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Abstract. Observations with ground based telescopes suffer from atmospheric turbulence. Inde-
pendent of the telescope size the angular resolution in the visible is equivalent to that of a telescope
with a diameter of 10–20 cm. This effect is caused by the turbulent mixing of air with different
temperatures in the atmosphere. Thus, the perfect plane wave from a star at infinity is aberrated
before it enters the telescope. In the following, we will discuss the physical background of imaging
through turbulence, using Kolmogorov statistics, and the different techniques to sense and to correct
the wave-front aberrations with adaptive optics. The requirements for the control loop of an adaptive
optics system are discussed including formulas for the limiting magnitude of the guide star as a
function of the wave-front sensing method, of the quality of the wave-front sensor camera, and of
the degree of correction. Finally, a short introduction to deformable mirror technology will be given
followed by the presentation of a new method to measure and to distinguish individual turbulent
layers in order to increase the isoplanatic angle.
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1. Introduction

The image quality of ground based telescopes suffers from atmospheric turbulence.
Independent of the telescope size the angular resolution in the visible is equiva-
lent to that of a telescope with a diameter of 10–20 cm. This effect is caused by
the turbulent mixing of air with different temperatures in the atmosphere. Thus,
the perfectly plane wave from a star at infinity is aberrated before it enters the
telescope.

It was the idea of H. Babcock (1953) to correct these aberrations with a deform-
able mirror to obtain diffraction limited images. The principle of an adaptive optics
system is displayed in Figure 1. The deformable mirror, a wave-front sensor and
a camera in the corrected focus form the main elements. The wave-front sensor
measures the aberrations with a high sampling rate and sends the control signals to
the deformable mirror in order to correct the aberrations. Then, the corrected focus
can be recorded by a camera with an exposure time independent of atmospheric
turbulence.
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Figure 1. The main elements of an adaptive optics system. The wave-front sensor measures the
aberrations and sends the information to the deformable mirror to flatten the wave-front. A camera
in the corrected focus takes the corrected image.

Although this sounds simple, some demanding technical requirements for the
wave-front sensor and for the deformable mirror delayed the realisation of adaptive
optics systems by several decades. In the U.S. Air Force, adaptive optics systems
were developed since 1970 in classified research (Hardy et al., 1977) both for im-
proved imaging of satellites and for the projection of high energy laser beams onto
missiles. In the civilian sector, it took until the late 1980’s before the COME-ON
system of the European Southern Observatory was installed on the 3.6-m telescope
in Chile (Merkle et al., 1989). In the northern hemisphere, the PUEO adaptive
optics system of the Canada-France-Hawaii Telescope was the first to become
available to the astronomical community for regular science observations in 1996
(Rigaut et al., 1997).

The technical requirements for adaptive optics systems concern the sampling
rate and the sensitivity of the wave-front sensor camera, and the frequency that can
be applied to the deformable mirror. The required sampling rate is determined by
the rate of changes of the atmospheric turbulences. Therefore, the statistical para-
meters of the turbulence play a vital role for adaptive optics systems. Kolmogorov
statistics provide a suitable theoretical model for atmospheric turbulence. Meas-
urements of the statistical properties have mostly confirmed the assumptions of
this theory.

The most important question for the applicability of adaptive optics systems
to astronomical research is the question about the sky coverage: how much of the
sky can be observed given that a star of suitable brightness, the guide star in the
wave-front sensor, has to be close to the object star? The required brightness of
the guide star follows from the required sampling rate of the wave-front sensor
camera determined by the rate of changes in the atmosphere, and from the desired
degree of correction. In Figure 2, simulated short exposure images of a single
star on a 3.5-m telescope under identical atmospheric conditions are displayed at
different wavelengths. At 10µm, a single diffraction limited speckle is moving
around slowly, and image stabilisation is sufficient to create a diffraction limited
image. In the visible at 0.5µm, a speckle cloud of a few hundred speckles displays
a dynamic behaviour similar to Brownian motion. Creating a single diffraction
limited point spread function requires a deformable mirror with approximately as
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Figure 2.Speckle images of a single star in the visible at 0.5µm (on the left) and at 10µm (on the
right) under identical atmospheric conditions on a 3.5-m telescope. In the 10µm image, parts of the
first diffraction ring can be seen. A simulation for atmospheric turbulence was used to produce the
images.

many actuators as there are speckles. This example illustrates the very different
requirements for the adaptive optics system at different wavelengths. Thus, the
answer to the question about the sky coverage depends on the desired degree of
correction and the subsequent parameters for wave-front sensor sampling rate, and
on atmospheric conditions.

In the following, we will discuss the physical background of imaging through
turbulence, and the different techniques to sense and to correct the aberrations
caused by the turbulence. Examples of adaptive optics systems will demonstrate
how the image improvement is done in practice.

The paper is organised as follows. In Section 2, after a short introduction to
the notation used in Fourier optics, the Kolomogorov statistics and the impact on
the imaging process are investigated. The components of adaptive optics systems
are presented in Section 3 discussing methods for wave-front sensing and recon-
struction, and the closed loop operation. The limiting magnitude of the guide star
is expressed quantitatively as a function of the wave-front sensing method, of the
quality of the wave-front sensor camera, and of the degree of correction.

Also in Section 3, the deformable mirror technology is introduced. A new meth-
od is discussed in Section 4 to measure and distinguish individual turbulent layers
in order to increase the isoplanatic angle.

For further reading on this subject, the books by Tyson (1998) and by F. Roddier
(ed., 1999) cover the field in great detail. Roggemann and Welsh (1996) devote
several chapters in their book on imaging through turbulence to adaptive optics,
and Beckers (1993) presents an overview of the applications of adaptive optics to
astronomy. The conference proceedings of a NATO summer school on adaptive op-
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tics, edited by D. Alloin and J.-M. Mariotti (1994), contain interesting contributions
for the expert reader.

2. Imaging through atmospheric turbulence

In the following, the relevant theoretical framework for understanding imaging
through atmospheric turbulence will be discussed. For a more detailed description
the reader is referred to the review by Roddier (1981) which is mainly based on
the analysis of wave propagation in a turbulent medium by Tatarski (1961). The
quantities and the underlying theory of the imaging process are briefly presented at
the beginning of this section. Then, Kolmogorov’s mathematical model to describe
atmospheric turbulence is introduced (Kolmogorov, 1961), the statistical properties
of the electromagnetic wave are discussed, and the impact on image motion and the
appearance of the image are investigated.

2.1. PRELIMINARIES

The wave propagation through the atmosphere and the telescope into the focal
plane is very conveniently described by Fresnel diffraction. Incorporating optical
elements like lenses or mirrors in a spherical approximation leads to the well known
Fourier relationship between the amplitude of the electromagnetic wave in the pupil
of the telescope and the amplitude in its focal plane (Goodman, 1968; Born and
Wolf, 1970; Marathay, 1982).

We use the notation9(Ex) for the complex amplitude in the telescope pupil
andA(Eu) for the complex amplitude in the focal plane. The two quantities are
connected through a Fourier transform

A(Eu) =
∫
9(Ex)exp(2πi Ex Eu) d Ex,

where the integration is performed over the telescope pupil. The phaseφ(Ex) of
9(Ex) incorporates the turbulent atmosphere as well as the telescope aberrations. In
the telescope focus, we are usually interested in the intensity distributionI (Eu) =
|A(Eu)|2 that can be written as

I (Eu) =
∫∫

9(Ex′)9∗(Ex′′)exp(2πi(Ex′ − Ex′′)Eu) d Ex′d Ex′′

=
∫ (∫

9(Ex′)9∗(Ex′ − Ex)d Ex′
)

exp(2πi Ex Eu) d Ex,

where
∫
9(Ex′)9∗(Ex′−Ex)d Ex′ is the autocorrelation of the amplitude in the telescope

pupil that is called the optical transfer function (OTF). If a plane wave from a point
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source at infinity enters a perfect, i.e. aberration free, telescope the OTF is a purely
real function – approximately shaped like a triangle – and its Fourier transform is
the diffraction limited point spread function, the Airy disk.

In the case of statistical fluctuations of the electromagnetic wave, due to an
incoherent source or due to atmospheric turbulence, the autocorrelation can be ex-
pressed as an ensemble average over all possible realisations, called the coherence
function:

0(Ex) =< 9( Ex′)9∗( Ex′ − Ex) > .
It is one of the main tasks of turbulence theory to connect the atmospheric prop-
erties to the coherence function in the telescope pupil and, thus, to its Fourier
transform, the point spread function (PSF) in the telescope focal plane. If atmo-
spheric turbulence rather than the telescope diameter limits the size of the PSF it
is called the seeing disk and its full width at half maximum (FWHM) is called the
seeing.

2.2. KOLMOGOROV TURBULENCE

The statistics of the spatial and temporal structure of atmospheric turbulence is of
great importance to describing the propagation of light through the atmosphere.
Following from the theory of fluid motion the flow of air becomes turbulent, i.e.
unstable and random, if theReynolds numberRe = L0v0/kv exceeds a critical
value, whereL0 is the characteristic size of the flow,v0 is the characteristic velocity
andkv is the kinematic viscosity. With typical numbers for these parameters,L0 ≈
15 m,v0 ≈ 10 m s−1 andkv = 15× 10−6 it is Re ≈ 105 which corresponds to
fully developed turbulence.

Kolmogorov (1961) suggested that the kinetic energy in the largest structures
of the turbulence is transferred successively to smaller and smaller structures. He
also assumed that the motion of the turbulent structure is both homogeneous and
isotropic implying that the second and higher order statistical moments of the
turbulence depend only on the distance between any two points in the structure.
If the product of the characteristic sizeL of the small structure and its velocity
v is too small to keep the Reynolds number in the turbulent regime the break up
process stops and the kinetic energy is dissipated as heat by viscous friction. In
a stationary state, the energy flow from larger structuresL to smaller structuresl
must be constant, i.e. the amount of energy that is being injected into the largest
structure must be equal to the energy that is dissipated as heat. It isE(l)dl the
kinetic energy of a structure with a size betweenl andl+ dl. If the typical transfer
time ofE(l)dl through a structure of sizel is given byl/v the energy flow rate,ε0,
can be written as

ε0 = E(L)dL

t(L)
= E(l)dl

t (l)
=

1
2ρv

2

l/v
= const, (1)



10 A. GLINDEMANN ET AL.

and it is

v ∝ l1/3. (2)

The kinetic energyE(k)dk in the spectral rangek andk+ dk is proportional tov2.
With the spatial frequencyk ∝ l−1 one obtains

E(l)dl = E(k)dk ∝ k−2/3 or E(k) ∝ k−5/3. (3)

For isotropic turbulence the three dimensional case can be calculated by integrating
over the unit sphere:

E(k) = 4πk2E(Ek)⇒ E(Ek) ∝ k−11/3. (4)

This relationship expresses the Kolmogorov spectrum. It holds in theinertial range
of turbulence forL−1

0 � k � l−1
0 whereL0 is the outer scale of turbulence,

generally the size of the largest structure that moves with homogeneous speed,
and l0 is the inner scale at which the viscous dissipation starts. The outer scale
of turbulence varies between a few meters close to the ground where the largest
structure is determined by the height over the ground, and a few hundred meters in
the free atmosphere which is the thickness of the turbulent layer (Colavita, 1990;
Tatarski and Zavoroty, 1993; Haniff et al., 1994). The inner scale of turbulence is
in the range of a few millimetres near the ground to about 1 cm near the tropopause
(Roddier, 1981).

