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Preface

Adaptive Control is a progressive and fascinating field of control systems
design and analysis that continues to be particularly ebullient because of
the intellectual appeal of its notions of self-tuning or self-optimizing. Added
to this technical attraction is the enthralling feature that, absence of com-
plete theoretical support notwithstanding, many practical implementations
of adaptive control have been working on industrial systems. Our goal in
this book is to explore new connections between adaptive control theory and
practice which permit fuller contact of adaptive control design with modern
robust control design, thereby improving the scope of the former and the
motivation of the latter.

About the Title

The vehicle that we use for our theoretical study is Adaptive Linear Quadratic
Gaussian Optimal Control, hence Adaptive Optimal Control in our title.
The practical connection is via the recently popular Generalized Predictive
Control adaptive control method, which has proven remarkably successful
in applications, therefore GPC. The final unexplained portion of the title,
The Thinking Man1, reflects our aim to introduce new theoretical tools to
bring this style of adaptive control design into more complete harmony with
existing alternative robust design methods, allowing a more balanced and
explicable design phase. By developing our presentation from this specific
Adaptive Optimal Control/GPC stance, we are able to move to the more
general understanding more easily in the later parts of the book.

Our subtitle, while sounding a little self-inflated, is not intended to den-
igrate GPC in any way. Indeed, the motivation for the writing of this book
is that GPC has proven so successful in practice. We have taken up the
challenge to build a theoretical support for this and similar algorithms and,
in doing so, it is clear that we must build upon and extend the advances

1The authors are not attempting to be sexist in selecting such a title, merely to reflect
their experience that no Thinking Woman uses GPC.
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x Preface

of those before. So, if we do sound a little negative towards GPC at times,
please regard this as straight talking permissible through familiarity rather
than as veiled calumniations.

The Audience and Prerequisite Knowledge

The perceived audience for this work falls into several categories reflect-
ing their classification as: practitioners interested in acquiring some theory
associated with the design of adaptive control algorithms, theoreticians con-
cerned with studying the connection between methods which have arisen
from practical applications and their more mathematical analyses, graduate
students of control systems interested in both disciplines. The audience is
identified more fully in the first chapter after some motivational examples,
when some guide to reading is given.

The book has been written to provide a study of adaptive control but
the explicit techniques treated along the way include: Linear Quadratic
optimal control and estimation (Kalman filtering), recursive identification,
some Linear Systems theory, and robustness arguments. On the whole, we
have endeavored to be complete in our derivations where this is pertinent to
understanding the material, but some previous exposure to Linear Quadratic
control and estimation and to recursive identification would be advantageous.
Naturally, a goodly number of suitable references of such source material are
provided.

Acknowledgments

First in the list of people for whom acknowledgment, thanks and tribute are
due for their suffering during the writing of this tome, are our families and
close friends who have endured absences overseas, late late nights at home
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oclastic just when we needed it most, we delight in thanking Brian Anderson,
Georges (Jojo) Bastin and Geoff Williamson. Their efforts have aided us very
considerably in honing, tweeking and, where necessary, completely rewriting
our explanations and rationalizing our philosophical diatribes. Many others
have given of their time and efforts to help us formulate better our approach
and technique. Notable amongst these are Greg Allen, Laurent Praly, Claude
Samson, Jan Willem Polderman and two of the lead players in GPC, David
Clarke and Coorous Mohtadi. Finally, we thank the Groupe de Recherche
Coordonnée (GRECO) SARTA and the boys of Grenoble (Ioan Landau, Luc
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Kosut, Petar Kokotovic and Guy Campion for their support — technical,
emotional and moral (as in definition 8 of the Macquarie Dictionary Revised
Edition 1985, and in neither the religious nor ethical sense).
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Bob, Mig and Vinnie,
Canberra, February 1990.



Chapter 1

The Scene, the Props,
the Players

1.1 Introduction and Purpose

Adaptive Control describes a body of theoretical and practical engineering
methodology in which one combines the design of feedback controllers based
on plant system models with the on-line estimation of the model parameters
or the controller parameters using input and output data measurements.
Adaptive Optimal Control then is meant to refer to just such an adaptive
control scheme but with the controller design being carried out using the
methods of Optimal Control Theory. There is nothing new in this idea and,
indeed, in this book we take the most direct and mundane Recursive Least
Squares parameter identifiers (RLS) and Linear Quadratic Gaussian control
laws (LQG) to concoct an adaptive controller. This would appear to be more
anachronistic than avant-garde, more conservative than risqué. Our goal,
however, is to explore the intriguing interconnection between the control
law selection and the identification rule operating simultaneously in closed
loop. These specific selections of RLS and LQG provide both an explicit
workplace and a pleasing and direct connection to the currently much favored
practical adaptive methods of Generalized Predictive Control (GPC). The
validating features of this work are the tying of modern theories of Linear
System Identification and Robust Linear Controller Design onto methods
developed for their practical and intuitive appeal in adaptive control. The
final extensions carry this further to permit the rapid acquisition of modern
control design principles into adaptive control in a logical fashion.

Because Adaptive Control consists of the coupling of a parameter estima-
tor and a control law design schema, it is necessary in analysing the behavior

1



2 Scene, Props, Players

of an adaptive control scheme that we consider two complementary features:
the effect of the identified parameter value upon the controller and hence
on the closed loop performance, and the effect of the closed loop control on
the parameter estimation. It is this explicit interplay between control law
selection and parameter identification that is the focal point of this book
and which distinguishes it from previous works. These works have tended
to concentrate on either the identifier or the control law and have relied to
some extent on the insensitivity of one component from the effects of the
other. The joint analysis of these separate effects presented here leads us to
more specific design guidelines for adaptive control.

The message of our work is that by appealing to robust control design
theory this interplay above between on-line control design and closed loop
identification can be harnessed in such a way that the combined adaptive
control/identification scheme possesses greater robustness margins than the
separate designs of control law and identification algorithm would have al-
lowed. In order not to confuse the issues with vague generalities, we carry
through our analysis and study of consequences for the specific class of Adap-
tive (Linear Quadratic) Optimal Control algorithms rather than attempting
to encompass all potential schemes at once. Our starting point for develop-
ment and motivation is a particular member of this family of algorithms, the
currently popular Generalized Predictive Control (GPC) method, which is
a practically engendered methodology based on intuitively appealing design
rules that has met with considerable industrial acceptance. We use this pro-
cedure as the vehicle for our investigations and to make concrete our specific
commentary concerning adaptive control algorithms.

The theoretical machinery of our approach combines the following tools:

• stability of optimal control laws in their various guises: finite horizon,
receding horizon, infinite horizon;

• stability margins of optimal control laws — design for robustness;

• frequency domain characterization of parameter estimation in closed
loop;

• integral manifold methods for the analysis of slow adaptation, linking
adaptation dynamics to closed loop performance.

