
1

Adaptive on-line performance evaluation

of video trackers
Juan C. SanMiguel, Andrea Cavallaro and José M. Martínez

Abstract—We propose an adaptive framework to estimate the
quality of video tracking algorithms without ground-truth data.
The framework is divided into two main stages, namely the
estimation of the tracker condition to identify temporal segments
during which a target is lost and the measurement of the quality
of the estimated track when the tracker is successful. A key
novelty of the proposed framework is the capability of evaluating
video trackers with multiple failures and recoveries over long
sequences. Successful tracking is identified by analyzing the
uncertainty of the tracker, whereas track recovery from errors
is determined based on the time-reversibility constraint. The
proposed approach is demonstrated on a particle filter tracker
over a heterogeneous dataset. Experimental results show the
effectiveness and robustness of the proposed framework that
improves state-of-art approaches in the presence of tracking chal-
lenges such as occlusions, illumination changes and clutter, and
on sequences containing multiple tracking errors and recoveries.

Index Terms—video tracking, track quality, tracking uncer-
tainty, time-reversibility, failure detection, particle filter.

I. INTRODUCTION

V
IDEO tracking is an important step in many applications,

such as video surveillance, human-computer interaction,

traffic monitoring, video indexing and object-based video

compression. The video data to be analyzed present high com-

plexity and variability because of pose changes, illumination

variations, occlusions and clutter. Under such conditions, no

single video tracker can perform perfectly in all situations and

failures are expected in real tracking scenarios. An online track

failure detector and quality estimator is therefore needed to

measure tracking performance over time.

Common tracking performance evaluations use empirical

discrepancy methods [1] that compare off-line ground-truth

data with the estimated target state. Ground-truth data are

expensive to produce and therefore usually cover only short

temporal segments of test video sequences, thus representing

only a small percentage of data variability. This limitation

makes it difficult to extrapolate performance evaluation results
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to (unlabeled) new sequences. Moreover, evaluation using

ground-truth is unfeasible for on-line performance analy-

sis [2]. To extend the applicability of performance evalua-

tion, empirical standalone methods (ESM) for track-quality

estimation without ground-truth data have been defined for

large unlabeled datasets, self-tuning (automatic control via on-

line analysis), comparative ranking and tracker fusion. ESMs

are based on properties of the estimated trajectories, such

as motion smoothness [3], area consistency [4], or time-

reversibility [5]; statistical properties of the tracker output,

such as observation likelihood [6], spatial uncertainty [7],

or consistency checks [8]; complementary features, such as

color contrast [9] or background discriminative power [10];

and combinations of these properties [11]. However, these

approaches are generally application-dependent [3, 4, 9, 10],

not applicable to long sequences [5] or non-adaptive to errors

and recoveries of the tracker [6, 7]. Therefore their use and

experimental validation is generally limited to short or low-

complexity videos.

To overcome the above-mentioned limitations, we propose

a novel adaptive empirical standalone method for track-quality

estimation that is applicable to image sequences with multiple

tracking errors and recoveries. The proposed framework is

based on a two-stage adaptive strategy that first determines

when a target is being successfully tracked (temporal seg-

mentation) and then estimates track quality during successful

tracking. The framework effectively combines the filter un-

certainty and the time-reversibility constraint of a tracker to

measure the quality of the estimated target state. The analysis

of the filter uncertainty allows one detecting unstable tracking

results and the detection of a recovery after a tracking failure

by applying a reverse tracker. We demonstrate the proposed

approach in a particle filter framework over a heterogeneous

dataset with sequences containing tracking challenges such as

occlusions, clutter and appearance changes. A block diagram

of the proposed framework is shown in Fig. 1.

This paper is organized as follows. Section II discusses

related works. Section III describes the identification of the

target condition, whilst Sec. IV introduces how we estimate

track quality. Section V discusses the results and comparisons

with alternative approaches. Finally, Sec. VI summarizes the

paper.

II. PRIOR WORK

Empirical standalone methods for the evaluation of track

quality can be classified into three main categories, namely

trajectory-based, feature-based and hybrid [12].
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Fig. 1. Block diagram of the proposed adaptive on-line performance evaluation approach for video trackers.

Trajectory-based measures use information from the esti-

mated trajectories to quantify the quality of a tracker and

can in turn be grouped into three sub-categories: model-based,

forward, and reverse measures. Model-based measures (MM)

rely on on-line learning of trajectory models. Track quality is

computed as the similarity between models and new object tra-

jectories [13, 14]. MMs need a considerable amount of data to

learn the models thus limiting their applicability for evaluation.

Forward-based measures (FM) threshold features extracted

from the estimated trajectory in short time windows. Examples

of features are trajectory length [4] and smoothness of target

velocity [4, 15, 16] or of direction of change [3, 15, 17]. FMs

generally provide only a binary decision and are application-

dependent, thus limiting their field of applicability. Reverse

measures (RM) rely on the time-reversibility constraint of the

motion of physical objects. A tracking analysis in reverse time

direction is applied to measure track quality with different

strategies, such as on a frame-by-frame basis using template

matching [18] or on the full trajectory length using the

Kanade-Lucas-Tomasi tracker [11] or a particle filter [5]. This

idea can be extended by reflecting the two tracker analyses

to the specific time instant to be evaluated [19]. Although

RMs have been found to be preferable to other trajectory-

based approaches [12], their applicability is limited to short

sequences as they suffer from error accumulation (short-

length version) or are computationally unfeasible (full-length

version). The determination of the optimal reverse analysis

temporal window will provide a solution for the analysis of

long sequences, as we propose in this paper.