2.3. INDEX-OF-REFRACTION FLUCTUATIONS

Light traveling through the atmosphere is affected by fluctuations of the refraction
index. The physical source of these fluctuations are temperature inhomogeneit-
ies produced by turbulent mixing of air. The index of refraction as a function of
wavelength is given by the Cauchy formula (Weast and Astle, 1981)

n(λ) = 1+ (272.6+ 1.22

λ2
)10−6, (5)

with λ in µm and the numerical parameters for 15◦C and 1000 mbar.n(λ) for
different temperatures is displayed in Figure 3. Both numerical parameters depend
slightly on temperature and pressure. However, this dependence can be neglected
in the second parameter (that is 1.22 in Equation 5), and the index of refraction
n(Er) can be modelled as the sum of a purely wavelength dependent partn(λ), and
a randomly fluctuating partnf (Er) depending on temperature and pressure. This
approximation has the consequence that the shape of the wave-front is independent
of the wavelength. Effects that show a wavelength dependence, like the different
number of speckles in the optical and in the infrared, are caused by the different
relative impact of the same wave-front distortion at different wavelengths.
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Figure 3. The refraction index of air at 0, 15 and 30◦C and 1000 mbar as given by the Cauchy
formula. The dependence on temperature can be modeled by approximating the refraction as a sum
of temperature and wavelength dependent terms.

Usingn(λ) ≈ 1, the refraction index as a function of temperature and pressure at
optical and near infrared wavelengths can be written as (Ishimura, 1978)

n(Er)− 1= nf (Er) = 77.6P

T
10−6, (6)

whereT is the temperature of the air in Kelvin andP the pressure in millibar. It
can be shown that the refraction index as a passive, conservative additive, i.e. a
quantity that does not affect atmospheric turbulences and that is not affected by the
motion of the air, also follows Kolmogorov statistics (Obukhov, 1949). Then, the
power spectral density8n(k) of n(Er) has the same spatial frequency dependence
as the kinetic energy and can be expressed as

8n(k) = 0.033C2
n k
−11/3. (7)

The quantityC2
n is called thestructure constantof the refraction index fluctuations

and has units of m−2/3. It characterises the strength of the refraction index fluctu-
ations. Measurements ofC2

n have shown a good agreement with the Kolmogorov
theory (see e.g. Hufnagel, 1974; Clifford, 1978). The latest measurements ofC2

n

have been performed by Klückers et al. (1997) using a method suggested by Vernin
and Roddier (1973).

Based on measurements Hufnagel and Valley (1980) suggested a model for the
atmospheric turbulence profile called the Hufnagel-Valley-Boundary model. Since
the profile varies from site to site and from time to time this model can only give a
rough idea of the layer structure. The structure constant can be modelled using the
formula

C2
n(h) = 2.2× 10−23h10e−h + 10−16e−h/1.5 + 1.7× 10−14e−h/0.1. (8)

Like the statistical distribution of velocity discussed in Section 2.2 the refraction
index distribution is isotropic and homogeneous as long as the spatial frequencies
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involved are in the inertial range, withL−1
0 � k � l−1

0 . The Kolmogorov theory
predicts a mathematical form for8n(k) only inside the inertial range. The von
Karman spectrum (Ishimura, 1978) models the power spectral density also outside
of this regime.

Figure 4. Average C2
n profile as a function of altitude in km as given by the Hufna-

gel-Valley-Boundary model. Two distinct layers can be distinguished, near the ground (100 m) and
at 10 km.

So far, only the power spectral density of the refraction index fluctuations has been
discussed. The power spectral density is related to the autocorrelation0n(Er) =<
n( Er1)n( Er1+ Er) > by the Wiener-Khinchin theorem:

0n(Er) =
∫
8n(|Ek|)e−2πiEkErdEk. (9)

As already noted, the random process leading to the fluctuation of the refractive
index is isotropic and homogeneous. Thus, second and higher moments ofn, like
the autocorrelation depend only on the distance between two points. This allows
us to express both the power spectral density and the autocorrelation as functions
of the three dimensional vectorsEk andEr where|Ek| and|Er| are denoted byk andr
respectively. To avoid the integration over the pole atk = 0 thestructure function
of the refraction index is introduced as

Dn(r) = < |n(r1)− n(r1+ r)|2 >
= 2(< n(r1)

2 > − < n(r1)n(r1+ r) >)
= 2(0n(0)− 0n(r)) .

The result of this calculation was derived by Obukhov (1949):

Dn(r) = C2
nr

2/3. (10)
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This form of the structure function of the refractive index is known as Obukhov’s
law. Together with the Kolmogorov spectrum (Equation 7) it forms the basis for
the description of wave propagation through turbulence.

2.4. STATISTICAL PROPERTIES OF THE ABERRATED COMPLEX WAVE

For the sake of simplicity, only horizontal monochromatic plane waves are con-
sidered, propagating downwards through atmospheric turbulence from a star at
zenith. The fluctuations of the complex amplitude are calculated by using the
Kolmogorov spectrum and Obukhov’s law.

Using the thin screen approximation (Roddier, 1981), the layer thickness is
assumed to be large compared to the correlation scale of the fluctuations but small
enough to neglect diffraction effects within the layer. Also, the layer is non-absorb-
ing and its statistical properties depend only on the altitudeh, i.e. the structure
constantC2

n does not vary in the horizontal direction. After propagation through
a thin turbulent layer at altitudeh, the phase is related to the distribution of the
refractive index through

φh(Ex) = 2π

λ

∫ h+δh

h

n(Ex, z)dz, (11)

where δh is the thickness of the layer andEx = (x, y) denotes the horizontal
coordinate vector. The complex amplitude after propagation through a layer at
altitudeh can be written as

9h(Ex) = eiφh(Ex). (12)

To describe the statistical properties of the complex wave we need the correlation
function of the complex amplitude, the coherence function, defined as

0h(Ex) = < 9h( Ex′)9∗h( Ex′ + Ex) >
= < ei[φh( Ex ′)−φh( Ex ′+Ex)] > . (13)

As the intensity distribution in the telescope focal plane is the Fourier transform of
the coherence function in the telescope aperture, its description as a function of the
atmospheric properties determines the telescope point spread function affected by
atmospheric turbulence, i.e. the seeing disk. Since the phaseφh(Ex) is the sum of a
large number of independent variables (the refraction indicesn(Ex, z), Equation 11)
it is reasonable to apply the central-limit theorem implying thatφh(Ex) and also
φh( Ex′) − φh( Ex′ + Ex) follow Gaussian statistics. Then, the expectation value in
Equation (13) is called the characteristic function of the Gaussian random process,
and it is defined as

< eizv >=
∫
eizxpv(x)dx = e− 1

2<v
2>z2

, (14)
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wherepv(x) denotes the Gaussian distribution of the random variablev. In Equa-
tion (13)v is the Gaussian distributed phase differenceφh( Ex′) − φh( Ex′ + Ex) andz
equals unity. Using these properties, the coherence function can be written as

0h(Ex) = e− 1
2<[φh( Ex ′)−φh( Ex ′+Ex)]2>, (15)

or, introducing the phase structure functionDφ,h(Ex) =< [φh( Ex′)−φh( Ex′ + Ex)]2 >,

0h(Ex) = e− 1
2Dφ,h(Ex). (16)

The problem of determining the coherence function of the complex amplitude
is now shifted to calculating the phase structure functionDφ,h(Ex). The relation
between the three-dimensional distribution of the refraction index and the two-
dimensional distribution of the phase is given by Equation (11). This leads from
the three-dimensional structure function of the refraction index (Equation 10) to the
one of the phaseDφ,h(Ex) that depends on the two-dimensional vectorEx. Assuming
also thatδh is much larger than the correlation scale of the fluctuations, one can
show that for a horizontal wave-front entering the layeri at altitudehi, the phase
structure function at the exit of the layer is (Fried, 1966)

Dφ,hi (x) = 2.91(
2π

λ
)2δhiC

2
ni
x5/3, (17)

with x = |Ex|.
Calculating the coherence function iteratively for multiple layers one obtains

the coherence function on the ground in the telescope aperture after propagation
throughN turbulent layers as

< 90(x
′)9∗0(x

′ + x) > = e−
1
2Dφ,0(x),with

Dφ,0(x) = 2.91(
2π

λ
)2

N∑
i=1

δhiC
2
ni
x5/3. (18)

The distances between the layers and the size of the diffraction structures are such
that the propagation of the complex amplitude has to be described by Fresnel dif-
fraction. That means that the complex amplitude on the ground fluctuates both in
amplitude and in phase. The propagation of the coherence function through the
atmosphere, however, is reduced to a simple product of the coherence functions of
the single layers, unaffected by Fresnel diffraction (Roddier, 1981). This reflects
the general property of the coherence function that Fresnel terms cancel when
describing the propagation of the coherence function through space or through an
optical system (Marathay, 1982).
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In the case of a continuous distribution of turbulence and of a source at zenith
distanceγ one obtains

Dφ,0(x) = 2.91(
2π

λ
)2(cos γ )−1x5/3

∫
C2
n(h)dh. (19)

Dφ,0 is the phase structure function of the phase in rad. If the phase is given in
the dimension of meter it describes the physical shape of the turbulent wave-front.
It is interesting to note that the phase structure function of the phase in meter,
and thus the shape of the phase, is independent of wavelength. This follows from
the approximationn(Er) = n(λ) + nf (Er). Therefore, a wave-front sensor can be
operated in the visible determining the shape of the wave-front and steering the
deformable mirror for observations in the infrared.

