and distributed systems. He
received his PhD in computer science from the University of Kaiserslautern, Germany.
He is a member of the IEEE, the ACM, and Usenix. Contact him at HP Labs, MS 1183,
Palo Alto, CA 94304; dejan@hpl.hp.com; www.hpl.hp.com/personal/Dejan_Milojicic.

Klara Nahrstedt is the Ralph and Catherine Fisher Associate Professor in the Depart-
ment of Computer Science at the University of Illinois at Urbana-Champaign. Her
research interests include multimedia middleware systems, quality of service, QoS
routing, QoS-aware resource management in distributed multimedia systems, and
multimedia security. She received her PhD in computer and information science from
the University of Pennsylvania. She is a member of the IEEE and the ACM. Contact her
at The Thomas M. Siebel Center for Computer Science, 3104 SC, Univ. of Illinois at
Urbana-Champaign, 201 N. Goodwin, Urbana, IL 61801; klara@cs.uiuc.edu.

How to Reach Us

Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(pervasive@computer.org) or access
www.computer.org/pervasive/author.htm.

Letters to the Editor
Send letters to

Shani Murray, Lead Editor
IEEE Pervasive Computing
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
pervasive@computer.org

Please provide an email address or
daytime phone number with your letter.

On the Web
Access www.computer.org/pervasive or
http://dsonline.computer.org for informa-
tion about IEEE Pervasive Computing.

Subscription Change of Address
Send change-of-address requests for
magazine subscriptions to address.change@
ieee.org. Be sure to specify IEEE Pervasive
Computing.

Membership Change of Address
Send change-of-address requests for
the membership directory to directory.
updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to pervasive@computer.org or
fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at copyrights@ieee.org.

MOBILE AND UBIQUITOUS SYSTEMS