Feature-based measures analyze internal stages or the out-

put of a tracker and quantify feature difference or feature

consistency. Methods based on feature differences (FD) esti-

mate track quality by considering feature variations related to

background/foreground color differences [10, 20] or boundary

contrast along the target contour [9, 21]. However, as this vari-

ation cannot be guaranteed in all types of scenarios (e.g. when

targets are similar to the background), FDs are application de-

pendent and inadequate for assessing general-purpose trackers.

Methods based on feature consistency (FC) compute statistics

to validate feature values over time and may look at shape [22],

scale [15] or appearance consistency [3, 9, 23, 24, 25].

Furthermore, probabilistic trackers provide an estimation of

the target state that is exploited to compute statistics related

to the observation likelihood [6, 26, 27], the covariance of the

target state [6, 7, 28, 29] or statistical tests (Chi-Square [8]

and Kolmogorov-Smirnov [30]). FCs based on probabilistic

tracking using the target state representation outperform other

approaches [12]. However, they fail when the target moves

across areas with varying levels of clutter that affect the

observation likelihood. Moreover, when the tracker follows

distractors (objects with similar features to those of the target)

it might maintain the same level of observation likelihood.

A mechanism to determine these tracking conditions on-

line is therefore important for an evaluation method to work

adaptively.

Finally, hybrid measures combine previously described ap-

proaches. Smoothness in both direction and motion can be

combined with color consistency [3]. Likewise, an equally

weighed combination of time-reversibility evaluation and fea-

ture difference using color histogram and sum of square

differences error estimation, respectively, can be used [11, 31].

Finally, multiple measures such as motion smoothness, trajec-

tory complexity, shape and color consistency can be used to

produce multiple track quality estimations [4, 15].

A summary of the track quality evaluation categories de-

scribed in this section is given in Table I.

III. IS THE TRACKER ON TARGET?

A fundamental yet very challenging task is to determine

when tracking is successful: one needs to establish whether

a tracker is correctly estimating the target state at each time

instant or it is estimating the state of another physical process

corresponding to a portion of the image that is not representing

the target. In the former case the tracker is on-target, whereas

in the latter the tracker is on-background. We differentiate two

cases of tracker-on-background, namely when the tracker is

estimating the state of a distractor (an object with similar

features to those of the target) and when the tracker is

recovering from a failure.

A. Problem modeling

To describe the tracker condition, we define three events,

here referred to as locked-on, locking-in and scanning. The

locked-on event describes the tracker while following an ob-

ject, which can be the target or a distractor. The locking-in

event refers to the tracker adapting its estimation to an object

after a failure or when the track is better adjusted to (closing-

in) the target. Finally, the scanning event describes the tracker

searching an object after a tracking failure has happened.

We determine the tracker condition using a modeling based

on finite-state machines (FSM). A FSM is represented by

a directed graph G = 〈S, E〉 where S is the set of nodes

representing the states and E is the set of transitions from one
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Table I
TRACK QUALITY ESTIMATORS (KEY. D: DETERMINISTIC. P:PROBABILISTIC)

Category Sub-category Features Measures Trackers References

Trajectory Forward Size & position Euclidean D & P [3][4] [15-17]

Model Position Euclidean D & P [13][14]

Reverse Position & state-space model Mahalanobis & Euclidean D & P [5][11][18][19]

Feature Difference Position & contour Bhattacharyya & Euclidean D & P [3][9][10]

Consistency Size, appearance & state-space model Inf. Theory & change detection P [6-8][15][18][20-30]

Hybrid - Size, position & appearance Euclidean D & P [3][4][11][15][30]
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Fig. 2. (a) The finite-state machine used to determine the condition of
a tracker. The conditions are: locked-on, when the algorithm is tracking the
target or a distractor (an object similar to the target), scanning, when the
algorithm is searching the target after a failure, and locking-in, when the
algorithm is re-focusing on the target or a distractor during a recovery. (b) The
finite-state machine used to determine the temporal segmentation in successful

and unsuccessful tracking.

state to another. The state diagram of the tracker-condition

FSM is depicted in Fig. 2(a).

Next, based on the established tracker condition, we seg-

ment time windows of operation of a tracker based on whether

the algorithm is on-target (successful) or on on-background

(unsuccessful). This temporal segmentation is modeled with a

second FSM whose state diagram is depicted in Fig. 2(b). The

transitions between the states of the two FSMs are defined as

described in the following sections.

B. Uncertainty analysis

Let the target state, xt, at time t, be defined as

xt = f(It, xt−1, βt−1), (1)

where f(.) represents the tracking algorithm, It the video

frame at time t, βt−1 the model of the target1 to track at

1If the model of the target does not change after initialization, then βt−1

is replaced with βt0

time t− 1 and xt−1 the target state estimation at time t− 1.

Based on its widespread use in video tracking, let us con-

sider Bayesian filtering as example of a tracker. In particular,

we will use a framework defined for elliptical color-based

particle filtering [32]. The state xt is a vector whose elements

define the position, the two axes and the orientation of an

ellipse on the image plane, whereas the model βt−1 is a

color histogram. The output of the filter at each time step is

the sample set Xt =
{

(x
(n)
t , π

(n)
t )

}

n=1,...,N
of N weighted

particles, where each particle x
(n)
t represents one hypothetical

state of the target that is weighted by π
(n)
t , according to the

similarity of its features to those of the model [32].