Fried further simplified the expression by introducing the quantityr0, called the
Fried parameter (Fried, 1965a), which is defined by

r0 =
(

0.423 (
2π

λ
)2(cos γ )−1

∫
C2
n(h)dh

)−3/5

. (20)

The wavelength dependence ofr0 is given byr0 ∝ λ6/5 and the dependence on
zenith angle isr0 ∝ (cosγ )3/5. The phase structure function in the telescope pupil
can now be expressed by

Dφ,0(x) = 6.88

(
x

r0

)5/3

, (21)

and the coherence function in the telescope pupil is

00(x) =< 90(x
′)9∗0(x

′ + x) >= e−3.44( x
r0
)5/3

. (22)

If a single star is observed through the telescope the turbulence limited point spread
function is obtained by computing the Fourier integral of the coherence function
over the circular telescope aperture. Figure 5 displays the turbulence limited point
spread function, that is called the seeing disk. A Gaussian function models the
seeing disk reasonably well. However, with the Gaussian approximation the seeing
disk converges to zero much faster than measured seeing profiles that are better
described by the Kolmogorov model. The full width half maximum (FWHM) of
the seeing disk is 0.98λ/r0 corresponding in good approximation to a telescope
with diameterr0. With r0 ∝ λ6/5 the seeing isλ/r0 ∝ λ−1/5, i.e. it is decreasing
slowly with increasing wavelength.
Very often the power spectrum of the phase fluctuations is needed for analysis. Sim-
ilar to the calculation that related the Kolmogorov spectrum of refractive index fluc-
tuations (Equation 7) to the structure function of the refractive index (Equation 10)
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Figure 5.The intensity distribution in a seeing disk in arbitrary units calculated numerically using

the phase structure functionDφ(x) = 6.88
(
x
r0

)5/3
. The full width at half maximum (FWHM) is

approximatelyλ/r0.

the Kolmogorov power spectrum of the phase fluctuations can be calculated (Noll,
1976), yielding

8(k) = 0.023 r−5/3
0 k−11/3. (23)

The integral over the power spectrum gives the variance of the phase. As noted
above, the integral over8(k) ∝ k−11/3 is infinite. This means, that the variance
of the turbulent phase is infinite which is a well known property of Kolmogorov
turbulence. If the outer scale is finite the (now finite) variance can be calculated
using the von Karman spectrum (Ishimura, 1978). In general, the phase variance
increases with increasing outer scale.

2.5. ANISOPLANATIC AND TEMPORAL EFFECTS

So far we have discussed a single plane wave originating from a star at an angular
distanceγ from zenith. By calculating the coherence function as the ensemble
average over many realisations of the atmospheric turbulence we have effectively
determined the time average and, thus, the time averaged seeing disk. A snapshot
image of a single random realisation of the turbulence displays the well known
speckle image caused by the quasi frozen turbulence of the atmosphere. The light
of a star at a slightly different angular position travels through slightly different
portions of the atmosphere – the more different the higher the contributing layers
are – and displays a different speckle pattern. However, the long time exposures of
the two stars are identical as long as the statistical characteristics of the turbulent
layers, i.e.C2

n, do not differ. In speckle interferometry this property allows the use
of a reference star that might be separated by several degrees from the science
object but that still has the same statistical parameters.
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In adaptive optics systems the guide star has to be very close to the observed
object in order to measure a wave-front that closely resembles the object wave-
front. The two quantities, the acceptable angular distance between the object and
the guide star (the isoplanatic angle), and the rate of the temporal decorrelation of
the turbulence that determines the required sampling rate of the wave-front sensor
camera, are the most important limiting factors for the performance.

The isoplanacy can be quantified in a very simple way: The displacement by an
angleEθ is replaced by the lateral shiftEθh of the relevant layer at altitudeh, and the
phase distribution in the observing directionEθ + Eθ ′ can be expressed by a shift of
the phase atEθ ′:
φ(Ex, Eθ + Eθ ′) = φ(Ex − Eθh, Eθ ′). (24)

The angular phase structure function, describing the correlation between the phase
distribution in Eθ and Eθ ′ can be written as

Dφ(Eθ) = < [φ(Ex, Eθ ′)− φh(Ex − Eθh, Eθ ′)]2 >
= 6.88

(
θh

r0

)5/3

. (25)

The influence of different layers with different wind speeds can be investigated
by applying the individual altitudeshi of the individual layersi with structure
constantsC2

ni
(see Equation 18) and performing the summation.

For the simplest case of a single dominant layer at altitudeh an isoplanatic angle
can be defined asθ0 = r0/h. Thus, if the main turbulent layer is at an altitude of
10 km andr0 = 60 cm, which corresponds to 0.76′′ seeing in the near infrared
at λ = 2.2 µm∗, it is θ0 = 12.′′. This value can only give an idea of the order
of magnitude of the isoplanatic angle. In practical cases the value depends on the
particular composition of the atmosphere and the degree of the adaptive correction.
For low order adaptive optics, e.g. a tip-tilt system or low altitude layers the angle
may be much larger.

Using the Taylor hypothesis of frozen turbulence the temporal evolution can be
estimated. The assumption is that a static layer of turbulence moves with constant
speedEv in front of the telescope aperture. Then the phase at pointEx at timet ′ + t
can be written as

φ(Ex, t ′ + t) = φ(Ex − Evt, t ′), (26)

and the temporal phase structure function is

Dφ(Evt) =< [φ(Ex, t ′)− φ(Ex − Evt, t ′)]2 > . (27)

∗ The atmospheric window at 2.2±0.2µm is called the K-band. Most of the numerical examples
will be given for this band.
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The temporal difference is thus transformed to a difference in spatial coordinates
with the difference beingEvt . The phase structure function depends individually
on the two coordinates parallel and perpendicular to the wind direction. In the
direction of the wind speed a simple estimate of the correlation time similar to the
isoplanatic angle above yields the coherence timeτ0 = r0/|Ev|. A wind speed of
v = 10 m s−1 and a Fried parameter ofr0 = 60 cm give a coherence time of
τ0 = 60 msec. In speckle interferometry, this is approximately the exposure time
that can be used for single speckle images. For adaptive optics the reciprocal of
the coherence time indicates the required bandwidth of the closed loop correction
system. Greenwood and Fried (1976), after more elaborate analysis, gave a defin-
ition for the required bandwidth, the so-called Greenwood frequency that is often
used to specify adaptive optics system. For a single turbulent layer this frequency
is fG = 0.43v/r0 (see Section 3.3). Multiple layers with different speeds are
considered equivalently to the case of anisoplanacy by applying individual speed
vectors to individual layers with structure constantsC2

ni
(Roddier et al., 1982).

The temporal power spectrum of the phase fluctuations can be calculated from
the spatial power spectrum8(|Ek|) (Equation 23). WithEv being e.g. parallel to thex
axis, it iskx = f/v and an integration overky is performed to obtain the temporal
power spectrum8t(f ) (Conan et al., 1995a),

8t(f ) = 1/v
∫
8(f/v, ky) dky = 0.077 r−5/3

0

1

v

(
f

v

)−8/3

. (28)

The variance of the phase fluctuations is the integral over the temporal power
spectrum. As there is a pole atf = 0 this integral is infinite which is the well
known property of Kolmogorov turbulence discussed above (Tatarski, 1961). This
integral can be computed if the outer scaleL0 is taken to be finite. As already
noted, the Kolmogorov spectrum is not defined outside the inertial range and the
von Karman spectrum has to be used to perform the integration.

2.6. IMAGE MOTION

In the last section, the statistical properties of the propagating turbulent wave-
front have been described. When it comes to analysing the imaging process in the
telescope, some assumptions have to be made about the phase distribution in the
telescope aperture. We assume that the turbulent atmosphere can be represented
by a single thin layer in the telescope aperture neglecting the effects of Fresnel
diffraction, e.g. scintillation, discussed in Section 2.4 (Roddier, 1981).

The average gradient of the phase distribution in the telescope aperture determ-
ines the position of the image in the telescope focus. Although this is a low-order
effect of atmospheric turbulence on the imaging process it is worthwhile discussing
it in more detail as it determines the requirements for wave-front sensors like the
Shack-Hartmann sensor that rely on reconstructing the wave-front from gradient
measurements in the subapertures.
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First we discuss the statistical properties of the gradientEθ of the wave-front
without averaging over the telescope aperture. The two componentsθx andθy as a
function of the horizontal coordinateEx = (x, y) are (Roddier, 1981)

θx(x, y) = − λ

2π

∂

∂x
φ(x, y) andθy(x, y) = − λ

2π

∂

∂y
φ(x, y) . (29)

The power spectra of the two vector components8θx (
Ek) and8θy (

Ek) are related to

the power spectrum of the phase8(|Ek|) by8θx,y (
Ek) = λ2k2

x,y8(|Ek|), yielding

8θ(k) = 0.023λ2(k2
x + k2

y)r
−5/3
0 k−11/3 = 0.023λ2r

−5/3
0 k−5/3. (30)

The effect of averaging the gradient over the telescope aperture is considered by
convolving the gradient in Equation (29) with the aperture functionA(Ex) that usu-
ally has a circular shape. The central obscuration usually can be neglected. The
averaged gradient can be written as

θDx (Ex) =
∫
θx( Ex′)A(Ex − Ex′)d Ex′, (31)

where the superscriptD indicates the average over the apertureD. For a point like
aperture the averaging process collapses yieldingθDx (Ex) = θx( Ex′). The convolu-
tion transforms into a multiplication in Fourier space and one obtains the power
spectrum of the phase gradient after averaging with the telescope aperture (Martin,
1987; Conan et al., 1995)

8D
θ (k) = 0.023λ2r

−5/3
0 k−5/3

∣∣∣∣2J1(πDk)

πDk

∣∣∣∣2 , (32)

with J1 the first order Bessel function describing the diffraction limited point spread
function, the Airy disk, which is the Fourier transform of the circular aperture
(Born and Wolf, 1970). The Bessel function acts as a low pass filter on the power
spectrum. The contributions at high frequencies corresponding to small distances in
the turbulent wave-front are reduced as the averaging process smoothes the gradi-
ents. At low frequencies, i.e. for large distances the effect of the pupil averaging is
much reduced and the power spectrum is unaffected.

The variance of the image motion can be calculated by integrating over the
power spectrum8D

θ (k) yielding the two-axis variance of the positionθ of the
image centroid as (Tyler, 1994)

(1θ)2 = 0.34(λ/r0)
2(D/r0)

−1/3[arcsec2], (33)

with λ/r0 the seeing in arcsec. The quotientD/r0 will appear in all those formulas
that describe the imaging process in the telescope. In practical cases it can be
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calculated quite easily as it relates the size of the seeing diskλ/r0 to the FWHM of
the Airy patternλ/D, λ/r0

λ/D
= D/r0. In 0.76′′ seeing at 2.2µm on a 3.5-m telescope

it is D/r0 = 6.
The dependence of(1θ)2 onD−1/3 means that the variance of the image motion

increases with decreasing telescope diameter. It is important to note that(1θ)2 is
independent of wavelength; the image motion in arcsec is the same at all wave-
lengths. Thus, wave-front sensors like the Shack-Hartmann sensor measuring the
wave-front gradient can be operated in the visible for corrections at all wavelengths.

