
The University of Manchester Research

Adaptive Optimal Control for A Class of Nonlinear
Systems: The Online Policy Iteration Approach

DOI:
10.1109/TNNLS.2019.2905715

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
He, S., Fang, H., Zhang, M., Liu, F., & Ding, Z. (2019). Adaptive Optimal Control for A Class of Nonlinear Systems:
The Online Policy Iteration Approach. IEEE Transactions on NEural Networks and Learning Systems, 31(2), 549-
558. https://doi.org/10.1109/TNNLS.2019.2905715

Published in:
IEEE Transactions on NEural Networks and Learning Systems

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Aug. 2022

https://doi.org/10.1109/TNNLS.2019.2905715
https://www.research.manchester.ac.uk/portal/en/publications/adaptive-optimal-control-for-a-class-of-nonlinear-systems-the-online-policy-iteration-approach(7306cb94-efa9-4ea4-b3d1-dad919a5fc5e).html
/portal/zhengtao.ding.html
https://www.research.manchester.ac.uk/portal/en/publications/adaptive-optimal-control-for-a-class-of-nonlinear-systems-the-online-policy-iteration-approach(7306cb94-efa9-4ea4-b3d1-dad919a5fc5e).html
https://www.research.manchester.ac.uk/portal/en/publications/adaptive-optimal-control-for-a-class-of-nonlinear-systems-the-online-policy-iteration-approach(7306cb94-efa9-4ea4-b3d1-dad919a5fc5e).html
https://doi.org/10.1109/TNNLS.2019.2905715

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Adaptive Optimal Control for A Class of Nonlinear

Systems: The Online Policy Iteration Approach
Shuping He, Member, IEEE, Haiyang Fang, Maoguang Zhang, Fei Liu, Member, IEEE, Zhengtao Ding, Senior

Member, IEEE

Abstract—This paper studies the online adaptive optimal
controller design for a class of nonlinear systems through a
novel policy iteration (PI) algorithm. By using the technique of
neural network linear differential inclusion (LDI) to linearize the
nonlinear terms in each iteration, the optimal law for controller
design can be solved through the relevant algebraic Riccati
equation (ARE) without using the system internal parameters.
Based on PI approach, the adaptive optimal control algorithm
is developed with the online linearization and the two-step
iteration, i.e., policy evaluation and policy improvement. The
convergence of the proposed PI algorithm is also proved. Finally,
two numerical examples are given to illustrate the effectiveness
and applicability of the proposed method.

Index Terms—Nonlinear systems, policy iteration (PI), alge-
braic Riccati equation (ARE), adaptive optimal control, linear
differential inclusion (LDI).

I. INTRODUCTION

NONLINEAR control design has been an active research
area for a long time. In the development of nonlinear

control theory, optimality and veracity have become the fun-

damental principles of controller design. It is well known that

designing an optimal controller for nonlinear systems depends

on the unique positive-definite solution of the associated

Hamilton-Jacobi-Bellman (HJB) equation [1], which reduces

to the algebraic Riccati equation (ARE) when involved in

linear systems. In general, the HJB equation is a nonlinear

partial differential equation which is difficult even impossible

to solve by analytical methods. As a favorable tool, dynamic

programming (DP) [2] can be used to solve the HJB equation

and a series of significant results centered on DP are published

in [3]–[5]. Owing to the backward-in-time implementation of

DP, these results are off-line and will encounter a dimension-

ality problem when they are applied in high-dimensional and

This work was supported in part by the National Natural Science Foundation
of China under Grant 61673001, 61722306, the Foundation for Distinguished
Young Scholars of Anhui Province under Grant 1608085J05, the Key Support
Program of University Outstanding Youth Talent of Anhui Province under
Grant gxydZD2017001, the State Key Program of National Natural Science
Foundation of China under Grant 61833007 and the 111 Project under Grant
B12018.

S. He, H. Fang and M. Zhang are with School of Electrical Engineering and
Automation, Anhui University, Hefei 230601, China, S. He is also with Insti-
tute of Physical Science and Information Technology, Anhui University, Hefei,
230601, China (e-mail: shuping.he@ahu.edu.cn, fangocean1996@gmail.com).

F. Liu is with the Key Laboratory of Advanced Process Control for Light
Industry (Ministry of Education), Institute of Automation, Jiangnan University,
Wuxi 214122, China (email: fliu@jiangnan.edu.cn).

Z. Ding is with School of Electrical and Electronic Engi-
neering, The University of Manchester, Manchester, M13 9PL,
UK(email:zhengtao.ding@manchester.ac.uk).

more complex systems. In response to these problems, rein-

forcement learning (RL) or adaptive dynamic programming
(ADP) have been introduced to solve the HJB equation [6]–[9].
One kind of RL algorithms, namely policy iteration (PI), can
be used to deal with the adaptive optimal control problem of
both linear and nonlinear systems, this algorithm contains two-

step iteration, i.e., policy evaluation and policy improvement.
The former means that the cost performance index relevant to
the current control policy is evaluated, and the latter updates
the policy to seek for a lower associated cost. In [10], Vrabie
et al. proposed a novel online PI algorithm of continuous-time
linear systems that can solve the ARE without knowing the
internal dynamics; then the relevant method was introduced
to similar linear systems with completely unknown dynamics
[11]; He et al. [12] studied the adaptive optimal controller
design for continuous-time Markov jump linear systems via
an online PI algorithm; Liu and Wei [13] extended the PI
algorithm to learn the infinite horizon optimal control solution
for discrete-time nonlinear systems; and the authors in [14]
discussed an online PI algorithm to solve the continuous-time
optimal control problem of a class of unknown constrained-

input systems. For the application of PI schemes in other
respects, the readers can refer to [15]–[19].