The uncertainty of the tracker is used as indicator of

unstable periods of the output data (e.g. wrong target estima-

tion) providing information about the conditions discussed in

Sec. III-A. We measure the tracker uncertainty using the spatial

uncertainty of the N particles (i.e. the spread of the particles).

This uncertainty is estimated by analyzing the eigenvalues of

the covariance matrix Ct = [cij ] [7], where for simplicity of

notation we omit the time index t from each element of the

matrix. The elements of the matrix are defined as

cij =

N
∑

n=1

π(n)E
[

(x
(n)
i − µi)(x

(n)
j − µj)

]

, (2)

where π(n) is the weight of each particle n; x
(n)
i (x

(n)
j ) is

the ith (jth) element of the nth particle; N is the number of

particles; i, j = 1, ..., d; and d is the number of dimensions

of the state vector. In the specific case mentioned above, the

state is composed of five elements and therefore we compute a

5×5 covariance matrix. Consequently, the spatial uncertainty,

St, is defined as [7]:

St =
d
√

det(Ct), (3)

where det(�) represents the determinant of a matrix. Note that

if the state contains additional elements such as target dynam-

ics (e.g. velocity), the covariance matrix has to be computed

considering only those elements related to the spatial location.

The tracker uncertainty Ũt is finally obtained by normalizing

the spatial uncertainty using width, Hx, and height, Hy , of the

target (i.e. the axes of the ellipse):

Ũt =
St

4HxHy

. (4)

Note that this uncertainty measure is independent of target

size and of number of samples. A temporal filtering stage is
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Fig. 3. Evolution of tracking filter uncertainty and ground-truth error for a
toy sequence. Blue lines in the bottom plots indicate the value of the threshold
applied (τ1 = 2 for increases and τ2 = −2 for decreases). The ground-truth
error signal was computed as described in Sec. V-B.

finally applied to smooth the result:

Ut = αUt−1 + (1− α)Ũt. (5)

where α ∈ [0, 1] determines the update rate of the uncertainty

signal. Low values of α produce a fast update.

The tracker is expected to maintain a constant or slightly

decreasing value of uncertainty (indicating a temporal refine-

ment of target estimation) when it is successfully tracking the

target. The uncertainty of the filter increases when the tracker

loses the target. Finally, a decrease of the filter uncertainty

after a tracking failure indicates that the tracker has locked on

an object, which might be the correct target or a distractor.

An example of use of the uncertainty is depicted in the

toy example of Fig. 3. The color-based particle filter tracks

a magenta solid ellipse that moves from left to right and is

occluded for a few frames by a square (Figure 3, middle).

It can be observed that the time window during which the

uncertainty increases and decreases reflects what one could

estimate using ground-truth data (Figure 3, top).

C. Tracker condition estimation

We aim to detect temporal changes in uncertainty levels

in order to discriminate transitions of the tracker condition

between locked and not locked, at each time instant. In fact,

small uncertainty levels indicate that the tracker is locked on

an object (i.e. the particles are concentrated in an area close

to this object) that might be the target or a distractor, whereas

large uncertainty levels indicate that the tracker is scanning

the image while searching for an appropriate candidate object

to lock on (i.e. the particles are spread over large areas).

To detect uncertainty level transitions while removing the

offset value that could be exhibited by the tracking algorithm,

we define a change signal, CW
t , which maximizes the dif-

ference between filter uncertainty at time t, Ut, and previous

uncertainty values within a time window W :

CW,k
t =

Ut − Ut̂

Uk

, (6)

where

t̂ = argmax
j∈W

(
∣

∣

∣

∣

Ut − Uj

Uk

∣

∣

∣

∣

)

(7)

and k ∈ {t̂, t}, with k = t̂ for detecting low-to-high

uncertainty level transitions and k = t for detecting high-

to-low uncertainty level transitions. The size of the window

W determines the speed of response of the operator. Large

windows allow detecting slow changes but introduce a delay

in the filter response when the signal recovers from a no-

change condition. Small windows allow detecting sudden

changes with a quick operator response but are sensitive to

the signal rate change and therefore slow-changing signals are

undetected.

Slow and sudden changes in the signal are detected by

using two different window sizes, W1 and W2. This solutions

generates four change signals: CW1,t̂
t , CW2,t̂

t , CW1,t
t , and

CW2,t
t that monitor slow (W1) or sudden (W2) increases

(k = t̂) or decreases (k = t) of the uncertainty. Examples

of these signals are shown in Fig. 3, bottom.

We represent transitions among tracker conditions based on

changes of the uncertainty-based signals to detect global and

local changes. The conditions for the global changes, GIt and

GDt, are defined as:

GIt =

{

1 if CW1,t̂
t ≥ τ1 ∨ CW2,t̂

t ≥ τ1

0 otherwise
(8)

and

GDt =

{

1 if CW1,t
t ≥ τ2 ∨ CW2,t

t ≥ τ2

0 otherwise
(9)

where τi (i = 1, 2) represents relative changes (e.g. τi = 2
indicates a 200% change).

The proposed tracker-condition FSM model (Figure 2(a))

starts in the locked-on state when the tracker is initialized.