2.6.1. Temporal evolution of image motion
The Taylor hypothesis of frozen turbulence is used again to estimate the effect of
moving turbulence. The temporal power spectrum of the averaged phase gradient
can be calculated similar to the one of the phase (Equation 28) by integrating over
the direction perpendicular to the wind speed. It is

8θ,t (f ) = 1/v
∫
8D
θ (f/v, ky) dky. (34)

This integral cannot be solved in closed form. Tyler (1994) gave an approximation
for the power spectrum at low and high frequencies that can be simplified by as-
suming that there is one dominant layer with wind speedv̂ (Glindemann, 1997b).
Then, the power spectral density of the centroid motion in the two regimes are

Pflow = 0.096(r0/v̂)
1/3(λ/r0)

2f −2/3[arcsec2/Hz],
Pfhigh = 0.0013(D/v̂)−8/3(λ/r0)

2(D/r0)
−1/3f −11/3[arcsec2/Hz], (35)

whereλ/r0 is the seeing in arcsec. In Figure 6,Pflow andPfhigh are displayed and
compared to measured power spectra. In the low frequency region the power spec-
trum decreases withf −2/3 and it is independent of the size of the apertureD. In the
high frequency region the spectrum is proportional tof −11/3 decreasing withD−3.
This illustrates the influence of the Bessel function as a low pass filter that leaves
the low frequency region unaffected by the aperture and that takes effect as soon
as the frequency is beyond a value offt = 0.24v̂/D which is the transient region
between the two approximations. This value agrees well with the value given by
Conan et al. (1995). Because of the steep slope (∝ f −11/3) of the power spectrum at
frequencies beyond the transient frequencyft the contributions to the image motion
are very small. Thus, a tip-tilt system that stabilises the image motion must have a
bandwidth of approximatelyft to correct for most of the turbulence induced image
motion. In Kasper et al. (2000), the bandwidth requirements will be discussed in
greater detail.

The increasing variance of the image motion with smaller aperturesD can now
be attributed to an increase of the power spectrum in the high frequency region. In
order to stabilise the image motion on smaller telescopes the correction frequency
has to be higher. It is interesting to note that if the telescope aperture is larger than
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Figure 6.Measured power spectra of the image centroid motion on a 3.5-m telescope for different
sampling frequencies. The dashed lines display the approximation for the same seeing and wind
parameters. From the transient frequency of aboutft = 1 Hz andD = 3.5 m the effective wind
speed can be estimated to bev̂ ≈ 14 m s−1. The measurements agree very well with each other and
reasonably well with the theoretical curve (dotted line) (Glindemann, 1997b).

the outer scale of turbulenceL0 the image motion is reduced below the values
predicted by Kolmogorov statistics. This affects in particular the fringe motion on
telescope interferometers with a baseline longer thanL0.

2.7. ZERNIKE REPRESENTATION OF ATMOSPHERIC TURBULENCE

In the theory of optical aberrations Zernike polynomials are used very often to
describe the aberrations. They were introduced in 1934 by F. Zernike who deduced
them from the Jacobi polynomials and slightly modified them for the application
in optics (Zernike, 1934). Zernike polynomials have the advantage that they are
mathematically well defined and that the low order terms are related to the classical
aberrations like astigmatism, coma and spherical aberration.

Since the Zernike polynomials are defined on the unit circle and since we are
interested in the turbulent wave-front in the circular telescope aperture it is useful
to express the wave-front in terms of the Zernike polynomials. The influence of the
central obscuration is negligible. Noll (1976) introduced a normalisation for the
polynomials that is particularly suited for application to Kolmogorov turbulence.
In this normalisation the rms value of each polynomial over the circle is set equal
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TABLE I

Zernike polynomialsZj for j = 1 to 11.n is the radial order andm the azimuthal order. The
modes are ordered such that evenj correspond to the symmetric modes given by cosmθ and odd
j to the antisymmetric modes given by sinmθ

n m = 0 m = 1 m = 2 m = 3

0 Z1=1

(piston)

1 Z2=2ρ cosθ

Z3=2ρ sinθ

(tip and tilt)

2 Z4=
√

3 (2ρ2 − 1) Z5=
√

6 ρ2 sin 2θ

(focus) Z6=
√

6 ρ2 cos 2θ

(astigmatism)

3 Z7=
√

8(3ρ3−2ρ) sinθ Z9=
√

8ρ3 sin 3θ

Z8=
√

8(3ρ3−2ρ) cosθ Z10=
√

8ρ3 cos 3θ

(coma) (trifoil)

to one. The Zernike polynomials form a set of orthogonal polynomials and it is
convenient to write them as a function ofρ andθ :

Zjeven =
√
n+ 1 Rmn (ρ)

√
2 cos(mθ), for m 6= 0,

Zjodd =
√
n+ 1 Rmn (ρ)

√
2 sin(mθ), for m 6= 0, (36)

Zj =
√
n+ 1 R0

n(ρ), for m = 0,

where

Rmn (ρ) =
n−m

2∑
s=0

(−1)s(n− s)!
s!(n+m2 − s)! (n−m2 − s)!

ρn−2s . (37)

Table I shows the low order Zernike polynomials where the columnsm indicate
the azimuthal orders and the rowsn the radial orders.

The polynomial expansion of the arbitrary wave-frontφ(ρ, θ) over the unit
circle is defined as

φ(ρ, θ) =
∞∑
i=1

aiZi(ρ, θ), (38)
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TABLE II

The residual variance1j of Kolmogorov turbu-
lence after the firstj Zernike modes are removed.
The difference in the right column illustrates the
strength of the single modes demonstrating that
modes of equal radial order contribute the same
amount to the variance

11 = 1.030(D/r0)
5/3

12 = 0.582(D/r0)
5/3 12 −11 = 0.448

13 = 0.134(D/r0)
5/3 13 −12 = 0.448

14 = 0.111(D/r0)
5/3 14 −13 = 0.023

15 = 0.0880(D/r0)
5/3 15 −14 = 0.023

16 = 0.0648(D/r0)
5/3 16 −15 = 0.023

17 = 0.0587(D/r0)
5/3 17 −16 = 0.0062

18 = 0.0525(D/r0)
5/3 18 −17 = 0.0062

and the coefficientsai , using the orthogonality, are given by

ai =
∫

aperture
φ(ρ, θ)Zi(ρ, θ)ρdρdθ . (39)

The convenience of the Zernike polynomials lies in the property that, following
from the Kolmogorov statistics, one can determine individually the power in every
single mode like tip-tilt, astigmatism or coma. One can then immediately calculate
the residual aberration after correcting a specified number of modes with an ad-
aptive optics system. This computation was done by Noll (1976). The variance of
the residual aberration is expressed as the variance of the difference between the
uncorrected phase and of the removed modes. If the aberration that is due to the
first J Zernike polynomials is written as

φJ (ρ, θ) =
J∑
i=1

aiZi(ρ, θ), (40)

the variance of the remaining aberrations can be expressed as

1J =
∫∫

aperture
< [φ(ρ, θ)− φJ (ρ, θ)]2 > ρdρdθ. (41)

As already noted, the variance of the phase fluctuations< φ2(ρ, θ) > is infinite.
The analysis in terms of Zernike polynomials shows that the infinity lies in the
piston term. Removing the piston term gives a finite value for the variance of



24 A. GLINDEMANN ET AL.

the residual aberration. The residual variances in Table II are given in terms of
(D/r0)

5/3 as the Zernike polynomials are defined in the telescope apertureD. The
right column of the table shows the differential improvement. It shows that the
differences are constant for the same radial degreen. For the removal of higher
orders Noll gave an approximation for the phase variance (Noll, 1976), as

1J ≈ 0.2944J−
√

3/2 (D/r0)
5/3 [rad2] . (42)

Correcting an increasing number of Zernike modes changes the shape of the see-
ing disk in an unexpected way. Rather than narrowing the seeing disk in total, a
diffraction limited spike appears on top of the seeing disk. This spike becomes
more dominant with increasing number of corrected modes, until the seeing halo
disappears for perfect correction. Since correcting the low orders does not affect
r0 very much it is intuitively understandable that the seeing disk, asλ/r0, remains
constant.

The image quality is usually expressed in terms ofStrehl ratio that defines
the peak of the point spread function normalised to the peak of the diffraction
limited point spread function. The aberrations can be related to the Strehl ratio
in a simple way using the Maréchal approximation (Born and Wolf, 1970). If the
residual variance is smaller than aboutπ2/4 the Strehl ratio is approximated by

S = exp(−(1φ)2) . (43)

For a numerical example, we assume an adaptive optics system that perfectly cor-
rects the first 10 Zernike modes. The Fried parameter isr0 = 60 cm which is
typical in the near infrared and corresponds to a seeing value of 0.76′′. On a 3.5-m
telescope the residual variance is 0.0401(D/r0)5/3 = 0.76 rad2 and the Strehl ratio
is 47%.

Expressing the wave-front as a Zernike polynomial the covariance matrix of
the expansion coefficients< aiai′ > plays an important role. This matrix can
be calculated using the power spectrum of the phase fluctuations (Noll, 1976;
Roddier, 1990b). It turns out that the covariance matrix is not perfectly diagonal.
This means that when describing Kolmogorov turbulence with Zernike polynomi-
als the Zernike modes are not statistically independent with the consequence that
the wave-front reconstruction from the wave-front sensor data is sub-optimal. Noll
found Karhunen-Loève functions to be more appropriate as they have a diagonal
covariance matrix. Their disadvantage in practice is that they cannot be obtained in
closed form. Using a method by (Roddier, 1990b) to approximate the Karhunen-
Loève functions in terms of Zernike functions, Lane and Tallon (1992) have shown
that when correcting more than about 20 modes the residual aberration starts de-
creasing faster when using Karhunen-Loève functions. In low order systems, this
difference is negligible.

Instead of applying Karhunen-Loève functions for pure Kolmogorov turbulence
one can also measure the covariance matrix by using actual atmospheric data and an



ADAPTIVE OPTICS ON LARGE TELESCOPES 25

arbitrary set of polynomials. By diagonalising the measured covariance matrix one
receives the Karhunen-Loève functions representing the optimum decomposition
of the actual turbulent wavefront (Law and Lane, 1996; Kasper et al., 1999).

2.7.1. Temporal evolution of Zernike modes
Using the same formalism as for the analysis of the temporal characteristics of
the image motion (Section 2.6) the temporal evolution of Zernike modes can be
calculated (Noll, 1976; Roddier et al., 1993; Conan et al., 1995). The results are
important for the specification of the bandwidth requirements of adaptive optics
systems.

In the last section, the covariance matrix of the Zernike coefficients< aiai′ >
was calculated. Now we are interested in the temporal correlation of single Zernike
coefficients< ai(t

′)ai(t ′ + t) >. Thus, equivalent to the calculation of the power
spectrum of the image motion (Section 2.6) we determine a Zernike coefficient as
the convolution

ai(ρ, θ) =
∫

aperture
φ(ρ ′, θ ′)Zi(ρ − ρ ′, θ − θ ′)ρdρ ′dθ ′ . (44)

At ρ = 0 andθ = 0 this equation is identical to the calculation of the Zernike
coefficient ai (Equation 39) that can be used (see Noll, 1976) to calculate the
variance of the Zernike modes (see Table II). The temporal covariance follows
from the spatial covariance< ai(ρ

′, θ ′) ai(ρ ′ + ρ, θ ′ + θ) > by using the frozen
turbulence hypothesis similar to the calculation of the image motion (Equation 34).