On the other hand, neural network plays a very important
role in solving nonlinear control problems because of its arbi-

trary approximation ability. The advantages of neural network
over other linearization methods have been explained in [20]–

[22]. In [23]–[27], neural network and PI algorithm are used
to approximately solve the HJB equation. In these literatures,
neural network was employed as critic network to represent
the optimal cost function or actor network which represents the
control policy. It is obvious that the studied results generated
by these methods are effective. However, some computational
complexity still exists and it might lead to some inevitable
errors, because the approximation only stays at the level of
computation and it is still difficult to solve the relevant HJB
equation. Viewed from another angle, if we directly linearize
the original system model by using neural network, it can
fundamentally simplify the computation from the start, thereby
avoiding solving the intractable nonlinear HJB equation. We
always use this method to linearize the nonlinear model. It is
known as neural network linear differential inclusion (LDI),
proposed by Tanaka in [28]. As a specific neural network
structure, the neural network LDI technique can convert the
nonlinear terms into linear terms. Having been explicitly
illuminated its principle in [28], the LDI technique was used
in control design for nonlinear systems in discrete-time [29]

mchsszd2
Typewritten Text
To appear in IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

and in continuous-time [30]. For other results related to the
LDI method, the readers can refer to [31]–[33]. Notice that
the previous approximation and the relevant design methods
utilizing LDI are all off-line. There are few research results
about the online LDI technique, and nothing of its application
is reported in adaptive optimal control for nonlinear systems.

To realize the online adaptive algorithm, however, we need
a synchronous linearization technique to accompany with the
PI solution process. As a result, we put forward a new online
LDI policy iteration (OLDIPI) algorithm, which can address
the adaptive optimal control problem for a class of nonlinear
systems. First, the original nonlinear system is approximated
to a linear plant model based on the neural network LDI.
Then inspired by the linear PI algorithm, the proposed OLDIPI
algorithm can converge to the optimal solution; furthermore,
the algorithm can be implemented online in least-square sense
under a persistent excitation condition. The convergence of
the proposed algorithm is also proved, and the corresponding
simulation results are given to illustrate the feasibility and
applicability.

The main contributions of this paper are as follows:

1) The online LDI representation is first realized and then

used to solve the adaptive optimal control problems for

nonlinear systems;

2) Compared with conventional off-line linearization meth-

ods (i.e., simply linearize the system around the origin

once), our algorithm retains the nonlinear peculiarity of

the system and guarantees the computational accuracy to

the greatest extent. In addition, the combination of the

online linearization and the online PI police provides a

new perspective to address such problems;

3) By the designed OLDIPI algorithm, we do not have to

solve the HJB equation. It simplifies the computation and

improves the reality of the intractability of the optimal

control problems for nonlinear systems. Based on this,

the method has potential to solve some more complicated

nonlinear control problems.

In our work, the designed algorithm is performed in an
RL framework related to the LDI-represented neural network.
Therefore, our designed nonlinear dynamical system can be
treated as a type of learning systems [34]–[36]. This learning
system design consists of two parts, i.e., the LDI-represented
neural network approximation and the PI-based adaptive op-

timal control realization.

The remainder of this paper is organized as follows. In
Section II, we give the LDI representation of a class of
continuous-time nonlinear systems and the online PI algorithm
of continuous-time linear systems. In Section III, we propose
the OLDIPI algorithm and show its convergence, as well
as the online implementation. In Section IV, two simulation
examples are provided to demonstrate the effectiveness of the
proposed algorithm. Finally, a brief conclusion and extension
are contained in Section V.

II. BACKGROUNDS

A. Neural-Network-Based System Description

The general nonlinear dynamical systems can be described

by:

ẋ(t) = f(x(t), u(t)). (1)

To some extent, many nonlinear systems can be regarded as the

coupling of linear and nonlinear parts. To study the adaptive

optimal control algorithm, in this paper, we consider a class

of nonlinear system in the form of:

ẋ(t) = Ax(t) +Bu(t) + f(x(t)) + g(u(t)) (2)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the
control input; f(·) and g(·) are continuous and bounded
nonlinear mapping of the state and control input; A ∈ ℜn×n

is the unknown constant matrix, B ∈ ℜn×m is the known
constant matrix, A and B are with the appropriate dimensions;
moreover, (A, B) is assumed to be stabilizable.

The optimal control problem for nonlinear system (2) in
the infinite horizon is equivalent to finding an optimal control
policy, which can be given as follows:

u(t) = u∗(x(t)) = −K∗x(t) (3)

which minimizes the following infinite horizon performance

index:

V (x(t), u(t)) =

∫ ∞

0

[xT(τ)Qx(τ) + uT(τ)Ru(τ)]dτ (4)

where Q = QT ≥ 0, R = RT > 0 and we assume that
(A, B, Q1/2) is stabilizable and detectable.

Remark 1: The nonlinear representation in system (2) can
be considered as a special class of nonlinear systems (1). For
system (2), although the nonlinear term f(x(t)) and g(u(t))
can be treated by some other methods, the expected accuracy
is still a challenge. In our design, we will develop an LDI
representation for a more effective adaptive optimal control.

For the purpose of designing the above control policy of
nonlinear system (2), we need to deal with the nonlinear
terms f(x(t)) and g(u(t)) firstly. By means of the arbitrary
approximation ability of the neural network, we give a class
of multi-layered perceptions (MLP’s) that admit an LDI state-

space representation.

Lemma 1 [30]: For the nonlinear terms f(x(t)) and g(u(t)),
we give the following approximation representations by two
L-layered MLP’s:





NNx(x(t),W1,W2, ...,WL)

= ΨL[WL...Ψ2[W2Ψ1[W1x(t)]]...],

NNu(u(t), V1, V2, ..., VL)

= ΨL[VL...Ψ2[V2Ψ1[V1u(t)]]...].

(5)

where Wi(i = 1, 2, ...L) ∈ ℜni
x
×nx

i−1 and Vi(i = 1, 2, ...L) ∈
ℜni

u
×nu

i−1 respectively denote the relevant weight matrices

from the (i−1)th layer to the ith layer; nsi (i = 1, 2, ...L; s = x
or u) denotes the number of neurons in the ith layer, the

superscript s denotes that the MLP’s are associated with x

or u; the activation function vector is defined as Ψ(ξ)
∆
=

[ψ1(ξ1), ψ2(ξ2), ..., ψn(ξn)]
T.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Assume that the activation function is a class of sigmoid
functions:

ψi(ξi) = λi(
2

1 + e−ξi/qi
); qi, λi > 0. (6)

Furthermore, we denote the minimum and maximum values

of ′(ξ) as:

s(k, ψ) =

{
minξψ

′(ξ), k = 0,

maxξψ
′(ξ), k = 1.