Then, it passes over to the scanning state when a global

increase is detected, GIt = 1, and to the locking-in state when

a (small) sudden uncertainty decrease is detected, CW2,t
t > τ3.

τ3 evaluates the amount of decrease change (e.g. τ3 = τ2/2). In

the scanning state, the FSM passes over to the locking-in state

when a global decrease is detected, GDt = 1. Then, the FSM

maintains its state if there is a sudden uncertainty decrease,

CW2,t
t > τ3, passes over to the locked-on state in case of the

stabilization of the uncertainty signal, CW2,t
t < τ3, or goes to

the scanning state if a global uncertainty increase is detected,

GIt = 1.

Figure 4 shows an example of temporal segmentation of

the tracker condition. The FSM determines the behavior of

the tracker when the algorithm follows the target and a wrong

object (locked-on condition), searching for potential candidates

after a tracking failure (scanning condition) and focusing on

the selected target (locking-in condition).
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Fig. 4. Sample tracking results, filter uncertainty, ground-truth error,
tracker condition estimation and temporal segmentation for the test sequence
seq_mb (frames 10, 45, 88, 103, 147 and 165). Tracking results and the
spatial localization of particles are represented as green ellipses and blue
crosses, respectively. The ground-truth error signal was computed as described
in Sec. V-B. The color codes for the tracker conditions are as follows.
Green: successful tracking; Red: unsuccessful tracking; Black: scanning;
Cyan: locking in; Blue: locked on.

D. Detection of recovery from an error

The analysis of the filter uncertainty alone cannot determine

a recovery of the tracker after a tracking failure. In fact,

locking on a wrong object (distractor) may occur because of

similarities between target model and features of other objects

in the scene. In this situation, the uncertainty level of the

tracker correctly following the target might be the same as

the level of the tracker following a distractor (see Fig. 4).

To overcome this limitation and to provide an accurate

detection of the recovery after a tracking failure, we propose

to use the time-reversibility property [5]. Time reversibility

assumes that the movement of an object over time (forward)

is also exhibited in the reverse direction and the tracker shall

be able to track the target in the reverse (backward) direction.

In order to describe the tracking process in forward and reverse

direction, let

xF
t = fF (It, x

F
t−1, β

F
t−1) (10)

be the state estimated using a forward tracking process and

xR
t = fR(It, x

R
t+1, β

R
t+1) (11)

be the state estimated using a reverse tracking process. The

superscripts F and R indicate forward and reverse processes

and their related variables; xt, It and βt are target state, current

frame and target model at time t, respectively; and f represents

the tracking algorithm.

At each time, the recovery analysis is performed when there

is a transition from the condition scanning to the condition

locked-on, through the locking-in condition. In this case, the

time-reversed tracking analysis is started. The reverse tracker

is initialized with the current target state estimate (obtained

with the forward tracker). A reference point is defined for

the reverse analysis (determining its length) as the last known

time of the forward tracker estimation when the target state

was correctly estimated (successful tracking) before the target

was lost (unsuccessful tracking). Therefore, the previously

determined values of successful/unsuccessful forward tracking

are stored to choose the appropriate reference point. As the

forward estimation at the reference point usually contains little

information about the target, the real reference point is selected

as the furthermost point in the previous half a second that was

determined as successful tracking.

Then, the forward and reverse target estimations are com-

pared to detect the recovery after failure. To measure the

overlap between two spatial locations (extracted from the

target estimations), we use the Dice coefficient [33], which

is defined as follows:

dS(x
F
t , x

R
t ) =

2
∣

∣AF
t ∩AR

t

∣

∣

∣

∣AF
t

∣

∣+
∣

∣AR
t

∣

∣

, (12)

where xF
t and xR

t are the forward and reverse target es-

timations at time t,
∣

∣AF
t ∩AR

t

∣

∣ is their spatial overlap (in

pixels);
∣

∣AF
t

∣

∣ and
∣

∣AR
t

∣

∣ represent their area (in pixels). At each

time step t, we detect the error recovery by calculating the

distance dS(x
F
t0
, xR

t0
) where t0 is the reference point to check

similarities between forward and reverse tracking estimates;

and xR
t0

is obtained by computing the reverse tracking from t
to t0. If the value of dS(x

F
t0
, xR

t0
) is above a certain threshold,

τ4, then the tracker has recovered.

Figure 5 shows two examples of tracking recovery detection.

As previously observed in Fig. 4, the uncertainty analysis

determined that the tracker became unstable around frames

95-100 and 140-150. Few frames later, the uncertainty stabi-

lized in both cases (Figure 5(a)) recovering from error and

(Figure 5(b)) adapting to a wrong object. In both situations,

the proposed recovery detection method was able to identify

(a) correct and (b) wrong recoveries after the error.

E. Tracker operation condition

Finally, the operation condition during which the tracker is

performing successfully or unsuccessfully are defined based

on transitions dependent on two conditions, H1 and H2

(Fig. 2(b)). Let us assume that the tracker starts from a

successful state when it is initialized. Then H1 is satisfied

when the tracker condition moves to or remains in scanning.

H2 is satisfied when the tracker condition moves from locking-

in to locked-on and there is a correct recovery from error,

i.e. dS(x
F
t0
, xR

t0
) ≥ τ4.