Our ambition is to arrive at the specification of an adaptive control pro-
cedure with guaranteed closed loop stability margins with respect to both
plant undermodeling and to initial condition effects, and possessing a very
small number of design parameters linked to closed loop performance in an
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intuitively comprehensible way. The results arising from this analysis are
an explicit rationalization of the adaptive optimal control approach. This
incorporates specific guidelines pertaining to the above techniques with the
goal of assuring closed loop stability margins for the adaptively controlled
system. These results thus make full contact between adaptive control de-
sign and recent robust nonadaptive control design. The perversity of our
methods is that the resultant adaptive control scheme preserves many of the
hallmarks and simplicities of GPC, albeit at the specific exclusion of other
features.

The development proceeds in the following order. The GPC control law
schema is presented in Chapter 2 together with some of its embellishments.
Linear Quadratic Gaussian (LQG) control design methods are the subject
of Chapter 3, with the incorporation of GPC as a special case. Closed loop
stability and performance issues of LQG (and thus of GPC) are treated
in Chapter 4. Chapter 5 completes our analysis of nonadaptive control
properties with the presentation of robustness results for linear systems,
made specific for LQG control via Loop Transfer Recovery (LTR) techniques.
Chapter 6 has a dual motive: to examine closed loop parameter estimation
with undermodeling, and to study how on-line adaptation affects the closed
loop behavior. On the basis of these results the interplay between parameter
estimation and control law selection is utilized to derive a coherent adaptive
optimal control design in Chapter 7. This is our Candidate Robust Adaptive
Predictive Controller. Chapter 8 explores the extension of these results into
the fuller arena of Adaptive Control with choices of control law possibly being
different from LQG, choices of the identification criterion being different from
one-step-ahead prediction, treatment of tracking of slow plant variations, and
a critique of Adaptive Control versus Robust Nonadaptive Control. This
last chapter draws out from our specific study of Adaptive LQG Control to
present in much fuller generality (but of course less detail) the extension of
the theory into a broader context.

1.2 A Jaundiced View of Adaptive Control

History

The motivation for writing this book stemmed from several impolite but (we
think) astute observations of the authors. These were concerned with the
nature of adaptive control theory and practice and centered around the real-
ization that, with few exceptions, adaptive control theoreticians and practi-
tioners were looking at adaptive control from angles so wide apart that they
were seemingly not addressing the same issues.



4 Scene, Props, Players

Historically, the applied adaptive control utilizers have focused upon the
specification of a control law suitable for adaptive applications. That is, the
emphasis has been upon the statement of a control law design procedure,
starting from the prescription of a linear model, which would yield a com-
putationally manageable method capable of delivering specified closed loop
performance. Thus these researchers operated within the rules of finding a
super control law able to overcome the vagaries of any identification method.
The discussion then centered upon issues such as the relative merits of pole
placement versus predictive control strategies, and, within this latter family
of controllers, the development of ever more sophisticated control criteria
designed with a view to coping with wider and wider classes of plants and
perturbations. The rôle of the identifier in this approach is merely to provide
the plant parameter estimates and its specific design is not treated openly
as a major issue.

Contrariwise, the theoretical advances in adaptive control have recently
centered upon the use of normalization, relative deadzones, leakage and other
devices in the identifier to achieve the best possible parameter estimate prop-
erties, essentially independently from the particular control law chosen for
the nominal closed loop. By cajoling and forcing the parameter estimates to
conform to certain growth conditions whatever the control law, the global
boundedness of system signals is asserted. Thus, these individuals concen-
trated upon the development of a super identifier able to leap over any
controller in a single bound.

Our view is heretical in both camps. We roughly ignore computational
issues to a large extent, since these problems tend to disappear with tech-
nological advances, and we do not concern ourselves too much with global
parameter convergence properties and vague statements of performance such
as ultimate boundedness. Rather, we home in upon the development of a
joint criterion for the peformance of the identifier stage and the control
design stage of adaptive control. Our results are local in nature but are
synthetic and synergistic because they suggest how available design choices
ought to be made to reflect either a priori knowledge or ultimate closed loop
objectives. We believe that our new contribution lies precisely in the devel-
opment of a combined adaptive identification and control strategy in which
the design of the identifier and its filters fully utilizes the controller proper-
ties to allow slackness in the model in the frequency ranges where this does
not deteriorate the closed loop stability margins too much, and conversely to
design the controller in a way that takes into account the frequency ranges
in which the identified model has greatest validity. In doing so we hope to
provide the missing link in adaptive control.
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1.3 Further Perspectives

1.3.1 Robustness

Much of the terminology of modern control systems theory uses the notion
of robustness and, as we too shall be appealing to this concept, it is as well
to make some remarks about robustness at this early stage so that later
statements not be deemed too vague.

A property is robust if, should the property hold at one point, it holds
in an open neighborhood of that point [Lau79a]. A similar notion for dy-
namical systems is structural stability, where small changes in the system do
not produce large changes in the solutions [GH83]. Thus ideas of robustness
require the specification of a topology (or, better still, a metric) in order to
define properly what is meant by a neighborhood of a system or of a sig-
nal. The property of greatest significance in the study of adaptive control
systems for which robustness is desired is the explicit boundedness of closed
loop signals. The small changes in the dynamical systems should refer to
variations in the plant system to be controlled, so that robustness of the en-
tire adaptive control system implies the preservation of adequate closed loop
performance in spite of the target plant being only roughly approximated
by the parametrized model set.

For stable linear systems the metric above may be given by the L∞ norm
or maximum value of the frequency response. (For unstable systems a de-
rived L∞ metric, the graph metric, is used.) Thus robustness is typically
measured by the degree of tolerance to the distortion of the frequency re-
sponse of the systems involved. By dint of linearity, the initial conditions do
not play a part in robustness here.

Adaptive Control systems are nonlinear by nature (since the feedback
control gain is a function of system output and yet multiplies this output)
and so linear notions of robustness of closed loop stability will be inappropri-
ate or, at best, incomplete. Initial conditions need to be taken into account
and robustness defined in terms of the function norm, typically an Lp norm,
of the deviations between different solutions over the entire time interval.
Robustness here refers to the notion that small changes in initial conditions
and/or structural properties of the system elements preserve solution prop-
erties such as signal bounds and yield only small variation in closed loop
performance including adaptive transients. If the adaptive controller is left
fixed then these small structural variations may still be measured in terms
of frequency response deviations of the linear plant system.



6 Scene, Props, Players

1.3.2 Recent Trends

As keen students of the history and development of adaptive control theory
and practice, we have observed several recent trends which indicate that the
theoretical development of a general adaptive control method based upon
LQG and RLS might not be so stultifying an idea as we seem to suggest
earlier.