(7)

Recalling to [37],ψi(ξi) can be represented as:

ψi(ξi) = h(0)s(0, ψi) + h(1)s(1, ψi) (8)

where h(i) ≥ 0(i = 0, 1), and
∑1

i=0 h(i) = 1. This indicates

that ψi(ξi) can be implemented by interpolating the two

straight lines whose slopes are s(0, ψi) and s(1, ψi).

In order to adopt the compact representation in [29], we

define a set of nsi -dimensional index vectors tied to the ith
layer of the approximating MLP’s as:

Υns

i
= Υns

i
(δ)

∆
= {δ ∈ ℜns

i |δj ∈ {0, 1}} (9)

where δ is used as a binary indicator, j(j = 1, 2, ..., ns
i)

denotes the jth neuron in ith layer.

By adopting the compact representation in [29], the MLP’s

NNx(x(t),W1,W2, ...,WL) can be given as:

NNx(x(t),W1,W2, ...,WL)

= ΨL[WL...Ψ2[W2Ψ1[W1x(t)]]...]

= ΨL[WL...Ψ2[W2[
1∑

i=0

h11(i)s(i, ψ11)(W1x(t))1,

...,

1∑

i=0

h1nx

1
(i)s(i, ψ1nx

1
)(W1x(t))nx

1
]T]...]

= ΨL[WL...Ψ2[W2

1∑

i11=0

...
1∑

i1nx
1
=0

h11(i11)...h1nx

1
(i1nx

2
)

·diag[s1i(i1i, ψ1i)]W1x(t)]...]

= ΨL[WL...
1∑

i21=0

...
1∑

i2nx
2
=0

h21(i21)...h2nx

2
(i2nx

2
)

·diag[s2i(i2i, ψ2i)][W2

∑1
i11=0 ...

∑1
i1nx

1
=0 h11(i11)...

h1nx

1
(i1nx

1
)diag[s1i(i1i, ψ1i)]W1x(t)]...]

= ΨL[WL...
1∑

i21=0

...
1∑

i2nx
2
=0

1∑

i11=0

...
1∑

i1nx
1
=0

h11(i11)...

h1nx

1
(i1nx

1
)h21(i21)...h2nx

2
(i2nx

2
)diag[s2i(i2i, ψ2i)]

·[W2diag[s1i(i1i, ψ1i)]W1x(t)]...].

(10)

Similarly, NNu(u(t), V1, V2, ..., VL) can be expressed as:

NNx(u(t), V1, V2, ..., VL)

= ΨL[VL...Ψ2[V2Ψ1[V1u(t)]]...]

= ΨL[VL...Ψ2[V2[

1∑

i=0

h11(i)s(i, ψ11)(V1u(t))1,

...,
1∑

i=0

h1nu

1
(i)s(i, ψ1nu

1
)(V1u(t))nu

1
]T]...]

= ΨL[VL...Ψ2[V2

1∑

i11=0

...
1∑

i1nu
1
=0

h11(i11)...h1nu

1
(i1nu

2
)

·diag[s1i(i1i, ψ1i)]V1u(t)]...]

= ΨL[VL...
1∑

i21=0

...
1∑

i2nu
2
=0

h21(i21)...h2nu

2
(i2nu

2
)

·diag[s2i(i2i, ψ2i)][V2
∑1

i11=0 ...
∑1

i1nu
1
=0 h11(i11)...

h1nu

1
(i1nu

1
)diag[s1i(i1i, ψ1i)]V1u(t)]...]

= ΨL[VL...
1∑

i21=0

...
1∑

i2nu
2
=0

1∑

i11=0

...
1∑

i1nu
1
=0

h11(i11)...

h1nu

1
(i1nu

1
)h21(i21)...h2nu

2
(i2nu

2
)diag[s2i(i2i, ψ2i)]

·[V2diag[s1i(i1i, ψ1i)]V1u(t)]...].
(11)

Suppose that there exist optimal approximation weights

{W ∗
L, ...,W

∗
1 } and {V ∗

L , ..., V
∗
1 }, which satisfy

{
∥f(x(t))−NNx(x(t),W

∗)∥ ≤ ε1∥x(t)∥,

∥g(u(t))−NNu(u(t), V
∗)∥ ≤ ε2∥u(t)∥.

(12)

where ε1 > 0, ε2 > 0.
According to [30], the nonlinear system (2) can be written

as:

ẋ(t) = [A+
∑

σ∈Υnx
1
⊕...Υnx

L

µσAσ(σ,Ψ,W
∗)]x(t)

+[B +
∑

η∈Υnu
1
⊕...Υnu

L

µηBη(η,Ψ, V
∗)]u(t) (13)

where∑
σ∈Υnx

1
⊕...Υnx

L

µσ =
∑1

iL1=0 ...
∑1

iLnx

L
=0 ...

∑1
i21=0 ...∑1

i2nx
2
=0

∑1
i11=0 ...

∑1
i1nx

1
=0 h11(i11)...h1nx

1
(i1nx

1
)h21(i21)

...h2nx

2
(i2nx

2
)...hL1(iL1)...hLnx

L
(iLnx

L
) = 1,∑

η∈Υnu
1
⊕...Υnu

L

µη =
∑1

iL1=0 ...
∑1

iLnu

L
=0 ...

∑1
i21=0 ...∑1

i2nu
2
=0

∑1
i11=0 ...