An example of temporal segmentation defining the tracker

operation is shown in Fig. 4, bottom. As there are similar

objects in the background and the target changes its appear-

ance, the tracker is unable to perform successfully and a

failure happens between frames 90 and 160. The temporal
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Fig. 5. Examples of reverse tracking applied to detect the recovery from error for the test sequence seq_mb. (a) Target recovery after failure in frame 157.
(b) Wrong adaptation to a distractor in frame 105. Key. Green ellipse: estimation using forward tracking; Red ellipse: estimation using reverse tracking; Blue
ellipse: evaluation of track recovery.

segmentation of successful tracking is correctly performed

by combining the tracker condition results and the accurate

detection from recovery.

IV. TRACK-QUALITY ESTIMATION

After temporal segmentation of successful and unsuccessful

tracking, track quality is estimated for segments during which

the tracker is successful. The others segments are considered

track-lost segments and therefore discarded for measuring the

accuracy of the tracker [1]. We apply the time-reversibility

constraint [5] and measure at each time step the similarities

between the state estimated with the forward tracker and

the state estimated with the reverse tracker (see Eqs. (10)

and (11)).

For each evaluation time, a reverse tracker is created and

initialized with the current target estimation obtained from the

forward tracker (the tracker to be evaluated). Then, tracking is

performed in reverse direction until a reference frame defined

as the frame where the last successful recovery from error

was detected (see Sec. III-D). The initial frame of the video is

considered as the first reference frame. Note that the forward

and reverse trackers have to be defined using the same tracking

algorithm in order to maintain the time-reversibility property.

Then, the differences between the forward and reverse

tracker are used to estimate the quality, Qt, of the current

track as:

Qt = 1− 1

t− t1

t
∑

i=t1

D(xF
i , x

R
i ), (13)

where xF
t and xR

t are the target state estimations from the

forward and reverse tracking, respectively; t1 is the reference

frame for reverse tracking analysis and D(.) is the function

that measures the dissimilarity between forward and reverse

analysis. Inspired by the improvement achieved with hybrid

evaluation approaches (e.g. [11, 31]), we use a weighted

feature combination to generate the dissimilarity measure,

D(.):

D(xF
t , x

R
t ) = ωdS(x

F
t , x

R
t ) + (1− ω)dF (x

F
t , x

R
t ), (14)

where ω ∈ [0, 1], dS(x
F
t , x

R
t ) is defined in Eq. (12) and

dF (x
F
t , x

R
t ) is a feature distance that, for the elliptic color

tracker, we define as

dF (x
F
t , x

R
t ) =

√

1− ρ(p,q), (15)

where

ρ(p,q) =

m
∑

u=1

√
puqu (16)

is the Bhattacharyya coefficient computed between the m–bin

color histograms p and q of the forward and reverse target

estimations. On the one hand, a large value of ω should be

selected when there is a high clutter level, because the color

histograms of the target will not provide an accurate color

representation. Therefore, increasing the weight of the spatial

distance will increase the performance of the estimated track

quality. On the other hand, a small value of ω will increase the

weight of the feature distance that is useful when the tracker is

unable to accurately determine target positions in forward and

reverse direction. For generic tracking scenarios, we assume

that both distances have an equal impact on track quality and

hence ω = 0.5.

An example of track quality estimation is shown in Fig. 6.

The progressive decrease in performance (measured with the

ground-truth error) is well approximated by the proposed dis-

tances. The forward tracking result (depicted as green ellipses)

was used to initialize the reverse tracking and to compute the

similarity scores. The reverse analysis was performed until the

initialization frame of the target (frame 450).

V. EXPERIMENTAL RESULTS

A. Experimental setup

We evaluate the results of the proposed approach, ARTE

(Adaptive Reverse Tracking Evaluation)2, and compare it with

representative state-of-the-art approaches for empirical stan-

dalone quality evaluation: Observation Likelihood (OL) [6],

covariance of the target state (SU) [7], frame-by-frame

reverse-tracking evaluation using template inverse matching

2Additional results and video sequences can be found at http://www-
vpu.eps.uam.es/publications/TrackQuality
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Fig. 6. Comparison of proposed distances to measure track quality. The
sample images correspond to frames 460, 480, 500, 520, 540 and 560.
Tracking results and ground-truth data are represented as green and red
ellipses, respectively. The ground-truth error is measured as the spatial overlap
between estimated and ground-truth target (Eq. 12).

(TIM) [18] and full-length reverse-tracking evaluation using

the same tracking algorithm (FBF) [5].

The evaluation dataset is composed of sequences from

CAVIAR3, PETS20014, PETS20105, CLEMSON6 and VI-

SOR7 datasets. These sequences present challenging situations

for tracking such as total or partial occlusions, clutter, and

illumination or scale changes (Table II). The initialization of

each target is shown in Fig. 7. To evaluate the performance,

we use ground-truth data consisting of the ellipse best fitting

the target at each frame and described with its centroid, axes

and rotation angle.

The parameters of the tracker [32] are the same for all the

targets. Color histograms are generated in the RGB space for

pedestrian targets (P) and in the HSV space for face targets

(F), using 8x8x8 bins in both cases; σx,y = 5, σHx,Hy
= 0.75,

σθ = 4◦, σc = 0.2; 300 samples/particles are used in the

experiments. The values of τ1 = 2, τ2 = −2.5, τ3 = −1.25
and τ4 = 0.5. Due to the statistically nature of the particle

filter, we run the tracker 10 times for each sequence.