• Adaptive control practitioners have proposed a series of control de-
sign procedures, well exemplified by the Generalized Predictive Con-
trol (GPC) method of Clarke et al. [CMT87], which have demonstrated
that a wide range of difficult process control applications problems are
amenable to regulation by an adaptive controller possessing a specifi-
cally structured optimal control law with only a handful of adjustable
design variables, coupled with an RLS identifier.

• Linear (nonadaptive) control design methods have adopted the goal
of robustness, i.e. the ability to perform adequately in spite of the
plant being only nominally modeled by its parametrized description.
The robustness measures are usually given in frequency domain terms,
intersecting with classical notions of gain margins, phase margins and
other quantifiers.

• These linear robustness studies have also addressed issues of the ro-
bustness of LQG control and of the re-posing of gnostic H∞ control
problems as more standard LQG problems.

• This robustness crusade has also been taken up by the adaptive control
community, albeit with differing ground rules, to develop techniques
of parameter adaptation which behave well in the face of a variety of
system operating condition changes, including on-line feedback control
law modification.

• Recent developments in parameter identification theories have also
yielded frequency domain modeling formulations which indicate a po-
tential interplay with the linear control robustness ideas.

Indeed, it is our major aim in this work to explore fully the mechanism
for the joint application of RLS and LQG techniques to compose adaptive
controllers which demonstrate a synergism in their robustness. That is,
the robustness of the combination is greater than that achievable by their
separate application, because the RLS procedure without cleverly chosen
LQG feedback control identifies a model which is inappropriate for feedback
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control purposes and, equally, the LQG controller without a well fitting
model is unable to achieve adequate performance.

The tools for carrying through this synthesis of adaptive controllers will
be to exploit the frequency domain theory of robustness of linear controllers,
specifically the theory of LQG Loop Transfer Recovery, simultaneously with
the frequency domain theory of linear transfer function identification. But
these are the tools of Linear Systems theory, and adaptive control systems are
per se nonlinear. Thus new methods of describing the near linear behavior of
slowly adapting schemes need also to be generated in order that the liberty be
granted to appeal contemporaneously to these schools of thought pertaining
to robust control and system identification.

In order not to overload the benevolent reader and to place the controller
synthesis in its proper technical context, we embark upon our presentation
by developing those aspects of the major disciplines which play a central
part in either the realization or the support of our controller design method.
Thus this book contains chapters dealing with LQG Control, Stability of
Receding Horizon Controllers, Robustness of Linear Systems and Parameter
Identification, in which we endeavor to convey both a working knowledge of
the techniques involved and an understanding of some of the basic principles
shoring up the theory. The confluence of ideas takes place in Chapter 7.

Historically, there have been a number of researchers who have proposed
the implementation of adaptive LQG controllers in various guises, includ-
ing Minimum Variance controllers [ÅW73], Generalized Minimum Variance
controllers [CG79], and full blown LQG. Most notable amongst these latter
are Samson [Sam82], Peterka [Pet84] and Grimble [Gri84]. These people
have recognized the inherent design strengths of LQG in its ability to cope
with non-minimum phase systems, delays, and relatively high order mod-
els, while still preserving comprehensible design variables. Indeed, Peterka
adopted his opening stance as one of implementing LQ control via predictors.
These methods, however, were often considered as numerically unwieldy in
their day. (Our belief is that this is no longer true.) In any event, they were
focused more strongly on the properties of the control law, including its
implied robustness, without examining the effect of the identification stage.
For example, in the early work of Grimble [Gri84] the separate strategies of
implicit LQ adaptive control and explicit adaptive control were delineated.
Explicit LQ adaptive control, which is the approach advocated in this book,
equates with indirect adaptive control where an explicit parametrized plant
model is generated and then an LQG problem solved for the control law.
Implicit adaptive control, which was implicitly held to be preferable, was a
direct approach in which one attempted to generate the LQ adaptive control
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law via a signal based minimization in place of the identifier. As the ma-
terial of the book unfolds, one should be able to interpret the developments
as an endorsement and completion of the work of these researchers and as a
demonstration of how more modern control design techniques might also be
taken logically on board into Adaptive Control, through the joint analysis
of their control and identifier interactions.

Throughout the book, however, we derive indefatigable support for our
machinations from the recent practical development and acceptance of Pre-
dictive Adaptive Control techniques in many process control applications.
As mentioned above, we treat GPC as our datum point in the realm of these
empirical methods and devote considerable efforts to explaining the connec-
tion of such procedures to the broader field of LQG/RLS adaptive control.
Our rationale is that these sometimes heuristic techniques have been vindi-
cated by experience and, moreover, have indicated to us just what are the
salient aspects of functional adaptive control.

Hence, we draw inspiration and unassailable support from these experi-
mentally generated techniques, while at the same time attempting to provide
the theory both to explain their successful behavior and to formalize their
design methodology within the framework of adaptive LQG/RLS control.
Our dichotomy of stance then becomes apparent — GPC is simultaneously
the genesis and the butt of our derivations, the departure point and the way
station, the focal point and the aberration. In fact, it is our excuse.

Our reliance upon the GPC methods for support and enlightenment,
before dispensing with them altogether in favor of more cerebral pursuits, is
the reason for our subtitle.

1.4 A Gedankenexample

To help motivate proceedings and to aid in a priori comprehension of our
goals in this book, we shall now present a simple example which assists the
demonstration of the issues which are the major subjects of our treatise. We
shall consider the identification and control of a simple second order system
using a first order model. While this situation is much simpler than adaptive
control, because we deliberately decouple the identification stage and the
control stage, the potentially deleterious effects of incompatible objectives
of these stages will be demonstrated. Further, in line with gedanken- things,
this Gedankenexample is rather extreme in its conception in order that a
reductio ad absurdum eventuate to illustrate the issues. Later in the book
more realistic examples will also be presented.

Suppose that we are provided with a plant system, P (z), to be controlled,
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Figure 1.1: Frequency response magnitudes for P (z) (—) and P̂ (z) (- - -)

which is described by the following transfer function,

P (z) =
z−1 + 1.2z−2

1 − 1.6z−1 + 0.68z−2
. (1.1)

This is a low-pass, stable, but non-minimum phase system of second order.
Further suppose that, as we do not know the plant description, we attempt
to model it by a first order model,

P̂ (z) =
bz−1

1 + az−1
, (1.2)

where a and b are the adjustable parameters, the selection of which is the
job of the identifier. The control objective is to place the closed loop pole at
the point z = d inside the unit circle. Here we take d = 0.5, which is a rather
severe objective but, for a Gedankenexample at least, not too outrageous for
an already stable low-pass plant such as P .

The discrete frequency response magnitudes of P (z) and a candidate
P̂ (z) are shown in Figure 1.1. The phases are shown in Figure 1.2. The
effect of altering the parameter a through positive values is to affect the
spread of the main lobe of the frequency response. The effect of altering
b is to change the height of the main lobe. The two systems are roughly
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Figure 1.2: Frequency response phases for P (z) (—) and P̂ (z) (- - -)

comparable at low frequencies — a phase problem is introduced at high
frequencies. It is apparent from the shape of the frequency responses at low
frequencies that these two parameters do not permit perfect matching at all
points. A compromise is struck between fits at respective frequency values
by an identifier.