∑1
i1nu

1
=0 h11(i11)...h1nu

1
(i1nu

1
)h21(i21)

...h2nu

2
(i2nu

2
)...hL1(iL1)...hLnu

L
(iLnu

L
) = 1,

Aσ(σ,Ψ,W
∗) =diag[sLi(σLi, ψLi)]W

∗
L...W

∗
2

·diag[s1i(σ1i, ψ1i)]W
∗
1 ,

Bη(η,Ψ, V
∗) =diag[sLi(ηLi, ψLi)]V

∗
L ...V

∗
2

·diag[s1i(η1i, ψ1i)V
∗
1 .

This kind of representation can be considered as a kind of

LDI [38]. After using the LDI approximation to model the

nonlinear terms, the PI algorithm and the relevant adaptive

optimal control scheme will be studied in the following section

for nonlinear system (2).

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Remark 2: Eqs. (10)-(13) have illustrated how to use the

LDI method to model the f(x(t)) and g(u(t)) function. In

each iteration step of the following Algorithm 2, it involves a

modeling process on piecewise f(x(t)) and g(u(t)).
Remark 3: There are many different LDI methods to address

different issues. In [33], the authors give a common LDI

description, i.e., ẋ = Ωx, where Ω is a subset of ℜn×n. It

treats the LDI as a tool to study the uncertainty of a family of

linear time-varying systems. In [26], the LDI method is used

to linearize and discuss the stability of a class of discrete-time

nonlinear systems. While in our design, we use the neural

network LDI method to convert the nonlinear terms f(x(t))
and g(u(t)) to the form as presented in (13), and subsequently

in Algorithm 2, we will develop it to an online fashion.

B. PI Algorithm

Before designing the controll policy for nonlinear system

(2), we give the following lemmas and algorithm for the linear

case.

Lemma 2 [1]: For a class of linear systems ẋ(t) = Ax(t)+
Bu(t), if the controller is chosen as u(t) = −Kx(t), the

solution of the quadratic optimal control in the infinite horizon

is:

K∗ = R−1BTP ∗ (14)

where P ∗ is the positive definite solution of the following
algebraic Riccati equation (ARE):

ATP + PA− PBR−1BTP +Q = 0. (15)

Lemma 3 [39]: Let K(1) = 0 be an initial stabilizing

feedback gain matrix and P (k) be the unique positive definite

solutions of the Lyapunov equation:

[A−BKT(k)]P (k)+P (k)[A−BK(k)]

+Q+KT(k)RK(k) = 0 (16)

where, recursively,

K(k + 1) = R−1BTP (k). (17)

Then, the following properties hold:

1) A − BK(k) is Hurwitz;
2) limk→∞ P (k) = P ∗, limk→∞ K(k) = K∗.

In Lemma 3, the numerical approximate solution of the

ARE (15) can be attained by iteratively solving Lyapunov Eq.

(16) and updating K(k) by (17). Based on the work in Lemma
3, Vrabie et al. [10] proposed an online PI algorithm that can
solve (16) without knowing the internal plant matrix A. The
algorithm is shown as Algorithm 1, which can be effectively
converged to the ARE (15) to solve matrix P .

III. MAIN RESULTS

(17) OLDIPI Algorithm

In Section II, we have given the linear representation

of nonlinear system (2) based on LDI approximation, then

we apply it to the following OLDIPI algorithm shown as

Algorithm 2.

Algorithm 1 PI Algorithm

• Step 1: Let k = 1. Give an initial stabilizing control policy

K(1) = 0 and a cost matrix P (0) = 0, plus a small constant

ϵ(ϵ > 0) as the accuracy. Start the iteration.

• Step 2: Solve the following PI equation.

1) Policy Evaluation:

xT
tP (k)xt=

∫ t+T

t

xτ [Q+KT(k)RK(k)]xT
τdτ

+xT
t+TP (k)xt+T . (18)

2) Policy Improvement:

K(k + 1) = R−1BTP (k). (19)

• Step 3: If ∥P (k)−P (k−1)∥ ≤ ϵ, we stop and output P (k)
as the solution matrix P . Otherwise, set k = k+1, go to Step

2 and continue the iteration process.

Considering that ∆A(k) and ∆B(k) are derived by the con-

tinuous and bounded nonlinear function f(x(t)) and g(u(t))
in (2), the values of them are thereby restricted in a very small
scale in the single iteration. By Theorem 3.1 in [28], the neural
network LDI-described system is asymptotically stable as long
as the corresponding conditions are satisfied. Thus, we can
assume that (A(k), B(k), Q1/2) is stabilizable and detectable
in each iteration.

Based on the above assumption, the convergence of Algo-

rithm 2 can be guaranteed by the following theorems.

Theorem 1: Assuming that A(k) − B(k)K(k) is always
stable, the policy evaluation (23) in Algorithm 2 is equivalent
to finding the solution of Lyapunov Eq. (22).

Proof: Considering the control gain as K(k), the kth
iteration of the closed-loop form of nonlinear system (2) can
be depicted:

ẋt = [A(k)−B(k)K(k)]xt. (25)

Choosing the Lyapunov candidate function as Vk(xt) =
xT
tP (k)xt, we have

d

dt
xT
tP (k)xt=x

T
t [(A(k)−B(k)K(k))TP (k)

+P (k)(A(k)−B(k)K(k))]xt. (26)

Integrating (26) from t to t+ T , it has

xT
t+TP (k)xt+T − xT

tP (k)xt

=

∫ t+T

t

xT
τ [(A(k)−B(k)K(k))TP (k)

+ P (k)(A(k)−B(k)K(k))]xτdτ. (27)

Then it follows from (23) that

xT
t+TP (k)xt+T − xT

tP (k)xt

= −

∫ t+T

t

xT
τ [Q+K

T
(k)RK(k)]xτdτ. (28)

Comparing (27) and (28), we can get (22). Therefore, the

asymptotic stability of A(k) − B(k)K(k) can guarantee that

the solution of (23) equals to the unique solution of (22).

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Algorithm 2 OLDIPI Algorithm

• Step 1: Let k = 1. Give an initial stabilizing control policy

K(1) = 0 and a cost matrix P (0) = 0, plus a small constant

ϵ(ϵ > 0) as the accuracy. Start the iteration.