3http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
4http://www.cvg.rdg.ac.uk/PETS2001/
5http://www.cvg.rdg.ac.uk/PETS2010/
6http://www.ces.clemson.edu/~stb/research/facetracker
7http://imagelab.ing.unimore.it/visor/

Table II
DESCRIPTION OF THE EVALUATION DATASET (KEY. SC: SCALE CHANGES.

AC: APPEARANCE CHANGES. IC: ILLUMINATION CHANGES.
O:OCCLUSIONS. C:CLUTTER.)

Dataset Target Size Characteristics

CAVIAR P1 – P4 384x288 IC, C
PETS2001 P5 – P10 768x576 SC, O, C
PETS2010 P12 – P18 768x576 O, C
D1 F1 – F4 128x196 SC, AC, C, O
VISOR F5, F6 352x288 SC, C, O

Fig. 7. Target initialization for the evaluation dataset. From top-
left to bottom-right: Pedestrian targets: Browse_WhileWaiting1 (P1), One-

LeaveShopReenter1front (P2), OneLeaveShopReenter2front (P3), ThreeP-

astShop2cor (P4), Camera1_testing (P5–P10), S2_L1_view001 (P11–P14),
S2_L2_view0001 (P15, P16) and S2_L3_view001 (P17, P18); face targets:
seq_bb (F1), seq_mb (F2), seq_sb (F3), seq_villains2 (F4), occlusion_1 (F5)
and occlusion_2 (F6).

B. Performance evaluation criteria

The error between the tracking data and the ground-truth

data is quantified using the spatial overlap of the corresponding

target areas (Eq. (12)). Low performance is indicated by values

close to 0 (i.e. small overlap). High performance is indicated

by values close to 1 (i.e. large overlap). Track quality is

evaluated once every five frames.

The performance of temporal segmentation (see Sec. III)

is evaluated using Receiver Operating Characteristic (ROC)

analysis. This analysis requires the definition of ground-truth

segmentation. A successful (unsuccessful) track is determined

when the error measure dS(x
e
t , x

g
t ), defined as in Eq. (12), is

larger (smaller) than the minimum allowed overlap between

xg
t , the ground truth, and xe

t , the estimation.

Finally, the performance of the proposed approach is eval-

uated by a correlation analysis against the error measure for

the case of successful tracking (determined using the proposed
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Table III
COMPARATIVE RESULTS. ROC ANALYSIS USING 10 RUNS EXPRESSED AS

AVERAGE ± STANDARD DEVIATION. (KEY. AUC: AREA UNDER THE

CURVE, FPR: FALSE POSITIVE RATE, TPR: TRUE POSITIVE RATE)

Approach AUC FPR TPR

ARTE .87± .02 .16± .01 .89± .03

OL [6] .66± .07 .37± .05 .61± .11

SU [7] .76± .04 .38± .03 .81± .06

TIM [18] .44± .01 .28± .02 .27± .04

FBF [5] .87± .03 .25± .03 .95± .02

approach). We use the Pearson product-moment correlation

coefficient [34] between ground-truth and estimated data:

ρ =

∣

∣

∣

∣

E [(Xe − µXe)(Xg − µXg )]

σeσg

∣

∣

∣

∣

, (17)

where Xe and Xg represent the estimated and ground-truth

data for each video sequence; µXe and µXg represent their

respective means; σXe and σXg represent their respective stan-

dard deviations; ρ ∈ [0, 1], with values close to 1 indicating

high correlation with ground-truth data.

C. Temporal segmentation to detect successful tracking

The results regarding the temporal segmentation between

successful and unsuccessful tracking are summarized in Fig. 8

and Table III. Feature-based measures (for OL and SU)

demonstrated their dependence on the clutter level (for OL)

and on the adaptation to wrong targets (OL and SU), thus

obtaining intermediate results. SU obtained better results as it

relies on filter uncertainty. On the one hand, TIM demonstrated

the inaccuracy of short-length reverse-based evaluation due

to the adaptation of the measure to tracking errors. On the

other hand, the time-reversibility property is useful to segment

correct tracking and, in fact, the full-length reverse-based

evaluation (FBF) obtained high performance. ARTE obtained

similar AUC compared to FBF. An intersection of both ROC

curves shows that FBF outperforms ARTE with higher true

positive rate. However, the observed false alarm rate for FBF

is also larger than that for ARTE and ARTE obtained better

true positive rate than FBF in the case of low false alarm rate.

In addition to this, the execution time of ARTE is considerable

lower than that of FBF: approximately 50 (10) times without

(with) track quality estimation. The temporal segmentation

allowed determining adaptively the reference points for reverse

analysis whilst in FBF this point is fixed (the initialization

frame of the target). FBF has an exponential increase of

computational cost and therefore it is inadequate to evaluate

trackers on long sequences.

Figure 9 shows two temporal segmentation examples. Fig-

ure 9(a) illustrates a case of failure and wrong target adapta-

tion: the tracker starts in the locked-on condition and then

moves to an over-illuminated area. Here the tracker loses

the target (tracker condition: scanning). Few frames later, the

tracker is distracted by a background object (tracker condition

locking-in). Finally, the tracker is completely adapted to the

wrong object (tracker condition: locked-on). A reverse tracking

analysis is performed to check the correct recovery after error

and fails indicating the wrong target adaptation.
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Fig. 8. ROC curves for the segmentation between successful and unsuc-
cessful tracking using the evaluation dataset. (Key. ARTE: proposed approach,
OL: Observation Likelihood [6], SU: Covariance of the target state [7], TIM:
frame-by-frame reverse tracking [18]; FBF: full reverse tracking [5]).