The resulting power spectra cannot be given in closed form. The numerical
results were discussed by Roddier et al. (1993) and Conan et al. (1995), and they
are briefly summarised here. The spectra show a dependence on the radial degree of
the Zernike polynomial at low frequencies and a high frequency behaviour propor-
tional to f −17/3 that is independent of the Zernike mode. In the low frequency
domain, polynomials with a radial degree ofn = 1, Zernike tip and tilt (see
Table I) decrease withf −2/3. Higher order polynomials have a slightly different
characteristic depending on their azimuthal dependence; all radially symmetric
polynomials go withf 0, all others withf 0, with f 4/3 or with f 2 depending on
the wind direction.
The transient frequency between the high and the low frequency regions can be
approximated by

f nt ≈ 0.3(n + 1)v̂/D, (45)

wheren is the radial degree of the Zernike polynomials. The transient frequency is
approximately equal to the bandwidth required to correct for the Zernike mode in
an adaptive optics system.

Averaging the Zernike spectra for a given radial degree shows the mean be-
haviour for this degree. This behaviour can also be modelled when using a multi
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Figure 7.Zernike polynomial mean temporal power spectrum in a given radial degreen for n = 1, 3,
9. The spectra are normalised to the turbulence variance of one polynomial of the considered radial
degree:v̂/D = 10 Hz. The asymptotic power laws and the cutoff frequencies are indicated. The
figure is taken from Conan et al. (1995).

layer model with different wind directions that is more realistic than the single
layer approach (Conan et al., 1995). The curves are displayed in Figure 7. It shows
that for n > 1 the power spectra are all proportional tof 0 at low frequencies.
The curves are scaled in order to give the proper variance of the single modes (see
Table II). It is interesting to note that at high frequencies the power spectra increase
only very slowly withn. The increase in transient frequencyft , and thus in band-
width is partially compensated by the decrease in variance at higher radial degrees.
Conan et al. (1995) argue that for a given degree of correction all modes have to be
corrected with approximately the same bandwidth. Otherwise the residual variance
from e.g. the tip-tilt correction could be larger than the uncorrected variance of a
high order mode. This is particularly interesting for laser guide star systems, when
the tip-tilt correction is decoupled from the high order correction. If the image
motion is not corrected very accurately the quality achieved with the higher order
corrections is easily destroyed. We will come back to this point in Section 3.3.

It is interesting to compare the high frequency behaviour of the image motion
power spectrum (Equation (35)) that goes withf −11/3 to thef −17/3 decay of the
Zernike tip-tilt terms. One can show (Glindemann and Rees, 1993), that the image
centroid that usually characterises the image motion is the sum of Zernike-tilt, -
coma and other higher order terms. The slower decrease can then be attributed to
the sum of the single power spectra with increasing transient frequenciesft . In the
low frequency region thef −2/3 dependence of the image motion power spectrum
remains unchanged as all high order terms have much smaller contributions here.
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3. Elements of adaptive optics systems

The requirements for the components of adaptive optics systems can be deduced
from the discussion of imaging through turbulence in Section 2.

This section is organised as follows: Firstly, two different types of wave-front
sensors will be presented and their performance at low signal levels will be dis-
cussed. Starting with the Shack-Hartmann sensor that is most commonly being
used since it is conceptually simple and its properties are well understood, the
curvature sensor is described next. Then, the mathematical principles for the re-
construction of the wave-front and the requirements for closed loop operation will
be investigated. Finally, the technology of deformable mirrors will be presented.

3.1. WAVE-FRONT SENSING

3.1.1. Shack-Hartmann sensor
The Shack-Hartmann sensor divides the telescope aperture into an array of smaller
subapertures, and a lenslet array is used to produce multiple images (see Figure 8).
The centroid displacement of each of these subimages gives an estimate of the aver-
age wave-front gradient over the subaperture (Primot et al., 1990) that can be calcu-
lated using Equation (46). The important consequence is that the Shack-Hartmann
sensor is achromatic – the image movement is independent of wavelength – and
that extended sources can be used as long as they fit into the subimage boundary.
The centroid, or first-order momentM, of the image intensityI (u, v) with respect
to the x-direction in the image, is related to the partial derivative of the wave-front
in the subaperture by (Primot et al., 1990)

Mx =
∫∫

imageI (u, v) u dudv∫∫
imageI (u, v) dudv

= λf

2π

∫∫
subaperture

∂φ

∂x
dxdy = λf

2π

∫ d/2

0

∫ 2π

0

∂φ

∂x
ρdρdθ , (46)

with f the lenslet focal length.
In practice, a Shack-Hartmann sensor is built by putting a lenslet array in the

reimaged telescope pupil. The subimages from each subaperture are imaged onto
a CCD camera. The size of the subimages has to be chosen such that the image
motion even of extended sources does not drive the images outside of the subimage
boundary. The single axis rms image motion can be calculated from the variance
in Equation (33); it is

1θ = 0.41(λ/r0)(d/r0)
−1/6[arcsec], (47)

whered is now the diameter of the subaperture andλ/r0 is the seeing in arcsec.
1θ is between 0.2 and 0.4 times the seeing and the peak-to-valley image motion
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Figure 8. Measurement principle of a Shack-Hartmann sensor. The incoming aberrated wave is
subdivided by the lenslet array and the image centroid in every subimage is shifted according to
the average wave-front slope over the subaperture formed by the lenslet.

about six times this value. Thus, the size of the subimage should be at least three
times the seeing. If the size of the extended sources is likely to be larger than
this the subimage size has to be chosen accordingly. Even the solar surface can be
used for wave-front measurement if a field stop and image correlation techniques
are used to determine the wave-front gradients. If the subimage size is very large
several sources can be observed independently allowing for isoplanatic effects to
be measured (see Section 4) (Glindemann and Berkefeld, 1996).
The perfect information about the position of the subapertures with respect to the
telescope aperture allows one to calculate the interaction matrix2sh linking the
image positions with the modes of the wave-front polynomial. However, this in-
formation might be difficult to obtain. Therefore a different approach was realised
in ALFA ∗. Instead of calculating the subimage centroid positions for the Zernike
modes (see the following example) the deformable mirror is driven to form these
modes and the subimage centroids are then measured. This method is discussed in
larger detail by Kasper et al. (2000).

The example of a 2×2 Shack-Hartmann sensor subdividing the aperture into
four quarter circles explains the principle (Glindemann and Rees, 1994). The in-
tegration in Equation (46) has to be performed over the subapertures, i.e. forρ = 0
to 1 andθ = 0 toπ/2 for the first subaperture. The centroid displacement inx for
the first subaperture therefore becomes

Mx1 = π

2
a2 + 4√

3
a4+ 2

3

√
6(a5 + a6)+ 3

2

√
2(a7+ a9)+ π√

2
a8+ ... .

∗ ALFA is the laser guide star adaptive optics system of the 3.5-m telescope of the German-
Spanish Astronomical Center on Calar Alto
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As each lenslet yields two measurements, inx and iny, one obtains a total of eight
gradients. The vectorEM containing the measured gradients, the interaction matrix
2sh and the vectorEa containing the coefficients of the Zernike polynomial form a
matrix equation:



Mx1

My1

Mx2

My2

.

.

My8


= 2sh



a1

a2

a3

a4

.

.

a8


. (48)

For low light levels one has to consider two types of measurement errors that
deteriorate the performance of the correction system: the photon noiseσ 2

ph and
the read noiseσ 2

r . These variances are given as variance of the wave-front phase
due to photon noise and to read noise of the intensity measurement. Primot derived
these quantities assuming that the seeing disk is approximately Gaussian and that
it is centered (Primot et al., 1990).

Then the form of the phase variance due to signal photon noise is (Rousset,
1994)

σ 2
ph =

π2

2

1

Nph

(
α0d

λ

)2

[rad2], (49)

whereNph is the total number of photoelectrons,α0 the angular size of the image
andd the diameter of the subaperture. In the diffraction limited case the image size
α0 is equal toλ/d and the variance is proportional to 1/Nph. In the case of a seeing
limited point source withα0 = λ/r0 it is

σ 2
ph =

π2

2

1

Nph
(d/r0)

2 [rad2]. (50)

The wave-front variance as a function of the detector read noiseσd can be written
in a similar fashion (Rousset, 1994)

σ 2
r =

π2

3
f 2N2

α0

(
σd

Nph

)2(
d

r0

)4

[rad2], (51)

with N2
α0

the total number of pixels per Airy disk, andf the quotient between the
area on the detector used for the centroid calculation, and the area of the seeing
disk. (As long as the subaperture diameter is larger thanr0. This is always the case
as the wave-front sensor operates in the visible withr0 typically 10 cm.) If for
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instance the (square) area on the detector is(2′′)2 in 0.7′′ seeing the quotientf is
10. The case of background photo noise is treated very similarly by replacing the
detector read noiseσd by the background noiseσb (Rousset, 1994).

As already noted the wave-front sensor usually operates in the visible whilst the
science camera works in the infrared. In order to convert the wave-front variances
to the infrared they have to be multiplied by(λWFS/λIR)

2. The number of pixels
per Airy disk is determined by the optical design of the wave-front sensor. As the
square of this number goes into the variance calculation it should be kept small.

Since the reconstruction of the phase is made through a linear process the noise
of each subaperture measurement propagates linearly with

σ 2
noise= P(J )

(
λWFS

λIR

)2 (
σ 2
r + σ 2

ph

)
, (52)

where P(J) is the factor that describes the error propagation as a function of the
numberJ of corrected modes. It depends on the properties of the system, like
sensor and mirror geometry, number of sensors and actuators etc. Rigaut and Gen-
dron (1992) have derived an expression for Zernike modes that is given as

P(J ) ≈ 0.34 ln(J )+ 0.10. (53)

The error budget of a Shack-Hartmann sensor correcting forJ modes can now be
written as

σ 2
st = 1J + σ 2

noise, (54)

where1J is the wave-front fitting error after removing the firstJ Zernike modes
given in Equation (41). The implications of the dynamic behaviour of the turbu-
lence will be discussed in Section 3.3. It is interesting to note that the variance due
to read noise (σ 2

r ∝ (D/r0)4) depends much stronger on the seeing conditions than
1J ∝ (D/r0)5/3 andσ 2

ph ∝ (D/r0)2.

3.1.2. Curvature sensor
This technique was introduced by Roddier (1988). The adaptive optics system in-
stalled at the CFHT∗ in 1996 was the first large system to use a curvature sensor,
and it has shown excellent performance. The obstacle preventing the wide spread
use of this technique is the sophisticated theory behind the concept.