• Step 2: In each iteration, the nonlinear terms f(x(t)) and

g(u(t)) are sampled at a shorter interval δ, for the aim of

obtaining a series of sampling points:
{
xδ = [x(t), x(t+ δ), x(t+ 2δ), ..., x(t+ T)],

uδ = [u(t), u(t+ δ), u(t+ 2δ), ..., u(t+ T)].
(20)

Then according to Lemma 1, the nonlinear system states in

kth iteration can be linerized by LDI:




f(x(t)) =
∑

σ∈Υnx
1
⊕...Υnx

L

µσAσ(k)(σ,Ψ,W
∗)xδ(t)

= ∆A(k)xδ(t),

g(u(t)) =
∑

η∈Υnu
1
⊕...Υnu

L

µηBη(k)(η,Ψ, V
∗)uδ(t)

= ∆B(k)uδ(t).

(21)

The new Lyapunov matrix equation in the kth step will be

[A(k)−B(k)K(k)]TP (k)+P (k)[A(k)−B(k)K(k)]

= −[K
T
(k)RK(k) +Q].(22)

where A(k) = A+∆A(k), B(k) = B +∆B(k).
• Step 3:Substitute the above results into (18) and (19), the

final problem becomes the solution of the following iterative

equation:

1) Policy Evaluation:

xT
tP (k)xt=

∫ t+T

t

xτ [Q+K
T
(k)RK(k)]xT

τdτ

+xT
t+TP (k)xt+T . (23)

2) Policy Improvement:

K(k + 1) = R−1B
T
(k)P (k). (24)

• Step 3: If ∥P (k)−P (k−1)∥ ≤ ϵ, we stop and output P (k)
as the solution matrix P . Otherwise, set k = k+1, go to Step

2 and continue the iteration process.

Theorem 2: Assuming that the control policy K(k) is

stabilizing with the associated cost Vk(xt). Then the next step

control policy K(k+1) attained by (24) will be stabilizing as

well.

Proof: Considering Vk(xt) as the Lyapunov function

associated with K(k+1) and taking the derivative of Vk(xt),
we have:

V̇k(xt) = xT
t [P (k)(A(k)−B(k)K(k + 1))

+ (A(k)−B(k)K(k + 1))TP (k)]xt

= xT
t [P (k)(A(k)−B(k)K(k))

+ (A(k)−B(k)K(k))TP (k)]xt

+ xT
t [P (k)B(k)(K(k)−K(k + 1))

+ (K(k)−K(k + 1))B
T
(k)P (k)]xt. (29)

By means of (22) and (24), the first term equals to

−[K
T
(k)RK(k) +Q], and the second can be rewritten as:

xT
t [P (k)B(k)(K(k)−K(k + 1))

+(K(k)−K(k + 1))B
T
(k)P (k)]xt

= xT
t [K

T
(k + 1)R(K(k)−K(k + 1))

+(K(k)−K(k + 1))TRK(k + 1)]xt

= xT
t [−(K(k)−K(k + 1))TR(K(k)−K(k + 1))

−K
T
(k + 1)RK(k + 1) +K

T
(k)RK(k)]xt.

In the end, Eq. (29) is turned into:

V̇k(xt) = −xT
t [K

T
(k + 1)RK(k + 1) +Q]xt

− xT
t [(K(k)−K(k + 1))TR(K(k)−K(k + 1))]xt.

(30)

Considering Q ≥ 0, R > 0 in (4), it is clear that V̇k(xt) <
0. Thus, the new control policy K(k + 1) updated by (24)

is stabilizing. It indicates that if the initial control policy is

stabilizing, A(k) − B(k)K(k) is always stable in the whole

iteration process.

Theorem 3 (Convergence): Under the assumptions of

the stabilizability of (A(k), B(k)) and the detectability of

(Q1/2, A(k)) at each iteration, with Q ≥ 0, R > 0 in (4), the

OLDIPI algorithm in Algorithm 2 converges to the optimal

solution of the corresponding ARE:

A
T
(k)P (k)+P (k)A(k)−P (k)B(k)R−1B

T
(k)P (k)+Q = 0.

(31)

Proof: According to Eq. (12), we can see that if f(x(t)),
g(u(t)) are bounded, ∥A(k)∥, ∥B(k)∥ will be bounded as

well. Let ∥AM∥, ∥BM∥ be the upper bounds of ∥A(k)∥ and

∥B(k)∥, respectively, i.e.,

∥A(k)∥ ≤ ∥AM∥, ∥B(k)∥ ≤ ∥BM∥ (32)

where ∥ · ∥ denotes the induced matrix norm.

Assuming that A(k) and B(k) remain in their upper bounds

at each iteration. By Theorem 1, we know that in this case the

solution of the policy evaluation (23) is equivalent to solving

the following Lyapunov equation:

[AM −BMK(k)]TP (k)+P (k)[AM −BMK(k)]

= −[K
T
(k)RK(k) +Q]. (33)

By Lemma 3, we know that by solving the Lyapunov equation
iteratively in each iteration, the solution to the ARE is numer-

ically approximated. The iteration equivalence between (22),

(24) and (23), (24) implies that in this case the solutions of
Algorithm 2 converge to the optimal solution of the following
ARE:

A
T

MPM + PMAM − PMBMR
−1B

T

MPM +Q = 0. (34)

Note that limk→∞ P (k) = P
∗

M , where P
∗

M denotes the

unique positive definite solution of (34).

Although A(k) and B(k) are always changeable at each
iteration, the optimal control conditions are still satisfied.
Considering the upper bounds AM and BM , it is concluded that
the solutions of the OLDIPI algorithm in Algorithm

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Fig. 1. The online implementation of Algorithm 2.

2 will converge to a certain value eventually. Note that

limk→∞ P (k) = P
∗
, where P

∗
denotes the unique positive

definite solution of (31) and P
∗
∈ S, S = S(P)

∆
= {P ∈

ℜn×n| ∥P∥ < P
∗

M}. This completes the proof.