A second temporal segmentation example with failure re-

covery is shown in Fig. 9(b). A moving head is tracked (tracker

condition: locked-on) until it gets occluded by a blackboard

(tracker condition: scanning). Then, the tracker recovers the

correct target (tracker conditions: locking-in and locked-on).

Successful tracker recovery is verified by the reverse-based

proposed method. Then, the target is again lost due to a quick

movement (tracker condition: scanning) and recovered a few

frames later (tracker conditions: locking-in and locked-on).

Finally, a target estimation refinement happens as the filter

uncertainty is decreased (transitions between locking-in and

locked-on conditions).

Note that, although the proposed approach shares with

the Expected-Log Likelihood (ELL) statistic [35] the generic

idea of measuring dissimilarities between prior and posterior

distributions for particle-filter-based abnormality detection, it

differs by considering this prior conditioned to the observed

data and by detecting slow and sudden changes (ELL is only

valid for slow ones [6]). Moreover, the filter uncertainty is

not sufficient to estimate the tracker operation condition as

data can be consistent due to distractors. Hence, the use of a

statistic such as ELL will not be able to provide this condition.

D. Track-quality estimation

Results comparing the correlation between track quality

estimators and ground-truth data are summarized for pedes-

trian and face targets in Table IV. As for pedestrians, ARTE

achieved an average ground-truth correlation of 57.3% whilst

the other approaches obtained 50.5% (OL), 48.0% (SU),

11.3% (TIM) and 33.15% (FBF) correlation. OL obtained

varying correlation values showing its dependency to wrong

target adaptation and to different levels of clutter. The first

situation can be easily observed for P2, P13 and P17, whilst

the second situation is observed for P6 and P7 (where there

is no tracking failure). In particular, high performance was

achieved in case of correct tracking or failures due to target–
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Fig. 9. Sample tracking results, tracker condition estimation and temporal
segmentation for (a) target P1 (Browse_WhileWaiting1 sequence; frames
shown are 525, 540, 560 and 580) and (b) target H5 (occlusion_1 sequence;
frames shown are 115, 140, 160, 180, 210 and 225). Tracking results and
ground-truth data are represented as green and red ellipses, respectively.
The color codes for the tracker conditions are as follows. Green: successful
tracking; Red: unsuccessful tracking; Black: scanning; Cyan: locking in; Blue:
locked on.

model dissimilarities. OL obtained the best results, thus con-

firming the conclusions of [12]. SU obtained low performance

showing a high dependency on wrong target adaptation (P1,

P2, P3, P7 and P17) and being unable to evaluate track

quality (P10) as the particle filter tried to keep it constant

during the analysis. However, high performance was obtained

for cases without track-quality degradation (P5) or failure

without wrong adaptation or recovery (P8). TIM achieved

Table IV
COMPARISON OF TRACK QUALITY ESTIMATION PERFORMANCE FOR

PEDESTRIAN (P1-P18) AND FACE TARGETS (F1-F6). BOLD INDICATES

THE BEST RESULT FOR EACH TARGET. (KEY. ARTE: PROPOSED

APPROACH, OL: OBSERVATION LIKELIHOOD [6], SU: COVARIANCE OF

THE TARGET STATE [7], TIM: FRAME-BY-FRAME REVERSE

TRACKING [18]; FBF: FULL REVERSE TRACKING [5])