The curvature sensor relies on measuring the intensity distribution in two dif-
ferent planes on either side of the focus using the normalised difference between
the distributions. This difference is a measure for the curvature of the wave-front
in the telescope pupil and for the wave-front tilt at the aperture edge. The principle

∗ The CFHT is the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. It has a 3.6-m
primary mirror.
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Figure 9.Principle of the curvature sensor. The gray lines show the rays from a curved part of the
wave-front that form a focus before the focal plane, leading to a local increase in intensity in plane
P1 and a decrease inP2.

is sketched in Figure 9. The two intensity distributions are recorded in the two
planesP1 andP2, a distanceδ from the telescope focal plane. The figure displays
the effect of a local curvature of the wave-front: the curved wave-front leads to a
local excess of illumination in planeP1 and to a lack of illumination at the cor-
responding position inP2 as the light is spread out. The two planes of observation
have to be far enough apart so that geometrical optics is a good approximation, i.e.
(f − δ)λ/r0 6 r0δ/f .

However, for extended sources and different degrees of correction the situation
becomes more complicated. The local resolution of the wave-front measurement,
given by the size of the subapertures in the Shack-Hartmann sensor, is determined
by the size of the blur that is caused e.g. by the small piece of curved wave-front
in Figure 9. If the separationδ is too small this blur is too small to be measured.
Also, if the detector pixels are too large this blur cannot be resolved and the mode
corresponding to aberrations of this size cannot be measured. Thus, the separationδ

and the pixel size have to be adjusted according to the required degree of correction.
An extended source has the same effect as a larger seeing disk, and the separation
has to be adjusted accordingly. The conclusion is: for the measurement of high
orders,δ must be larger than for low orders, and for extended sources,δ must be
larger than for point sources (Rousset, 1994).

The normalised difference between the two intensity distributions is (Roddier,
1988):

c(x, y) = I+(x, y) − I−(x, y)
I+(x, y) + I−(x, y) ∝

[
∂

∂ρ
φ(ρ, θ)9 −∇2φ(ρ, θ)

]
, (55)

where∇2 = 1
ρ
∂
∂ρ
(ρ ∂

∂ρ
)+ 1

ρ2
∂2

∂θ2 is the Laplacian operator representing the curvature

of the wave-front. The wave-front radial tilt∂φ
∂ρ

has to be weighted by an impulse
distribution9 around the pupil edge. The advantage of the curvature measurement
over the slope measurement in a Shack-Hartmann sensor is the very low correlation
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Figure 10.Sampling geometry for a low order curvature sensor. The illumination is integrated over
each segment. The width of the impulse distribution9 is displayed by the dashed lines.

of the local curvature over the wave-front. Measuring statistically independent sig-
nals gives a better estimate of the wave-front (Roddier et al., 1991). Equation (55) is
the irradiance transport equation for paraxial beam propagation providing a general
description of incoherent wave-front sensing methods (Roddier, 1990a).

We have modelled a 7-element curvature sensor displayed in Figure 10 (Glinde-
mann and Rees, 1994). Using the geometrical optics approximation(f −δ)λ/r0 6
r0δ/f one finds thatδ is ±90 mm for a f/35 beam on a 3.5-m telescope forλ =
2.2µm andr0 = 0.6 m. Since we model a low order system we usedδ = ±20 mm.
The signal in Equation (55) has to be integrated over the area of each segment
where the width of the impulse distribution for the 6 edge segments has to be care-
fully adjusted. We have assumed that9 has a width of 20% of the pupil diameter
and that it has a rectangular shape. Thus, we obtain the signalcI at detector I in
Figure 10 by integrating the curvature forρ = 0.5 to 1 andθ = 0 toπ/3 and by
integrating∂φ

∂ρ
for ρ = 0.8 to 1.2 andθ = 0 toπ/3. The result is

cI ∝ 0.4
√

3 a2+ 0.4 a3 − 2.5 a4+ 1.489a5 + 0.8598a6 − 5.736a7 . . . .

One obtains a set of seven equations relating the signals of the sensors to the
Zernike coefficients. This set of equations can be written in matrix form similar
to Equation (48) as

Ec = 2cEa, (56)

with Ec the vector containing the measured curvature and gradients for the edge
segments,Ea the vector containing the coefficients of the Zernike polynomial and
2c the interaction matrix. A simple least-squares routine was used to solve this
equation.



ADAPTIVE OPTICS ON LARGE TELESCOPES 33

A comparative study between the 2×2 Shack-Hartmann sensor discussed in
the previous section and the 7-element sensor discussed here has shown that the
performance is very similar down to very low light levels (Glindemann and Rees,
1994; Rousset, 1994)

The measurement errors of the curvature sensor were investigated by Roddier et
al. (1991). He found that in open loop operation the error propagation coefficient
P(J ) (Equation (53)) increases withJ and not with ln(J ). However, in closed
loop operation there is no significant difference between the two methods (Roddier,
1995). Thus, curvature sensor systems are as well suited for high order correction
as Shack-Hartmann systems. As a consequence, the adaptive optics system of the
VLT ∗ Interferometer will have a 60-element curvature wavefront sensor at each
8-m telescope (Bonaccini et al., 1998).

3.2. WAVE-FRONT RECONSTRUCTION

In the last section, we have assumed that the modes of a polynomial, in our ex-
ample the Zernike modes, are reconstructed from the information obtained by the
wave-front sensor. Apart from this modal reconstruction of the wave-front there
exists also the zonal approach where the error in e.g. each subimage of a Shack-
Hartmann sensor is minimised by tilting the wave-front in the subaperture. In a
curvature sensor system this approach is even more intuitive in combination with
a bimorph mirror (see Section 3.4). Here, the curvature of the mirror surface is
changed by applying a voltage to the mirror actuator and, in principle, the meas-
ured curvature signal from a single detector element can be hard-wired to the
corresponding actuator of the bimorph mirror (Roddier et al., 1991).

In both cases the local piston of the wave-front elements in each subaperture has
to be treated separately in order to smoothly model the wave-front. This requires
some sophisticated reconstruction techniques (Rousset, 1994). Together with the
high accuracy that is required in the opto-mechanical alignment to ensure a precise
correspondence between the wave-front sensor elements and the deformable mirror
actuators, the zonal approach becomes less attractive than the modal approach.

The matrix equation for the modal reconstructionEM = 2shEa (Equation 48)
connecting the coefficients of the Zernike modesEa with the wave-front slopesEM
can be solved by a least-squares approach:

Ea = (2T
sh2sh)

−12T
sh
EM. (57)

The product of matrices(2T
sh2sh)

−12T
sh is called reconstructor matrix. This method

can be extended to include the noise characteristics by adding a noise vector to the
vector of slopes

EMn = EM + EN. (58)
∗ The ESO Very Large Telescope Interferometer located on Cerro Paranal in northern Chile

consists of four 8-m telescopes separated by up to 130 m and of three 1.8-m telescopes separated
by up to 200 m.
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To solve this equation the covariance matrix of the noise< EN ENT > has to be
calculated. Since the two noise sources, the photon noise and the read noise, are
statistically independent for each subaperture the covariance matrix is diagonal. If
the noise variance of each subaperture is the same and equal toσ 2

noise the result of
the least-square minimisation can be written as (see e.g. Melsa en Cohn, 1978)

Ea = (2T
sh2sh+ σ 2

noise< EaEaT >−1)−12T
sh
EM, (59)

where< EaEaT > is the covariance matrix of the Zernike coefficients This technique
to reconstruct the wave-front is also calledmaximum likelihood techniqueas by
determiningEa one maximises the probability of producing the measurementsEM .
This method has recently been improved by implementing knowledge about the
correlation of the slopes between the subapertures (Sallberg et al., 1997).

The coefficientsEv of the polynomials of the deformable mirror (the mirror
modes) are related to the Zernike coefficientsEa through an additional interaction
matrix so that a new interaction matrix can be calculated linking the slope measure-
ments EM directly with Ev. The formalism is the same as above, with the exception
that it might be extremely difficult to calculate the inverse of the covariance matrix
< EvEvT > for a non-orthonormal set of mirror modes. If the mirror modes do
not exactly match the surface of the mirror the maximum likelihood technique
no longer represents the best estimate of the wave-front (Roggemann and Welsh,
1996). The minimum-variance method can be used to circumvent this problem
(Wallner, 1983). Here, in order to maximise the image intensity the variance of the
residual wave-front aberrations are minimised incorporating the mirror influence
function. The practical drawback is that accurate knowledge of the wave-front and
noise statistics, and of the mirror influence function are required.

3.3. CLOSED LOOP OPERATION

So far, the properties of wave-front sensors have been discussed for the static case
of a single measurement. In order to investigate the performance of adaptive optics
systems the dynamic behaviour of turbulence has to be considered. In Sections 2.6
and 2.7, the temporal characteristics of image motion and of the Zernike modes
have been discussed. These properties are used in the following investigation of
the dynamic requirements of adaptive optics systems.

Two parameters have to be adjusted according to the number of modes that are
corrected: the gain and the bandwidth. The gain should be different for each mode
depending on the accuracy of the measurement that can be determined experiment-
ally.

The required bandwidth for full correction was given by Greenwood (1977).
He assumed a system that in the static case corrects the wave-front perfectly, and
that all aberrations are caused by the finite bandwidth of the control system. He
then used the power spectrum8t(f ) of the phase fluctuations of the wave-front
(Equation 28) and applied the transfer functionT (f ) to calculate the correction
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bandwidthfG that was subsequently called the Greenwood frequency. Using the
single dominant layer approximation it is

fG = 0.43
v̂

r0
. (60)

The residual variance of the wave-front can then be calculated as

σ 2
G = (fG/f3dB)

5/3[rad2] . (61)

If the servo bandwidthf3dB of the closed loop system is chosen equal tofG the
variance is 1 rad2 which is equivalent to a Strehl ratio of about 35%.

This variance has to be compared to the residual variance after correcting e.g. 50
Zernike modes perfectly. Using Equation (42), one finds that it is150 = 0.25 rad2

in 0.9′′ seeing, corresponding to a Strehl ratio of 77%. Although Greenwood’s
assumption of a perfect system cannot be compared easily to the case of removing
only a limited number of Zernike modes – leaving a residual phase variance even
for infinite bandwidth – it is clear that the Greenwood frequency with the residual
variance of 1 rad2 is too small for a good correction.

In the case of a laser guide star adaptive optics system the image motion has to
be measured with a natural guide star (see Davies et al., 2000). If it is the goal to
reduce the single axis rms image motion1θ to 0.25λ/D the tracking bandwidth is
(see for example Glindemann, 1997)

fh.o.,T = 0.25
v̂

r0
. (62)

Tyler (1994) investigated pure Zernike tilt and the centroid tilt separately, and he
presented a similar result.

The subsequent variance of the wave-front phase due to the residual image jitter
alone is

σ 2
h.o.T = (fh.o.T/f3dB)

5/30.33[rad2]. (63)

The very simple assumptions that lead to these results make it impossible to draw
far reaching conclusions. However, it is fair to say that the tip-tilt system has to
be run at almost the same frequency as the higher order system in order to add
an acceptable amount to the variance of the wave-front. Conan et al. (1995) came
to a very similar conclusion discussing the temporal power spectra of the Zernike
modes that are displayed in Figure 7.