B. Online Implementation

In this subsection, we implement the OLDIPI algorithm

in Algorithm 2 without using the knowledge of the system

internal dynamics. The important point is that the states of

the nonlinear system are required to be observed and updated

under a persistent excitation at each iteration. Considering

A(k) is implicit in states xt and xt+T , so the system internal

dynamic will not be required in PI computation scheme. To

facilitate this solution process, we rewrite the left side of (23)

as:

xT
tP (k)xt = [p̃(k)]Tx̂(t) (35)

where p̃(k) denotes the column vector made by stacking the

elements of the upper triangular part of P (k) in order, and the

off-diagonal elements of P (k) are merged as 2pij , i.e.,

p̃(k) = [p11(k), 2p12(k), ..., 2p1n(k),

p22(k), 2p23(k), ..., pnn(k)]
T; (36)

and x̂(t) denotes the Kronecker product quadratic

polynomial basis vector with the elements

{xi(t)xj(t)}i=1,2,...n;j=i,i+1,...n, i.e.,

x̂(t) = [x21(t), x1(t)x2(t), ..., x1(t)xn(t),

x22(t), x2(t)x3(t), ..., x
2
n(t)]. (37)

By (36) and (37), the kth policy evaluation in (23) can be

replaced as:

[p̃(k)]T[x̂(t)− x̂(t+ T)]

=

∫ t+T

t

xT
τ [Q+K

T
(k)RK(k)]xτdτ. (38)

It is necessary to point out that, there are n(n + 1)/2
elements in the symmetric matrix P (k) to be solved. As

the consequence, we at least need N(N ≥ n(n + 1)/2)
independent equations for solving p̃(k). Hence, N state vectors

should be sampled in each iteration interval T , then the

sampling interval will be ∆t = T/N ; ultimately the matrix

sequences p̃(k) can be obtained by solving the following least-

square equation, and it will generate P (k) subsequently:

p̃(k) = (XXT)−1XY (39)

where

X = [x̂
(1)
∆ (t), x̂

(2)
∆ (t), ..., x̂

(N)
∆ (t)],

x̂
(i)
∆ (t) = x̂[t+ (i− 1)∆t]− x̂[t+ i∆t],

Y = [y(1)(k), y(2)(k), ..., y(N)(k)],

y(i)(k) =

∫ t+i∆t

t+(i−1)∆t

xT
τ [Q+K

T
(k)RK(k)]xτdτ.

With an adequate collection of status points, the calculation
of least-square problem (39) can be online in real-time.
Besides, the sampling points (20) for nonlinear terms should be
sufficient enough to ensure an admissible accuracy for the
implementation. It is remarkable that when the Algorithm 2 is
implemented online, the interval T in (20) should be replaced
by ∆t. The online implementation of Algorithm 2 is shown
in Fig. 1.

The online features of OLDIPI algorithm are mainly re-

flected in the following three aspects:

1) The linear adaptive optimal control is based on the online
algorithm. It calculates the control policy after acquiring
the sufficient data along the system state trajectory be-

tween the time interval T ;
2) The LDI approximation is performed online, which

linearizes the nonlinear terms by utilizing the data set
collected in a short time interval δ, in contrast to the
previous off-line LDI approximation, which simply lin-

earizes the system around the origin once before the PI
control scheme;

3) By the OLDIPI algorithm, we can online collect and
observe the variation of the state trajectory and the
control input among the whole solution procedure.

IV. SIMULATION RESULT

In this section, two simulation examples are presented to

demonstrate the validity and applicability of the proposed

adaptive optimal control algorithm.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

-3

-2

-1

0

1

2

3

(1,1)
(1,2)
(1,3)
(1,4)
(2,2)
(2,3)
(2,4)
(3,3)
(3,4)
(4,4)

1th (final) iteration

Fig. 2. P parameter updated at each iteration step.

A. Example 1

Consider a fourth-order nonlinear system as follows:

A =




−2.0000 0.8233 −7.8001 −2.3333
0.4988 −6.4123 −5.2302 −1.5024
1.0000 0.1000 −10.2007 −10.2007
0.0000 −5.2032 8.2000 −4.0000


 , B =




0
0
1
0


 ,

f(x(t)) =




0
0
0

sin(0.1x1(t))


 ,

g(u(t)) =




0
0
0

0.5sin2(u(t))cos2(u(t))


 ,

Q =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , R = 1.

For the above nonlinear terms, we construct two three-

layered neural networks to perform LDI expression simulta-

neously on f(x(t)) and g(u(t)). The network approximating

f(x(t)) contains four neurons in input layer, four in hidden

layer and one in output layer, and the other network used to ap-

proximate g(u(t)) has one neuron in input layer, four in hidden

layer and one in output layer. The parameters of the activation

function are set as q = 0.5, λ = 1. The online simulation is

designed by using ∆t = T/N = 0.05, δ = 0.001, with the

initial state of the system is x0 = [0.01 0 0.01 0.01]T.

After the online sampling and policy iteration, we obtain

the approximate solution by Algorithm 2:

P =




0.7060 −1.1090 −0.1087 −0.0782
−1.1090 2.6710 0.1149 0.3609
−0.1087 0.1149 0.0554 0.0036
−0.0782 0.3609 0.0036 0.0918


 . (40)

The simulation results are shown in Figs. 2-3. Fig. 2 shows

the matrix parameters in P (k) after each iteration and verifies

the convergence of the proposed algorithm. It can be obviously
seen from Fig. 2 that P (k) can converge to the optimal
solution very quickly after one iteration step. Fig. 3 show
the state trajectory and control input curve of the closed loop
system respectively. From the online control curve in Fig. 3,
we can see the OLDIPI control algorithm is efficient for both
two nonlinear terms.