1.4.1 Open Loop Identification

Here we consider the consequences of identification of a first order model,
which is parametrized as P̂ (z) above, to the actual second order plant P (z)
in several different experimental circumstances. Our aim is to demonstrate
the effect of the input signal on this undermodeled fit.

Write the difference equation equivalent to (1.1) with plant input ut and
output yt,

yt+1 = 1.6yt − 0.68yt−1 + ut + 1.2ut−1. (1.3)

If the input sequence {ut} is chosen to be a constant, ū, then, by stability,
the measured plant output sequence {yt} tends exponentially to a constant,

yt = ȳ

= P (1)ū = 27.5ū.
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At the same time we are attempting to fit a model to P (z) and it is clear
that a perfect fit is possible, provided we satisfy

P̂ (1) =
b

1 + a
= P (1) = 27.5. (1.4)

That is, any parameter values a and b on a linear variety

b = 27.5 + 27.5a

would be acceptable as an identified model with this input. This choice
of input sequence is inadequate to resolve both parameters, i.e. it leads
to nonidentifiability of the model. The difficulty is tied to the fact that a
constant input does not excite enough dynamical modes to provide sufficient
information about the system to the identifier. Such an input signal is
referred to as nonpersistently exciting for the model. We shall throughout
this work take measures to ensure that our plant input signals are always
persistently exciting since, otherwise, it is difficult to have confidence in the
plant information content of the measured data.

For a model complexity of n parameters, one typically requires that the
input spectrum contain sufficiently many, at least n in this case, distinct
complex frequencies [SB89] in order that it be persistently exciting. Let
us consider what happens here when {ut} is chosen to consist of a single
frequency sinusoid (i.e. two complex conjugate frequencies), which is a per-
sistently exciting signal for this model,

ut = cos(ωt).

Now we have that, exponentially,

yt = Re
(

P (ejω)
)

cos(ωt) − Im
(

P (ejω)
)

sin(ωt). (1.5)

Similarly, for the model we would have,

ym
t = Re

(

P̂ (ejω)
)

cos(ωt) − Im
(

P̂ (ejω)
)

sin(ωt), (1.6)

and a simple calculation shows that a unique solution for a and b exists for
which yt = ym

t ,

a = −
Re(P (ejω))

Im(P (ejω))
sin(ω) − cos(ω) (1.7)

b = −
Im(P (ejω))

sin(ω)
(1 + a2 + 2a cos(ω)). (1.8)
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Frequency (radians) a b k

0.1 -0.8005 6.1268 -0.0490
0.2 -0.8657 6.3712 -0.0574
0.4 -1.1979 7.6170 -0.0916
0.8 -14.3764 57.0363 -0.2433
1.0 4.1190 -12.3213 -0.3749

Table 1.1: Identified plant parameters and computed gain

Some sample values are given in Table 1.1 where it is clear that, although a
unique identified parameter value exists for any particular input frequency,
the specific value is determined by the value of the frequency. The model
actually fits the true plant system transfer function exactly at that input
frequency. Also shown are the computed controller gains, k, for a closed
loop pole at d = 0.5.

To determine in detail what happens with model fits based on recursive
identification methods with more realistic and complex inputs is really the
province of Chapter 6, but here we consider the effect of identification with
a system input

ut = cos(0.1 t) + 0.1 cos(t). (1.9)

(This input has considerable high frequency content — but this is only a
Gedankenexample.) Now we find that an exact fit of the model to the plant
input–output data is impossible and a compromise must be struck between
a fit at frequency ω = 0.1 and at ω = 1. This compromise is found by
weighting the respective fits at each frequency by the signal energy at that
frequency. The resulting parameters from a Least Squares fit with the input
(1.9) is

a = −0.8330 and b = 5.2663, (1.10)

yielding a control gain k = −0.0632. It should be noted that the model error
is not zero at either frequency nor are the parameters a simple modification
of their values at the individual separate frequencies.

The point to be made at this juncture is that, in situations of under-
modeling, the input signal spectrum determines the identified model based
essentially on fits of the model to the true plant at points of support of the
spectrum of the input. With inputs containing more complex frequencies
than there are free parameters the fit involves the compromised weighted fit
at all available frequencies. This important notion of the identified model de-
pending upon the input spectrum will be the linchpin of our derived adaptive
control approach.
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1.4.2 Control Law Selection

Based upon the identified model, it is natural to construct the feedback
controller to cause the identified model to behave in a desirable fashion.
Here we suppose that this control objective is to place the closed loop pole
(the model is only first order) at the point inside the unit circle, z = d. To
effect this control one selects the feedback law

ut = kyt + rt (1.11)

=
(a+ d)

b
yt + rt, (1.12)

where {rt} is an external reference signal. The value chosen for k reflects both
the identified model parameters and the overall control objective. Recall
that, although designed for the model P̂ (z), this controller will be applied
to the plant P (z).

The achieved closed loop characteristic polynomial for this controller
applied to the real plant P (z) (1.1) is therefore

φcl(z) = z2 − (k + 1.6)z + (0.68 − 1.2 k). (1.13)

The stability of the closed loop is assured, provided

0.0364 > k > −0.2667, (1.14)

that is, if b is positive,

−a+ 0.0364 b > d > −a− 0.2667 b. (1.15)

If we take as a design objective that d should equal, say, 0.5 then we see that
closed loop stability for P (z) requires

−0.5 − 0.2667 b < a < −0.5 + 0.0364 b.

For our identifications with a single sinusoid at frequency less than approx-
imately 0.85 and with the two sinusoids weighted as in (1.9), this condition
is satisfied and so the resultant controller would be stabilizing with the real
plant. We see, however, that the mixing of distinct frequencies in the input
signal can yield significantly different controller values and too high a fre-
quency of the input can even yield unstable control laws for the actual plant.
This will be even more apparent when closed loop identification is broached
shortly.

The points to note from this inequality above are that the identified
model parameters, a and b, and the control objective, encapsulated by d,
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jointly determine the stability and performance of the resultant closed loop,
together with the actual plant of course. Clearly, the stability margins in
(1.15) reflect the importance of the identification experiment and the specific
control design upon the closed loop robustness. This, too, will be a central
theme of our study which shall be made much more precise and formal from
Chapter 5 onwards. But now we examine the effect of the control law upon
the identification in closed loop.

1.4.3 Closed Loop Identification

If such a fixed control law as (1.12) is applied to the plant system then the
spectrum of the input signal to the plant, {ut}, is determined not just by
the external reference but also by the closed loop plant including the control
law. Indeed,

ut = [1 − kP (z)]−1 rt, (1.16)

so that the relative components of the spectrum of {rt} are altered in their
proportions in the construction of {ut}.