If for example the effective wind speed̂v is 15 m s−1 and if r0 is 60 cm which
is equivalent to 0.76′′ seeing at 2.2µm the bandwidth for full correction according
to the Greenwood criteria isfG = 11 Hz, and the required tracking bandwidth is
fh.o.,T = 6 Hz. The respective tracking frequencies are about 110 and 60 Hz. It
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should be emphasised that this can only give an idea about the order of magnitude
since the adaptive optics system is not perfect as Greenwood assumed, and, as
noted above, since a residual variance of 1 rad2 is too large. In practice one can
start at about 2–4 times the Greenwood frequency and determine the optimum
bandwidth by examining the image quality achieved.

3.3.1. Error budget – limiting magnitude
We can now write down the error budget of an adaptive optics system with a Shack-
Hartmann sensor:

σ 2 = 1J + σ 2
noise+ σ 2

bw, (64)

with 1J the fitting error that represents the wave-front variance due to the un-
corrected Zernike modes,σnoise the measurement noise that is due to photon and
read-noise (see Equations 52 and 53), andσbw the error due to finite bandwidth.

The error due to the finite bandwidth was discussed in the last section and given
to be

σ 2
bw = σ 2

G = (fG/f3dB)
5/3rad2, (65)

where the Greenwood frequency isfG = 0.43 v̂/r0. A numerical example will
illuminate the situation.

We assume a situation when the seeing is 0.76′′ in the near infrared at 2.2µm
on a 3.5-m telescope. The Fried parameter is thenr0 = 0.6 m. A Shack-Hartmann
sensor, operating in the visible withλWFS = 0.5 µm and 5×5 subapertures (d =
0.7 m) is used to correct for 15 Zernike modes. In the table the seeing parameters
are summarised:

Wavelength 0.5µm 2.2µm

Seeing 1′′ 0.76′′

d/r0 7 1.1

The discussion starts with the fitting error, i.e. the best variance that we can the-
oretically achieve if correcting 15 Zernike modes. It is1J = 0.028(D/r0)5/3 =
0.56 rad2 corresponding to a Strehl ratio of 57%. If we want to add less than 0.2 rad2

to the variance, i.e. if the Strehl is to stay above 45%, one can for a first iteration
allow 0.1 rad2 for the noise error and equally 0.1 rad2 for the bandwidth error. The
Greenwood formula can be used to estimate the required bandwidth and then the
star magnitude can be determined that provides enough photons to have less than
0.1 rad2 for the noise error.

With v̂ = 15 m s−1 andr0 = 0.6 m the Greenwood frequency is 11 Hz. Since
we want to add less than 0.1 rad2 to the variance the bandwidthf3dB has to be
44 Hz, and, thus, the sampling rate of the Shack-Hartmann sensor has to be 10
times the bandwidth, i.e. about 450 Hz. The exposure time is then about 2 msec.
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The measurement noise in a Shack-Hartmann sensor is given by Equations (50)
and (51). Assuming a wave-front sensor with a pixel size of 0.72′′ and a subimage
size of 2′′, and correctingJ = 15 Zernike modes (P(J ) ≈ 1), yields

σ 2
noise=

(
40
σd

Nph

)2

+ 12

Nph
[rad2] . (66)

If the read-noise isσd = 5 electrons, which is typical for CCD cameras we need
about 600 photons per subaperture in 2 msec to reduce the additional variance to
0.1 rad2. This corresponds to a star withmV = 10, which is a realistic number for
the set of parameters used here. If the requirements for the bandwidth are relaxed
the varianceσ 2

bw increases withf −5/3
3dB andσ 2

noisedecreases withN2
ph as long as the

second term in Equation (66), remains small. Thus, reducing the bandwidth by a
factor of two increases theσ 2

bw by a factor of 3 but it reduces the read noise by
a factor of 4 resulting in a net gain in performance. However, since the concept
of the Greenwood frequency is fairly crude and one should not overestimate the
significance of the calculated values for small changes.

One parameter that has not been treated so far is the isoplanatic angle that
determines the maximum distance between the object and the guide star. This
depends heavily on the degree of correction and the layer structure of the atmo-
sphere. Rigaut (1994) has investigated this quantity and found that, depending on
the tolerated additional variance values between 10′′ and 30′′ can be expected in the
near infrared. If a guide star of 10th magnitude has to be no more than 30′′ from
the astronomical object the number of objects that fulfill this requirement is very
small. Then the sky coverage is on average below 0.1% on a 4-m class telescope.

However, if a laser guide star can be placed anywhere in the sky the situation
changes dramatically. Only the tip-tilt correction relies on a natural guide star, and
here the requirements are much relaxed compared to the full correction. Using the
full apertureD with D/r0,λ=0.5 µm = 35 for the calculation of the measurement
noiseσ 2

noiseone obtains

σ 2
noise=

(
210

σd

Nph

)2

+ 312

Nph
[rad2] . (67)

If the tolerated additional variance is 0.1 rad2 and the read noiseσd = 5 electrons,
3000 photons per exposure are required.

The bandwidthf3dB for tip-tilt correction withσ 2
h.o.,T = 0.1rad2 can be cal-

culated using Equation (63), yieldingf3dB = 0.5 v̂/r0 = 12.5 Hz, resulting in
a tracking frequency of 125 Hz and an exposure time of 8 msec. Here, the tip-tilt
system has to run faster than for pure tip-tilt tracking (Glindemann, 1997a) because
the error has to be reduced to the absolute value of 0.1 rad2 independent of seeing
conditions. 3000 photons per 8 msec exposure time correspond to a magnitude of
aboutmV = 13. This limiting magnitude and the larger isoplanatic angle increase
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Figure 11.Three classes of deformable mirrors: (a) a segmented mirror with tip-tilt/piston actuators
behind each segment, (b) continuous facesheet mirrors with individual piston actuation, and (c) an
example of a bimorph (metal/PZT or metal/PMN) mirror.

the sky coverage in theK-band to about 15% at the galactic pole and about 95% at
the galactic equator.

The cone effect, however, slightly deteriorates the achievable Strehl ratio. Since
the light of the laser guide star does not travel the same light path as the natural star
light there is a fraction of the turbulence that cannot be corrected. This reduction in
Strehl ratio is less than 20% in average seeing conditions on a 4-m class telescope
but it goes up to 50% on an 8-m telescope.

3.4. DEFORMABLE MIRRORS

The earliest developments of deformable mirrors aimed at TV projection systems
in the early 1950’s. In the so-called Eidophor system, a mirror in a vacuum chamber
is covered with a thin layer of oil upon which a modulated beam from an electron
gun is deposited in a rastered pattern. Local forces of surface repulsion are induced
forming transient changes in the slope of the oil film. The wave-front is then locally
tilted by refraction in traversing the film. The optical system of the TV projector
blocks the tilted beam, and the point on the mirror remains dark in projection.
Bright spots appear in the projected image of the mirror where the oil film is flat.
The TV image is modulated onto the mirror by modulating the beam from the
electron gun similar to the process of forming an image with a cathode ray tube.

For the application in adaptive optics systems the ability of the Eidophor mir-
ror to shape the wave-front with local tilts was used. Babcock (1953) suggested
to use this mirror in his proposal for an adaptive optics system. However, the
technological problems at that time were too large to actually build the system.

Today, there are mainly three classes of deformable mirrors displayed in Fig-
ure 11: Thesegmented mirrorwith single tip-tilt/piston elements and two mirror
types with a continuous surface, thecontinuous mirrorwhere an array of actuators
behind the mirror surface pushes and pulls the mirror by applying a force perpen-
dicular to the surface, and thebimorph mirrorwhere voltages applied between the
continuous electrode and the control electrodes change the curvature of the mirror
(for a review, see Ribak 1994).

Segmented mirrors have a number of advantages over continuous mirrors: the
segments can be moved independent of each other, they can be replaced easily,
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and the single segments can be combined to form rather large mirrors. In the
section on wave-front sensors (Section 3.1) it was discussed that by associating
each sub-aperture of a Shack-Hartmann sensor to a segment of the mirror the high
order adaptive optics systems consist basically of tip-tilt systems that are run in
parallel. Although this is appealing because of its conceptual simplicity, in addition
to the single segment tip-tilt correction, one has to process the data to obtain the
piston signals that are necessary to reconstruct a continuous wave-front. Also the
alignment between the subapertures of the Shack-Hartmann sensor and the single
segments has to be very precise. The disadvantages of segmented mirrors include
problems with diffraction effects from the individual segments and the interseg-
ment alignment. In infrared applications the gaps between the segments can be the
source of infrared radiation that deteriorates the image. Only few adaptive optics
systems with segmented mirrors have been built for solar (Acton and Smithson,
1992) and stellar (Doel et al., 1990) astronomy.

Bimorph mirrors have their name from the structure that controls their shape.
Piezoelectric bimorph plates usually consist of either a metal plate and a piezo-
electric plate (e.g. PZT or PMN ceramic) or of two piezoelectric plates which are
bonded together. The latter layering is often called thestandard bimorphwhilst the
first one is sometimes calledunimorphor monomorph. A piezoelectric bimorph
operates similar to a bimetallic strip in a thermostat. In a typical serial configuration
one part of the bimorph expands and the other contracts when a voltage is applied
between the two parts. The result is a bending of the entire structure. As shown
in Figure 11c discrete bimorph (or bending) actuators are created by attaching
control electrodes to the bottom side of the bimorph structure. The pattern of the
control electrodes can be such that it corresponds to the geometry of a curvature
sensor (see Figure 10). The local radius of curvature of the bimorph mirror changes
proportional to the applied voltage (on a given control electrode). This behaviour
make bimorph mirrors the natural counterparts of the curvature sensor. As noted
in Section 3.1, it was discussed to feed the signal from the curvature sensor dir-
ectly to the bimorph mirror (Roddier et al., 1991). This design is similar in its
conceptual simplicity to the idea of using a mirror segment for each subaperture
of a Shack-Hartmann sensor. However, the requirements for the optical alignment
are similar. The bimorph mirrors that are commercially available used to have only
a low number of actuators, e.g. the bimorph mirror in the CFHT adaptive optics
system has 19 actuators (see Section 3.1). In the meantime, bimoroph mirrors with
36 actuators are available and tested in a curvature sensor system (Graves et al.,
1998), and mirrors with 60 actuators are being designed.

Piezo-electric mirrors, i.e. continuous mirrors with an array of piezo-electric
actuators expanding perpendicular to the mirror surface (Figure 11b) are in wide-
spread use now. They are available with up to 350 actuators, and the technology
is well tested and very reliable. They were developed originally to project high
power laser beams on military targets when segmented mirrors produce too much
scattered light (Tyson, 1998). The typical voltage that is required to move the ac-
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tuators is below 100 V, the bandwidth is in the kHz range, and the typical stroke
is in the 5µm range. Whilst this is sufficient for high order correction the tip and
tilt induced by the turbulence requires a larger tilting angle so that an extra tip-
tilt mirror is needed. Some manufacturers are now using electrostrictive material
like a lead-magnesium-niobate (PMN) crystal that is similar to the piezo-electric
lead-zirconate-titanate (PZT) ceramics, but that displays a smaller hysteresis and a
better motion control.