To illustrate the convergence effectiveness of ∆A(k) and
∆B(k), we apply our online LDI method and PI algorithm
to the system with the same A and B, but let the nonlinear
terms as f(x(t)) = 0 and g(u(t)) = 0 (i.e., a linear case).
The state trajectory and the control input curve are shown in
Fig. 4. Although ∆A(k) and ∆B(k) have little effect on the
properties of the system in single iteration, after finishing the
whole iteration process, they do have an accumulation effect
on the convergence of the PI algorithm in prolonging the
iteration time within a very acceptable limitation and cause
an obvious fluctuation on the system dynamics. However, it
is seen from Fig. 4 that the state trajectories of the closed-

loop system are finally stabilizable, which also proves the
convergence and stability of our designed PI algorithm.

Remark 4: The relevant weight matrices Wi and Vi are
obtained after the training on the two three-layered neural
networks, and they are updated via back-propagation algorithm
by means of the input data (20). Then in the next iteration, Wi
and Vi will have different values due to the different input data.
Therefore, the values of Wi and Vi are consistently changing
in each iteration, making it impractical to display all of them.

B. Example 2

In this subsection, the proposed adaptive optimal control

algorithm is used with a nonlinear system in [40], [41] given

by {
ẋ1 = −x31 − x2,

ẋ2 = x1 + x2 + u.
(41)

Consider the nonlinear form in system (2), we rewrite

nonlinear system (41) as:

ẋ(t) =
[
0 −1
1 1

]
x(t) +

[
0
1

]
u(t) +

[
−x31(t)

0

]
. (42)

To handle the nonlinear term described in Eq. (42), we

suppose a three-layered neural network which has two neurons

in input layer, two in hidden layer and one in output layer. The

parameters of activation function and online simulation in this

part are the same as Example 1. And the initial state is set as

x0 = [1 − 1]T.

Then, we can obtain the optimal controller as:

P =
[
0.1296 0.0596
0.0596 2.0361

]
. (43)

The simulation results by applying the OLDIPI control
algorithm are presented in Figs. 5-7. From Fig. 5, it is clear
that P (k) converges to the optimal solution after two iteration
steps within 1 s. In contrast to the method proposed in [41], it
employs the neural network without using LDI technique but
requires 9 s to reach the final convergence. It demonstrates that
our method is obviously more effective. In addition, we obtain
a more explicit solution in the research result.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

×10
-3

-6

-4

-2

0

2

4

6

8

10

12

x1
x2
x3
x4

(a) The state trajectory of the closed-loop system by online iteration

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

×10
-4

-8

-6

-4

-2

0

2

4

6

8

10

(b) The control input curve by online iteration.

Fig. 3. The online control curve for Example 1 (f(x(t)) = [0, 0, 0, sin(0.1x1(t)]T, g(u(t)) = [0, 0, 0, 0.5sin2(u(t))cos2(u(t))]T).

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

×10
-3

-6

-4

-2

0

2

4

6

8

10

12
x1

x2

x3

x4

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

×10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) The control input curve by online iteration.(a) The state trajectory of the closed-loop system by online iteration

Fig. 4. The online control curve for Example 1 (f(x(t)) = 0, g(u(t)) = 0).

V. CONCLUSION

A novel online PI algorithm to design has been proposed for
the adaptive optimal controller of a class of continuous-time
nonlinear systems with partially unknown system dynamics.
By applying neural network LDI technique, the original non-

linear system can be approximated to a linear plant model
accurately. Then, PI algorithm and the optimal solution of the
corresponding ARE can be learned.

Inspired by the results in this paper, the new type algorithm
can be applied to an akin system that has completely unknown
nonlinear terms. The influence of sampling time and the
neural network approximation error on research results will
be addressed in the future work.

REFERENCES

[1] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley
& Sons, 2012.

[2] D. E. Kirk, Optimal control theory: an introduction. Courier Corpora-
tion, 2012.

[3] P.-L. Lions, Optimal Control of Diffusion Processes and Hamilton-

Jacobi-Bellman Equations: The Dynamic Programming Principles and

Applications. M. Dekker, 1983.

[4] S. Peng, “A generalized dynamic programming principle and hamilton-
jacobi-bellman equation,” Stochastics: An International Journal of Prob-

ability and Stochastic Processes, vol. 38, no. 2, pp. 119–134, 1992.

[5] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic pro-
gramming for constrained optimal control of discrete-time linear hybrid
systems,” Automatica, vol. 41, no. 10, pp. 1709–1721, 2005.

[6] X. Yang, H. He, D. Liu, and Y. Zhu, “Adaptive dynamic programming
for robust neural control of unknown continuous-time non-linear sys-
tems,” IET Control Theory and Applications, vol. 11, no. 14, pp. 2307–
2316, 2017.

[7] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control for unknown
discrete-time nonlinear Markov jump systems using adaptive dynamic

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

2.5

3

(1,1)

(1,2)

(2,2)
 2th (final) iteration

Fig. 5. P parameter updated at each iteration step.

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

-1

-0.5

0

0.5

1

1.5

2

x1

x2

Fig. 6. The state trajectory of the closed-loop system by online iteration.

Time [sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0

0.5

1

1.5

2

2.5

Fig. 7. The control input curve by online iteration.

programming,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 25, no. 12, pp. 2141–2155, 2014.

[8] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and Systems

Magazine, vol. 9, no. 3, 2009.

[9] W. B. Powell, Approximate Dynamic Programming: Solving the curses

of dimensionality. John Wiley & Sons, 2007, vol. 703.

[10] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive
optimal control for continuous-time linear systems based on policy
iteration,” Automatica, vol. 45, no. 2, pp. 477–484, 2009.

[11] Y. Jiang and Z.-P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, no. 10, pp. 2699–2704, 2012.

[12] S. He, J. Song, Z. Ding, and F. Liu, “Online adaptive optimal control
for continuous-time Markov jump linear systems using a novel policy
iteration algorithm,” IET Control Theory and Applications, vol. 9, no. 10,
pp. 1536–1543, 2015.

[13] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 25, no. 3, pp. 621–634,
2014.

[14] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 24, no. 10, pp. 1513–1525, 2013.

[15] H. Zhang, H. Liang, Z. Wang, and T. Feng, “Optimal output regulation
for heterogeneous multiagent systems via adaptive dynamic program-
ming.” IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 1, p. 18, 2017.