Target Pearson correlation coefficient
OL SU TIM FBF ARTE

P1 .86± .04 .25± .06 .07± .05 .09± .05 .75± .15

P2 .34± .10 .20± .09 .10± .16 .15± .07 .45± .20

P3 .20± .06 .49± .08 .10± .04 .02± .12 .83± .11

P4 .64± .05 .53± .06 .10± .01 .33± .17 .46± .06

P5 .95± .02 .96± .02 .08± .04 .95± .03 .86± .10

P6 .44± .10 .56± .08 .05± .03 .45± .20 .47± .19

P7 .24± .15 .25± .11 .05± .02 .17± .09 .44± .14

P8 .54± .13 .71± .16 .08± .07 .47± .21 .48± .05

P9 .57± .14 .54± .14 .15± .11 .10± .09 .55± .10

P10 .11± .03 .23± .08 .12± .12 .02± .01 .40± .10

P11 .81± .15 .64± .11 .32± .09 .58± .11 .98± .01

P12 .59± .11 .28± .05 .06± .05 .27± .09 .75± .08

P13 .28± .10 .52± .14 .10± .13 .14± .05 .44± .15

P14 .25± .05 .66± .12 .17± .03 .71± .13 .77± .04

P15 .59± .08 .32± .05 .25± .12 .43± .07 .48± .18

P16 .64± .11 .45± .10 .11± .06 .16± .03 .75± .05

P17 .20± .05 .18± .04 .20± .10 .34± .09 .42± .08

P18 .80± .14 .82± .09 .24± .12 .26± .12 .87± .15

mean .50± .10 .48± .08 .11± .09 .33± .10 .57± .03

F1 .19± .06 .60± .11 .12± .04 .44± .11 .74± .17

F2 .63± .15 .38± .26 .07± .05 .24± .09 .65± .10

F3 .20± .17 .57± .15 .06± .06 .79± .13 .34± .06

F4 .14± .09 .65± .04 .07± .03 .25± .08 .37± .09

F5 .71± .05 .63± .04 .08± .04 .42± .15 .71± .08

F6 .31± .11 .17± .10 .09± .05 .05± .03 .32± .21

mean .36± .12 .50± .09 .08± .05 .37± .11 .52± .12

tot mean .47± .08 .48± .08 .09± .08 .34± .10 .56± .07

the worst results as the use of short-length reverse analysis

accumulates errors over time. A few frames after a tracking

failure, TIM was unable to evaluate tracking failure as this

approach adapts to the target estimation in short temporal

windows. FBF also presented varying results and obtained

high performance for P5 and P14; intermediate performance

for P4, P6, P8, P11 and P15; and low performance for P1,

P3, P9, P10, P13 and P16. The reason for this behavior is

due to the metric applied, the Mahalanobis distance, which

does not work well with different degradations of track quality.

This distance measures data similarity considering their means

and covariance matrix. However, probabilistic tracking usually

provides weighted estimations of target state (e.g. particle

filter weights). Therefore, small changes in the covariance

matrix of the target state are not measured by the Mahalanobis

distance. Moreover, this distance has not got a fixed range

of values that identifies tracking failure without ambiguities.

Hence, several Mahalanobis distance values can correspond to

a tracking failure and their correlation with ground-truth data

is low. In addition to this, the track quality is computed using

only the last estimated state of the reverse analysis (performed

until the reference frame). Hence, there is an information loss

due to the not-computed reverse-forward comparisons. ARTE

addresses all these issues achieving a good trade-off in all the

test sequences.
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As for face targets, ARTE achieved an average ground-truth

correlation of 52.8% whilst other approaches obtained 36.4%
(OL), 50.3% (SU), 8.7% (TIM) and 37.7% (FBF) correlation.

A decrease in performance compared to the pedestrian results

can be observed that is due to the higher complexity of face

targets. OL and SU obtained intermediate results (similar

to ARTE) compared to the pedestrian target results. This

performance can be explained with the initialization process

and the type of sequences. A face target is easier to annotate

than a pedestrian target and the HSV color space offers a

good description of face targets. Hence, the corresponding

target model is more accurate for faces than for pedestrians.

Moreover, a common tracking error is due to occlusion with

an object whose appearance is very different from that of the

target and therefore tracker recovery was successful in most

cases. In this situation, OL and SU increased their performance

as they depend on similarities between target model and

candidates. TIM and FBF obtained low performance due to

error accumulation for short-length approaches (TIM) or an

inappropriate metric used (FBF), as commented earlier.

Sample results of track quality estimation are shown for

wrong target adaptation and correct target recovery after a

tracking failure in Fig. 10. Figure 10(a) shows how the tracker

loses the target and adapts to the most similar background

patches. Then, it first recovers the target and then loses it at

the end of the sequence. Figure 10(b) shows the tracking of a

moving head that gets occluded twice by another moving head

and by a blackboard. The first occlusion was by a similar target

model (not detected by OL) and the second occlusion was due

to a model dissimilarity (correctly detected by all approaches).

In this case, track quality is correctly estimated by ARTE only.

As final remark, ARTE detects a recovery few frames later

than it actually happened, as shown by the above examples.

This latency is due to the filter uncertainty operator that

decreases because it integrates previous values. This latency

is due to the delayed detection and can be overcome by

changing the size of the temporal window: a performance

increase (in terms of ground-truth correlation) is expected with

a post-processing stage. Nevertheless, a delay in the output of

ARTE is introduced to allow the re-calculation of track quality

estimations when a recovery is detected. We have decided not

to perform this post-processing to avoid an unfair comparison

with the state-of-the-art methods as they produce the track-

quality data without any post-processing.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a track quality estimator in the ab-

sence of ground-truth data. A novel adaptive analysis strategy

based on the uncertainty of the tracking filter and the time-

reversibility constraint has been proposed. Tracking failures

are identified by analyzing changes of the filter uncertainty.

Time-reversibility is applied to check recovery after a tracking

failure. Then, track quality is estimated for successful tracking

cases by using a reverse tracking analysis that is based on

similarities between reverse and forward tracking in terms

of color and spatial distances. Experimental results over a
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Fig. 10. Sample tracking results, ground-truth error and track quality
estimators for (a) target P3 (frames shown are 250, 280, 300, 350, 435,
480, 510 and 525) and (b) target H6 (frames shown are 180, 185, 195,
230, 275, 295, 310 and 335). The methods under analysis are the proposed
approach (ARTE), Observation Likelihood (OL) [6], Covariance of the target
state (SU) [7], frame-by-frame reverse tracking (TIM) [18] and full reverse
tracking (FBF) [5]. Tracking results are shown as green ellipses.
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heterogeneous dataset showed that the proposed approach

outperforms state-of-the-art algorithms. The approach was

demonstrated in a particle filter framework and is applicable to

multi-hypothesis trackers that use some forms of uncertainty

related to the spread of the generated hypotheses. Its appli-

cation to single-hypothesis trackers not based on Bayesian

filtering requires an adaptation of the algorithm output, for

example with a transformation that computes a correlation

map for target location [27]. Other future research directions

include investigating adaptive thresholding techniques and the

fusion of multiple trackers based on track quality.
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