We remark on several features:

• if {rt} is identically zero, then subject to closed loop stability in (1.16)
the control signal {ut} will be exponentially zero and the earlier non-
identifiability issues arise. Thus, to achieve persistency of excitation it
is necessary to insist upon an exciting reference signal.

• if {rt} is a constant, r̄, then again, with stability, ut tends exponentially
to a constant and persistence of excitation difficulties occur.

• if {rt} is a single frequency sinusoid, then with stability the plant
input is asymptotically a sinusoid of the same frequency and so unique
identifiability is possible at this frequency value.

• the interesting (and generic) case arises when {rt} has a spectrum with
more than one frequency present. In this case, as described above, the
identification fits a model with a criterion representing a compromise
between those frequencies comprising {ut}. Further, the precise na-
ture of this compromise is dictated by the relative energies of these
frequencies in {ut}.

• the effect of the controller on identification in closed loop now becomes
more apparent. Equation (1.16) shows how the actual plant and the
control law combine to distort the relative energy content of the dif-
ferent frequencies in {rt}. In this way the controller exerts a direct
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influence upon the identified parameters, which in turn determine the
control law and therefore the energy distribution of {ut}. We already
divine the interplay which is the focus of this book.

We return now to the example involving two frequency components in
the input to an open loop Least Squares identification but now, instead of
ut being given by (1.9), we have

rt = cos(0.1 t) + 0.1 cos(t). (1.17)

We consider that the plant now operates in closed loop with the feedback
control gain k = −0.0632, which is that value resulting from the open loop
identification with ut given by (1.9) and which yields a stable closed loop.
The weightings on the respective frequency components in the achieved plant
input then causes

ut = 10.3761 cos(0.1 t+ φ1) + 3.1034 cos(t+ φ2),

where φ1 and φ2 are corresponding phase shifts which are unimportant here.
We note that the ratio of the low input frequency weighting to the high
input frequency weighting has been reduced from 10 in the open loop case
to approximately 3 in this closed loop case. The identified parameters in the
plant with this input are now

a = −0.9722 and b = 1.7528,

which demonstrates a shifting emphasis to the model fit at the higher fre-
quency. More importantly, computation of a new feedback controller based
on these identified parameter values yields a controller gain k = −0.2694
just outside the stability region for the plant. That is, in this quasi-adaptive
situation where we identify with a fixed controller, compute a new controller,
re-identify under this new feedback and so on, we see that the closed loop
stability is quickly lost due to the frequency shift of the model induced by
the control law.

1.4.4 Summary

The Gedankenexample of this section is not yet fully an adaptive controller.
Rather, it is a separate analysis of a closed loop identifier and of a control
design for a system incorporating undermodeling. The purpose of this ex-
ample is to illustrate the interplay between these separate elements and to
foreshadow the likely sources of problems in an adaptive controller, where
closed loop identification is conducted simultaneously with the control de-
sign based on the identified parameter. The major aspects of the example
are summarized as follows:
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• Parameter identification of a plant requires persistently exciting inputs
in order to admit the resolution of best fitting parameter values.

• The specific parameter value selected by an identifier in the case of
undermodeling is determined by the spectral properties of the plant
input signal and the relative energies in different frequency bands.

• The existence of a closed loop controller has the effect of altering
the relative balance between closed loop plant input spectral ener-
gies. Thus, the control law affects the potential convergence points or
neighborhoods of the identifier.

• The identified parameters determine the feedback control law through
the control design schema. These parameters plus the design objective
jointly influence the achieved closed loop performance and stability.

• In adaptive control, there is an interplay amongst the identifier and the
control law schema which possesses the possibility of either supporting
or frustrating the robust stability of the adaptive closed loop.

• The example, itself, demonstrated a quasi-adaptive experiment in which
closed loop identification plus iterated control design led eventually to
instability.

It is the consideration of these larger issues in adaptive control which is our
brief here.

1.5 The Audience

In keeping with our practical/theoretical dichotomy outlined earlier, we iden-
tify two distinct classes of readers for this book and, naturally, propose two
different ways to read this work. These broad readership classifications are:

• Practitioners of adaptive GPC style predictive control who would like
to know of the body of theoretical material linking their algorithms to
mainstream (adaptive and nonadaptive) control design and analysis.
For these readers we hope that the book provides a point of access to,
or bridge between, adaptive control practice and nonadaptive robust
control design.

• Theoreticians interested in appreciating the practically significant ad-
vances in adaptive control design, but from their own standpoint. Our
aim is to provide these readers with an appreciation of the practical
directions of adaptive control.
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For the first class of readers we believe the major interest lies in the
interpretation of GPC methods within the framework of LQG/RLS, and of
the points of contact with linear robustness theory. Their goal could be to
comprehend the features underlying the Candidate Robust Adaptive Pre-
dictive controller proposed in Chapter 7 and to appreciate the design philo-
sophy underpinning the suggestions made. Their interest need not extend
in the first instance to the derivational material nor the technicalities of,
for example, ensuring the adequate behavior of parameter identifiers oper-
ating in indirect adaptive control. Therefore we have sprinkled the chapters
with convincing examples verifying our claims, and with conclusions to our
technically developmental chapters taking the form of executive summaries
providing encapsulation of the major points of these sections. This should
provide access to the design principles relatively quickly and painlessly.

Other readers should, on the other hand, delight in the derivations and
theory presented in each section, even though this aspect of our material will
be restricted to only those features having direct bearing upon the global the-
sis of this work — the synthesis of a theoretically supported adaptive control
law employing the major features of existing practical methods and current
theoretical viewpoints. For these readers, we have included a moderate level
of mathematical strictness, especially inasmuch as this is required for the
rigorous formalization of the transmogrification of the two linear theories,
robustness and identification, to the realm of adaptive control. For them we
have included both proofs and technical arguments. Our recommendation
is, however, that they skip the examples, since these might otherwise confuse
them.

The existence of these two levels of consciousness amongst our potential
readership was confirmed in our meetings with colleagues during conferences
and colloquia. The former class of readers were often concerned with ‘lifting
their game’ theoretically to attempt to comprehend what they had found to
be critical in practice, while the latter class of readers’ worries were typically
with justifying their funding from corporate sponsors and the lending of
weight to their pursuit of excellence. We hope to assist both.

1.6 A Brief Tour

Here we give a short rundown of that material contained in each of the
chapters of the book. The purpose is to identify the contents and also to
aid the different readers to assess just what sections are pertinent to their
pursuits and desires.
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Chapter 2 — Generalized Predictive Control

The GPC method of Clarke et al. is introduced and studied more or less
in its natural habitat of ad hoc adaptive control, where its historical con-
nections are made evident, as are the underlying design features of tracking
controllers, output predictors and disturbance models. An example is pro-
vided and a variant due to Irving is advanced. These formulations are made
to familiarize the gentle reader with the context of such GPC procedures
before launching into more elevated treatments of these ideas.