[16] H. Zhang, H. Jiang, C. Luo, and G. Xiao, “Discrete-time nonzero-sum
games for multiplayer using policy-iteration-based adaptive dynamic
programming algorithms,” IEEE Transactions on Cybernetics, vol. 47,
no. 10, pp. 3331–3340, 2017.

[17] B. Luo, H.-N. Wu, T. Huang, and D. Liu, “Data-based approximate
policy iteration for affine nonlinear continuous-time optimal control
design,” Automatica, vol. 50, no. 12, pp. 3281–3290, 2014.

[18] J. Song, S. He, F. Liu, Y. Niu, and Z. Ding, “Data-driven policy iteration
algorithm for optimal control of continuous-time itô stochastic systems
with Markovian jumps,” IET Control Theory and Applications, vol. 10,
no. 12, pp. 1431–1439, 2016.

[19] W. Guo, J. Si, F. Liu, and S. Mei, “Policy approximation in policy
iteration approximate dynamic programming for discrete-time nonlinear
systems,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, pp. 2794–2807, 2018.

[20] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks:
A tutorial,” Computer, vol. 29, no. 3, pp. 31–44, 1996.

[21] D. F. Specht, “A general regression neural network,” IEEE Transactions

on Neural Networks, vol. 2, no. 6, pp. 568–576, 1991.

[22] X. Xu, Z. Huang, L. Zuo, and H. He, “Manifold-based reinforcement
learning via locally linear reconstruction,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, no. 4, pp. 934–947, 2017.

[23] D. Wang, D. Liu, and H. Li, “Policy iteration algorithm for online design
of robust control for a class of continuous-time nonlinear systems,” IEEE

Transactions on Automation Science and Engineering, vol. 11, no. 2, pp.
627–632, 2014.

[24] D. Vrabie and F. Lewis, “Neural network approach to continuous-time
direct adaptive optimal control for partially unknown nonlinear systems,”
Neural Networks, vol. 22, no. 3, pp. 237–246, 2009.

[25] D. Liu, X. Yang, and H. Li, “Adaptive optimal control for a class
of continuous-time affine nonlinear systems with unknown internal
dynamics,” Neural Computing and Applications, vol. 23, no. 7-8, pp.
1843–1850, 2013.

[26] D. Wang, D. Liu, H. Li, and H. Ma, “Neural-network-based robust
optimal control design for a class of uncertain nonlinear systems via
adaptive dynamic programming,” Information Sciences, vol. 282, pp.
167–179, 2014.

[27] D. Lu, X. Zhong, C. Sun, and H. He, “Event-triggered adaptive dynamic
programming for continuous-time systems with control constraints,”
IEEE Transactions on Neural Networks and Learning Systems, vol. PP,
no. 99, pp. 1–12, 2016.

[28] K. Tanaka, “An approach to stability criteria of neural-network control
systems,” IEEE Transactions on Neural Networks, vol. 7, no. 3, pp.
629–642, 1996.

[29] S. Limanond and J. Si, “Neural network-based control design: an lmi
approach,” IEEE Transactions on Neural Networks, vol. 9, no. 6, pp.
1422–1429, 1998.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

[30] C.-L. Lin and T.-Y. Lin, “An H∞ approach for neural net-based control
schemes,” IEEE Transactions on Automatic Control, vol. 46, no. 10, pp.
1599–1605, 2001.

[31] X. Liao, G. Chen, and E. N. Sanchez, “LMI-based approach for
asymptotically stability analysis of delayed neural networks,” IEEE

Transactions on circuits and systems I: Fundamental Theory and Appli-

cations, vol. 49, no. 7, pp. 1033–1039, 2002.
[32] R. Zhu, M. Sun, and C. Shi, “Absolute stability analysis and design

of fuzzy control systems,” in Proc. IEEE International Conference on

Networking, Sensing and Control. IEEE, 2008, pp. 1721–1725.
[33] Y. Wu and T. Shen, “Reach control problem for linear differential inclu-

sion systems on simplices,” IEEE Transactions on Automatic Control,
vol. 61, no. 5, pp. 1403–1408, 2016.

[34] D. Zhai, L. An, D. Ye, and Q. Zhang, “Adaptive reliable H∞ static
output feedback control against Markovian jumping sensor failures,”
IEEE Transactions on Neural Networks and Learning Systems, vol. PP,
no. 99, pp. 1–14, 2018.

[35] D. Zhai, L. An, X. Li, and Q. Zhang, “Adaptive fault-tolerant control for
nonlinear systems with multiple sensor faults and unknown control di-
rections,” IEEE transactions on Neural Networks and Learning Systems,
vol. 29, no. 9, pp. 4436–4446, 2018.

[36] Y. J. Liu, S. Li, S. Tong, and C. Chen, “Adaptive reinforcement learn-
ing control based on neural approximation for nonlinear discrete-time
systems with unknown nonaffine dead-zone input,” IEEE Transactions

on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–11,
2018.

[37] J. A. Suykens, B. De Moor, and J. Vandewalle, “Robust local stability
of multilayer recurrent neural networks,” IEEE Transactions on Neural

Networks, vol. 11, no. 1, pp. 222–229, 2000.
[38] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix

inequalities in system and control theory. SIAM, 1994.
[39] D. Kleinman, “On an iterative technique for riccati equation compu-

tations,” IEEE Transactions on Automatic Control, vol. 13, no. 1, pp.
114–115, 1968.

[40] R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of
the generalized hamilton-jacobi-bellman equation,” Automatica, vol. 33,
no. 12, pp. 2159–2177, 1997.

[41] D. Vrabie and F. L. Lewis, “Adaptive optimal control algorithm for
continuous-time nonlinear systems based on policy iteration,” in Proc.

47th IEEE Conference on Decision and Control. IEEE, 2008, pp. 73–
79.

	Introduction
	Backgrounds
	Neural-Network-Based System Description
	PI Algorithm

	Main Results
	OLDIPI Algorithm
	Online Implementation

	Simulation Result
	Example 1
	Example 2

	Conclusion
	References