Both types of continuous surface mirrors avoid the diffraction effects associated
with the single segments and the intersegment alignment problem. Here, the prob-
lems arise from the complexity of the algorithm to control the mirror surface as the
actuators are not allowed to move independent of each other. If one actuator is set
to the maximum voltage its next neighbour must not be set to the minimum voltage.
Otherwise the mirror surface would be damaged. Also, changing the voltage of a
particular actuator usually affects the shape of the mirror surface at the location of
its neighbours.

There are several new developments ranging from very large deformable mir-
rors that can replace the telescope secondary (Salinari et al., 1993), to extremely
small units that are based on microelectronical manufacturing methods (Vdovin
and Sarro, 1995). A completely different class of wave-front actuation is represen-
ted by the liquid crystal half-wave phase shifter especially suitable for narrow band
applications (Love et al., 1995). The LBT∗ will be equipped with an adaptive sec-
ondary with 1000 actuators that has a diameter of 870 mm and a thickness of 2 mm.
It is discussed to use an actuator design based on loudspeaker technology where
the actuator motion is provided by voice coils. The advantage of the design with
an adaptive secondary is the conceptual elegance and the low number of reflections
that improve both the optical throughput and the infrared background (Hill, 1996).

4. Outlook – multi-layer adaptive optics

The size of the corrected field of view of an adaptive optics system can be in-
creased by using multiple deformable mirrors correcting multiple turbulent layers
individually (see Figure 12) (Beckers, 1988). In recent years, several groups have
explored methods of measuring the turbulent layers individually, and the possible
improvements in performance both with respect to increasing the isoplanatic angle
and reducing the cone effect on large telescopes have been investigated (Johnston
and Welsh, 1994; Ribak et al., 1996; Berkefeld, 1998). In the following, we discuss
a new method for measuring separately the turbulence in multiple atmospheric lay-
ers by combining intensity measurements like in a curvature sensor with wave-front
gradient measurements in a Shack-Hartmann sensor (Glindemann and Berkefeld,
1996).
∗ The Large Binocular Telescope consists of two 8.4-m telescopes separated by 14.4 m (center to

center). The Telescope is currently under construction on Mount Graham in Arizona, U.S.A.
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Figure 12.Strehl ratio as a function of angular distance from the optical axis for conventional adaptive
optics with a single deformable mirror (grey curve) and for multi-layer adaptive optics with two
deformable mirrors (black curve). The calculations were performed using a measuredC2

n profile at
Calar Alto (Klückers et al., 1997). The figure is taken from Berkefeld (1998).

The problem of measuring the atmospheric turbulence can be reduced to imaging
a phase object, i.e. an object affecting only the phase of the wave-front. This is a
common problem in microscopy, and defocusing is an old cure. Then, the phase
object that is invisible in the focused image shows up in the intensity distribution.
If the phase varies only slightly, (φ(x) � 1) the image intensity is proportional to
the curvature of the phase distribution. Thus, the scintillation on the ground could
be used for an estimate of the high altitude layers. In order to reconstruct the phase
distribution completely, the intensity distribution has to be measured in two planes
positioned symmetrically to the image plane of the phase object. The curvature
sensor is based on this idea.

To simplify the explanation, we start with two dominant layers that carry the
bulk of the turbulence. Then, the intensity distributionI1(x1) in the conjugate plane
L′1 of layerL1 in Figure 13 would be determined solely by the turbulence in layer
L2. The turbulence in layerL1 has no effect on the intensity distribution in its
image plane,L′1. Vice versa, the intensity distribution inL′2 is caused only by the
turbulent layer inL1.

Assuming that the phase variation is weak, withφ(x) � 1, the complex amp-
litude immediately behind layerL1 can then be written as

u1(x1) = 1+ iφ1(x1).

The wave-front amplitudeu−2 (x2) immediately beforeL2 is the Fresnel diffraction
pattern of the turbulence inL1, which is approximately
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u−2 (x2) = 1+ iφ1(x2)+ s12

2k

∂2φ1(x2)

∂x2
2

, (68)

with k = 2π/λ. The turbulence in layerL2 adds to the imaginary part ofu−2 (x2)

yielding

u2(x2) = 1+ i (φ1(x2)+ φ2(x2))+ s12

2k

∂2φ1(x2)

∂x2
2

. (69)

Calculating the wave-front in image space, one has to be careful to include the
phase disturbances of both layers. Thus, the complex amplitudeu′2(x

′
2) in L′2 is,

neglecting imperfections of the imaging optics, identical tou2(x2) in L2. However,
to calculate the wave-front inL′1 the turbulence inL2 has to be considered. One
then finds that the wave-front phase both in planesL′1 andL′2 is equal to the sum
of the phases,φ1+ φ2, and that the intensity inL′1 resp.L′2 can be written as

I ′1(x
′
1) = 1− s

′
12

2k

∂2φ2(x
′
1)

∂x′21
and

I ′2(x
′
2) = 1+ s

′
12

2k

∂2φ1(x
′
2)

∂x′22

The intensity distribution inL′1 is unaffected byφ1 and the intensity distribution
in L′2 is unaffected byφ2. Using the difference of the intensity distributions like a
curvature sensor yields the second derivative of the sum of the phases. This is the
result of a measurement with a curvature sensor neglecting the wave-front radial
tilt.

Using Shack-Hartmann sensors in both planesL′1 andL′2, the resulting phase
φ1+φ2 of the wave-front is measured in each plane by determining the wave-front
tilt in each subaperture. Additionally, the intensity distribution can be measured in
both planes by integrating over each subaperture of the lenslet array. The norm-
alised signalI ′1 − I ′2/I ′1 + I ′2 is the quotient of the second derivative of the sum
and of the difference of the phases. As the sum of the phases is measured directly,
the difference of the second derivatives can be determined and, thus, the phase
curvature in both layers.

The isoplanatic angle can now be enlarged by observing multiple stars with the
Shack-Hartmann sensor as displayed in Figure 13. The phase as well as the intens-
ity distribution can be measured for each star individually. Then, the information
about the different layers can be stitched together to steer the deformable mirrors
in the conjugate planes ofL1 andL2.
Before placing the Shack-Hartmann curvature sensors in the conjugate planes of
the turbulent layers their altitude has to be determined by e.g. using a method
suggested by Vernin and Roddier (1973).
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Figure 13. Illustration of the multiplexer mode of the Shack-Hartmann curvature sensor. For the
sake of clarity only one lenslet array is displayed. In each subimage the total intensity and the
centroid position can be measured separately and, thus, different patches of the wave-front can be
reconstructed.

So far, the discussion has been restricted to two layers. If the turbulence profile
indicates multiple strong layers there has to be a Shack-Hartmann curvature sensor
in each conjugate plane of those layers. The position of the deformable mirrors
can be adjusted to correspond to the conjugate planes of the layers. The number of
deformable mirrors in a real system is obviously fixed. However, the system could
be designed with several deformable mirrors using only the required number.

The isoplanatic angle is limited by the separation of the stars used for the meas-
urement of the turbulence. The practical limitation is given by the field of view of
each subimage of the Shack-Hartmann sensor. To correct 30 Zernike modes one
needs about 7×7 subapertures each of which with a field of view of 30×30′′. Then,
with a pixel scale of roughly 0.7′′ every subimage has a size of 42×42 pixels, and
the total size of the CCD is 300×300 pixels.

5. Conclusions

We have discussed effects of imaging through turbulence and methods to improve
the reduced image quality with adaptive optics. The detailed description of ex-
isting adaptive optics systems has shown that the technical requirements are met
by current technology. There are now about 10 telescopes in the world where
adaptive optics is used on a more or less regular base. One can expect that this
technology will mature considerably over the next few years, and that the impact
on astronomical research will become significant. In particular the new 10-m class
telescopes that will all be equipped with adaptive optics will contribute to the
scientific progress since diffraction limited images from these telescopes means
a factor of 20 to 50 improvement over seeing limited images.

On a more modest scale, simple tip-tilt systems improve the peak intensity by
70 to 300% and the FWHM by about 0.2′′ in the near infrared, increasing the
scientific output of a telescope without any significant disadvantage. Thus, it is
very worthwhile to equip infrared telescopes with tip-tilt systems.
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The limit of resolution is an area where large ground based telescopes are super-
ior to observations from space telescopes since the limit for the size of a monolithic
mirror in space is considerably below 10 m. Other advantages of ground based
telescopes are cost, lifetime, and flexibility as improvements or new instruments
can be fitted easily.

If it comes to field of view and sky coverage, so far, the space telescopes have
an advantage over observations from the ground. We have discussed methods to
increase the corrected field of view of ground based observations by using multi-
layer adaptive optics, and to increase the sky coverage by creating laser guide stars.
For multi-layer adaptive optics one has to tackle the problems of separating the
influence of single turbulent layers on the imaging process, and of applying the
correction to the proper layers with multiple deformable mirrors. Laser guide stars
provide a method to determine the aberrations caused by the turbulence with the
exception of the wave-front slope. Although this already increases the sky coverage
drastically one has to be able to deduce the tip-tilt information from the laser guide
star in order to achieve 100% sky coverage. The research has to concentrate on
these two areas to make observations from the ground competitive with space
observations.

Since angular resolution is of key importance in most areas of astronomical
research the desire for higher resolution does not stop at 10 m apertures. How-
ever, rather than envisioning larger monolithic telescopes, interferometer arrays are
planned and tested, coherently switching together the light from single telescopes.
Then, the limit of resolution is given by the longest baseline. The most challenging
projects in this area are the interferometric connection of the two Keck Telescopes,
the VLTI connecting eventually the four Very Large Telescopes in Paranal, Chile
and the interferometric mode of the LBT. Each of the single 8-10 m apertures
requires adaptive optics to increase the peak intensity and the accuracy of the
measurement. The coherently combined beams display a fringe pattern that moves
around randomly depending on the wave-front slope between the single apertures.
This cannot be corrected for by the adaptive optics systems in each telescope.
Similar to the problem of the tip-tilt measurement with a natural guide star in a
laser guide star system one needs a natural guide star to stabilise the fringe motion.

Here, one faces the same problems as with single telescope adaptive optics.
The correction frequency for fringe tracking is affected by the telescope baseline
and by the observing wavelength. This determines the limiting magnitude. If the
scientific object is not bright enough to serve as a guide star there has to be a star of
suitable brightness usually within a few arcseconds of the scientific object. Then,
one can use the guide star to stabilise the fringe motion, and one can integrate on the
scientific object. Increasing the angle between the object and the guide star is most
desirable since it improves the sky coverage. This technique has to be mastered
in order to make telescope interferometers useful. The experience with adaptive
optics systems is a stepping stone to solving these problems.
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