Chapter 3 — Linear Quadratic Gaussian Optimal Control

Linear Quadratic Gaussian Optimal Control is advanced in a standard de-
sign setting for state-space systems. Firstly the LQ regulator problem is
tackled and notions of LQ horizons are introduced before extension to track-
ing problems is considered within the same framework. The dual problem of
Kalman prediction and filtering is then broached and similarly extended to
include disturbance models. LQ control and Kalman filter design are jointly
incorporated to yield descriptions of LQG feedback controllers. Following
this, the GPC control law is re-examined to reveal its nature as a subset of
finite horizon LQG. This then sets the stage for the full exploitation of this
interpretation of GPC as adaptive LQG optimal control.

Chapter 4 — Stability and Performance Properties of Receding

Horizon LQ Control

With the demonstration of GPC as a receding horizon LQG strategy under
our belts, we progress to the first formal application of LQ stability theory
to GPC in an attempt to derive analytical and design methods to ensure
closed loop stability and performance of the GPC strategy. The recent Fake
Algebraic Riccati Techniques of Poubelle are applied to effect the presenta-
tion of guaranteed stable well performing controllers based on state-variable
methods. Some comparative points are made between the standard GPC
solution and what might be achievable by more erudite procedures, which
need only be slightly more numerically demanding. We begin to discern the
thematic focus of the book.

Chapter 5 — Robust LQG Design – Features for Adaptive Control

Since robustness will be a central property desired of our closed loop system
operating under adaptive LQG and RLS, we present in this chapter the rudi-
ments of linear control system robustness in general and then the specifics of
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LQG robustness enhancement techniques such as Loop Transfer Recovery.
The fundamental robustness theorem indicates how modeling properties and
controller features are traded to secure closed loop robust stability, and the
prospect for an adaptive controller to take advantage of this is hinted at.

Chapter 6 — Recursive Least Squares Identification in Adaptive

Control

To complement the linear system robustness results developed in Chapter 5,
the closed loop behavior of Recursive Least Squares identification is studied
here from a frequency domain modeling viewpoint. There are two main fea-
tures: the inclusion of a feedback control law dependent upon the parameters
causes a change in the effective identification criterion minimized, while the
nonlinearity introduced in adaptive control leads to a fundamental change
in the nature of the dynamics. These issues are resolved via quantifications
on adaptation speed and on the ultimate modeling accuracy and sensitivity.

Chapter 7 — A Candidate Robust Adaptive Predictive Controller

The synthesis of a Candidate Robust Adaptive Predictive controller is made
based upon the preceding robustness and estimation theories, in such a fash-
ion that the combined system possesses a mutually supporting control law
and identification criterion. The rationale is presented for the design ad-
vanced and, perhaps not too surprisingly, it bears many of the hallmarks of
the familiar GPC procedures, except that within this framework the design
choices are more apparent.

Chapter 8 — Le Jugement Dernier

Following the specifics of the candidate controller design via LQG and RLS,
the questions are now raised about how these methods might be more gener-
ally extended. Linear system stability robustness is presented in a standard-
ized fashion for several different classes of model uncertainty and for general
feedback control laws. The earlier LQG-specific results of Chapter 5 are ex-
tended and then conclusions drawn about identifier behavior and feedback
system stability. Following this we develop the connection between closed
loop performance and adaptation, since after ensuring stability this is the ul-
timate objective for adaptive control. We conclude with a short exploration
of further issues. Particulars dealt with include the outlook for adaptive H∞

control and for the use of more esoteric robust control design strategies to
be adopted in the adaptive context. The future consequences of our design
philosophy are briefly speculated on without too much brouhaha.
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Chapter 2

Generalized Predictive
Control

2.1 Introduction

2.1.1 Motivation

Before anybody throws the objection at us, let us make a frank admission:
there is no solid justification for commencing this book with a chapter on
Generalized Predictive Control, or GPC as it is now commonly called, given
that we will later diverge to a considerable degree from this control design
method to wander into the more powerful methods of Adaptive Optimal
Control. If we decide to start with an introduction into predictive control
methods, it is not just to assert the authors’ rights to discuss any subject
they fancy. The facts of industrial applied adaptive control are that GPC
has found a market niche in providing a justifiable, sophisticated yet flexible
and comprehensible adaptive controller design platform, which has met with
acceptance from practitioners and theoreticians alike. We shall use this
feature of GPC to motivate our foray into Adaptive Optimal Control from a
more general viewpoint and with the provision of a theoretical basis for the
selection of design variables. In view of the global messages we would like
to convey in this book, there are three good reasons to start with a chapter
on predictive control.

Firstly, even though GPC will be shown to be a simple (some would
say simplistic) formulation of adaptive optimal control, it exhibits many of
the salient features of the more sophisticated adaptive LQG controller: they
are both derived from quadratic optimal control criteria based on a designed
trade-off between control performance and control energy consumption, lead-

21
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ing to dynamic output feedback controllers with built-in observer designs.
Secondly, the rather parsimonious design criterion of GPC has quickly made
practitioners realize that to achieve the goals it was set to achieve required
ever more sophisticated modifications and add-ons. At the same time it was
discovered that the manipulation of the design parameters, which at first
were thought to have intuitively clear effects on overall performance, proved
to be much harder to understand than was initially expected. This raised
more and more questions about closed loop stability, tracking performance,
robustness to unmodeled dynamics and other dynamical properties. This
makes GPC an excellent starting point and motivational example for our
subsequent analysis of the broader class of LQG controllers. Finally, the ul-
timate result of our robustness analysis of adaptive LQG methods turns out
to vindicate many of the simple design principles behind GPC, while also
suggesting that others should be dropped or modified. Thus, the predictive
control methods, which were initially derived on the basis of intuitive rather
than theoretical ideas with the overall simplicity being of paramount impor-
tance, will be shown in this book to have some remarkable features which
can be theoretically justified on the basis of robust control design theory
coupled with adaptive recursive least squares identification. This probably
explains the practical successes obtained by these adaptive control methods
and the tenacity of their proponents in their pursuit of ever more sophisti-
cated modifications to the initially simple design criterion in order to rescue
the basic schema.

But there is a fourth motivation, that is more connected to the authors’
self-imposed rôle within the adaptive control community than to the require-
ments of a tutorial presentation of the material of this book. As theoreti-
cians in adaptive control who keep close contacts with our more practically
oriented colleagues, we were surprised to discover that predictive control
practitioners were claiming remarkable industrial successes and developing
ever more complicated variations of these predictive control methods with-
out much theoretical support, while most theoreticians were staying on the
fence and were looking at these bizarre developments with a certain degree
of condescension. Our initial desire therefore was to understand and analyse
GPC, without any preconceptions or prejudices, and since we believe that we
have now understood, we think we can provide a useful service by exposing
our understanding and by following in this book the path that led us from
GPC to LQG, from closed loop stability to closed loop robustness, and from
the nonadaptive to the adaptive versions of these methodologies.

Our aim is certainly not to write a comprehensive survey on predictive
control methods and their many variants. It is therefore unlikely that the
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predictive control practitioners will find much in this chapter that they don’t
already know. For the others, we believe that it is a chapter well worth
reading, since it will both enhance their general culture in an arena that
has proved its importance, and it will provide motivation for many of the
questions that will be addressed in the later chapters.

2.1.2 What is Predictive Control?

Predictive methods in adaptive control refer to a collection of control design
formulations that pose control criteria at a given time explicitly in terms
of predictions of future plant outputs and sometimes of future plant inputs.
Because such predictions become more difficult as they become more distant
in time, these criteria are typically finite horizon optimal control criteria.

The history of predictive methods in adaptive control is mixed with
many suggestions for their use in various guises coming independently from
several quarters. Early versions bearing such esoteric names as IDentifica-
tion and COMmand (IDCOM), Dynamic Matrix Control (DMC), Internal
Model Control (IMC), Predictor-based Self Tuning Control, Extended Hori-
zon Adaptive Control (EHAC), Model Algorithmic Control (MAC), MUS-
MAR, EPSAC, etc. were suggested by Richalet et al. [RRTP78], Cutler
and Ramaker [CR80], Garcia and Morari [GM82], Peterka [Pet84], Ydstie
[Yds84], Rouhani and Mehra [RM72], Mosca et al. [MZL89], Greco et al.
[GMMZ84], De Keyser and Van Cauwenberghe [dKvC85], Maurath et al.
[MSM85] and others. All these methods have certain features in common
which distinguish them from previous design philosophies — the solution of
a finite horizon optimization problem at each time instant implemented in a
receding horizon way, the incorporation of plant output predictions, the pro-
vision of a small number of design parameters connected to various degrees
with the closed loop dynamics. We shall not fall into the trap of trying to
decide who did what first, but we refer to Garcia et al. [GPM89] for a com-
prehensive survey of theoretical derivations and practical implementations
and successes of these predictive methods.

The version which appears to have had the most acceptability is that
derived by Clarke, Mohtadi and Tuffs [CMT87] and called GPC for Gener-
alized Predictive Control. The moniker GPC has since been adopted as the
popular collective denomination of the whole class of long range predictive
methods in adaptive control. We shall adopt the GPC method of Clarke
et al. both as our representative of this set of control designs and as our
particular reference datum in developing the explanations and comparisons
of this book. Thus we regard GPC both as a specific algorithm and as a
sobriquet for the class of related procedures. Most of the results which we
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develop within this work do not hinge upon specific features of one particular
algorithm of that class.

The practical success of adaptive predictive control methods is well re-
ported in the literature: see for example Clarke [Cla88], Garcia and Prett
[GP86], Martin et al. [MCA86], Richalet et al. [RRTP78], Seborg et al.
[SSE86] and others. As with many practical adaptive control design proce-
dures, predictive methods focus upon the control law design component of
the adaptive controller almost to the exclusion of mentioning the identifica-
tion component. To quote from one of the producers of the original GPC
algorithm,

The ‘Achilles’ heel’ of its self-tuning version, however, is the iden-
tification algorithm which was originally introduced more as an
afterthought than as an integral part of the design [SMS90].

We shall endeavour to make the connection between controller design and
adaptive identifier design in the development of our theory. We shall thereby
indicate the potential synergism between these components, which might
explain their performance in applications, and we shall further indicate how
this might be improved. First, we spend some more time on the history of
the GPC algorithm as presented by Clarke, Mohtadi and Tuffs since this
will give credence to some of the conclusions that we shall obtain later in
the book.

2.1.3 A Brief Historical Perspective

The antecedent of GPC is the well-known Minimum Variance Controller,
described in a nonadaptive version by Åström [Åst70] and which formed
the basis of the famous Self-Tuning Regulator of Åström and Wittenmark
[ÅW73], a variant of which was also analysed by Goodwin, Ramadge and
Caines [GRC80]. This controller is obtained by minimizing, for a given linear
input–output model, the following criterion,

J(u, t) = E
{

(yt+1 − rt+1)
2
}

, (2.1)

where yt is the output of the system, rt is a reference signal and E(.) denotes
expectation. This criterion is minimized at time t by the selection of the
control signal, ut. At time t + 1 a new problem is solved for ut+1. The
criterion (2.1) is based on the implicit assumption that the plant model
has a unit delay; it would indeed be senseless to attempt to minimize the
tracking error at time t + 1 if the control ut affects the plant output only
at time t + d, say, with d > 1. If the plant has a delay d, the error in
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(2.1) is replaced by yt+d − rt+d. Since handling plants with delays causes
no additional conceptual complication (provided this delay is known), and
does not alter the qualitative consequences of the analysis, we shall in future
consider only the case of plants with a unit delay.

As is well known, this control strategy works only for minimum phase sys-
tems (i.e. systems with stable plant zeros). For non-minimum phase plants
this control law suffers from demanding excessive control input in order to
effect the optimal output variance, i.e. the controller achieves its perfor-
mance through the cancellation of the plant zeros (including the unstable
zeros) which leads to a loss of internal stability of the feedback system. One
way which has been suggested to make the same strategy also work for non-
minimum phase systems is to modify slightly the criterion (2.1) through the
inclusion of a penalty on the control signal as well as on the output. This
yields the new criterion,

J(u, t) = E
{

(yt+1 − rt+1)
2 + λu2

t

}

, (2.2)

which has been called Generalized Minimum Variance control (GMV) [CG79]
and which implements a one-step-ahead optimal control law. While this
strategy has the potential to produce an internally stabilizing control law,
this still is not guaranteed for specific choices of λ. Indeed, even if the plant
is known perfectly well, the stability analysis of this controller requires resort
to root locus techniques.

Another frequent modification made to this GMV control law is the
statement of the optimization problem, not in terms of ut, but in terms
of ∆ut, where ∆ut is the incremental control input of the system,

∆ut = ut − ut−1

J(u, t) = E
{

(yt+1 − rt+1)
2 + λ(∆ut)

2
}

. (2.3)

At time t, this criterion is then minimized with respect to ∆ut. The reason
for using incremental inputs in the criterion is that (2.2) does not admit zero
static error in the case of a non-zero constant reference unless the open loop
plant contains an integrator, which would allow yt to remain at a non-zero
constant value with the control input being zero. For the standard GMV
problem one always penalizes non-zero ut even in the case of tracking a non-
zero reference. One feature of using ∆ut in the control law specification is
that explicit bounds on ut may be difficult to obtain. We note finally that
this new control strategy appears really as a variant of the MV controller.
Thus the idea is generally to keep λ as small as possible in order to remain as
close as possible to the objective of maintaining the output variance minimal,
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while still maintaining closed loop stability. The positive weighting λ is
included simply to prevent control signal explosion.

Since this controller again fails for some unstable and non-minimum
phase systems, and particularly for systems with poorly known delays, an
additional extension was made by Clarke et al., and led to the GPC which
minimizes the following criterion:

J(u, t) = E{
N2
∑

j=N1

[yt+j − rt+j ]
2 + λ

Nu
∑

j=1

[∆ut+j−1]
2} (2.4)

subject to ∆ut+i = 0, i = Nu, . . . , N2.

This minimization produces ∆ut,∆ut+1, ...,∆ut+Nu−1, but only ∆ut is actu-
ally applied. At time t+1 a new minimization problem is solved. This imple-
mentation is called Receding Horizon Control. For a known time-invariant
system, this yields a time-invariant controller.

The rationale for this modification of the control objective should be
interpreted as an embellishment of the MV and GMV rules to attempt to
persuade the solution to provide both adequate performance and asymptotic
stability for a wider class of potential plants. The optimization is performed
on several (N2 −N1 +1) successive future output values taking into account
several (Nu) future incremental control actions. The presumption is that
this algorithm will work provided the ‘true’ delay is included in the interval
between N1 and N2. Usually N1 is chosen as the delay or a lower bound of
its estimate; it is thus not really used as a design parameter. The inclusion
of several future control values is made in order that longer observation of
the signal will mitigate against its becoming unbounded. The addition of the
constraint on the control increment after a certain time is rationalized on the
grounds of encouraging the controller to achieve its performance quickly, but
justified on the basis of the computational features of the solution. We note,
however, that whatever the reasoning behind this scheme and its relations, it
still represents the statement of a finite horizon (N2) criterion, the solution
of which is implemented and assessed over the infinite horizon, via stability
and tracking variance evaluation.

What is remarkable about the control criterion (2.4) is that it possesses a
significant level of complexity sufficient to make it capable of producing effec-
tive controllers for enormous ranges of candidate plants, while the criterion
itself depends upon the specification of only three main design parameters,
N2, Nu and λ. This is a hallmark of many sophisticated (some would say
‘sophistical’) control design procedures, such as LQG to be discussed later,
where the constructivist phase of the design is transposed from the solution
for the direct parameters of the controller to the issue of specifying those
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free variables of the problem formulation. The particular solution for the
controller from this point then becomes simply computational. The require-
ment for these design variables is that their influence upon the dynamical
properties of the solution should be easily assessed and, further, that guide-
lines exist for their selection to effect certain closed loop properties. This is
only partly true for GPC.

This chronology clearly shows the link between GPC and Minimum Vari-
ance control and explains why in all subsequent uses of this algorithm small
values of λ have generally been advocated. Notice that, so far, little has
been said about the adaptive nature of these algorithms. This is not sur-
prising when considering the Minimum Variance Regulator which has in fact
been introduced in a nonadaptive context [Åst70], but is a little more pecu-
liar for the subsequent two algorithms which have originally been presented
specifically as adaptive control algorithms. However, as already noted, in
the presentations of GMV [CG79] and GPC [CMT87] the adaptive nature
actually does not play any major rôle, with the certainty equivalence princi-
ple being invoked after a nonadaptive presentation of the control algorithm.
For ease of presentation, we shall also describe the GPC algorithm as a
nonadaptive control method at first, but we stress the fact that it is the
adaptive nature of the complete algorithm, i.e. the interplay between a re-
cursive prediction error identification method and the control design based
on the minimization of the predictive criterion, which actually gives credit to
the GPC method and for which the method has rightly received its bouquets
for practical control applications.

2.2 The GPC Method of Clarke et al.

The GPC method is a control procedure which is applicable to both single-
input/single-output and multi-input/multi-output processes. Indeed, essen-
tially all of the theory treated within this book will be applicable to multi-
input/multi-output processes. It is merely for the sake of presentational sim-
plicity that we deal with single-input/single-output systems. We begin by
supposing that a model of the linear (or linearized) plant is given in the fol-
lowing ARIMAX (Auto-Regressive Integrated Moving-Average eXogenous
input) form:

A(q−1)yt = B(q−1)ut−1 +
C(q−1)

∆
ξt, (2.5)

where, as usual, ut, yt and ξt are the plant input signal, output signal and
disturbance process, respectively, at time t, and A, B and C are polynomials
in the unit delay operator, q−1, with A and C monic.
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The rôle of the ∆ operator (∆ = 1 − q−1) is to ensure integral action
in the controller in order to cancel the effect of step output disturbances.
The disturbance signal ξt may be either a deterministic or a stochastic signal
but, because of the ∆ operator, its mean value is assumed to be zero. In the
development of the GPC approach, ξt is assumed stochastic; the polynomial
C(q−1) can then always be taken as a stable polynomial, since only the spec-
tral properties of the signal (C(q−1)/∆)ξt influence the predictions of future
values of yt. Thus the nature of the plant description (2.5) is to model the
output as being corrupted by the effects of an additive random walk process.
While this may not be a realistic model, its effect upon the controllers derived
from it will be to force the ability to reject step output disturbances. This is
entirely a reflection of the known nature of load perturbations arising in the
process control industry where these control laws have found such successful
application. Thus the GPC incorporates this noise model directly into its
formulation in order to tailor its response for particular circumstances. This
is a manifestation of the Internal Model Principle.

The system described by equation (2.5) can be equivalently represented
by the following equation:

A(q−1)∆yt = B(q−1)∆ut−1 + C(q−1)ξt. (2.6)

The differencer ∆ and the C polynomial itself then play a rôle in the deriva-
tion of plant output predictors defined below.

With this linear model specified, a partially constrained quadratic opti-
mal control criterion is posed in terms of the incremental inputs and outputs
(and not explicitly the state) of the plant. The cost function to be minimized
is:

J(u, t) = E{
N2
∑

j=N1

[yt+j − rt+j]
2 + λ

Nu
∑

j=1

[∆ut+j−1]
2} (2.7)

subject to ∆ut+j = 0, j = Nu, . . . , N2

where N1 is the minimum costing horizon, N2 is the maximum costing hori-
zon, and Nu is the control costing horizon. The signal rt is the reference
signal which we desire the system output to track. The positive constant
λ weights the relative importance of control and tracking error energies.
The use of the expectation in (2.7) is made to indicate that the control
values chosen are calculated conditioned on data available up to and in-
cluding time t and presuming the stochastic disturbance model. Thus the
control design component of GPC involves the solution of a standard fi-
nite horizon optimal control problem. We shall return in Chapter 3 to dis-
cuss further the connections between the GPC problem formulation and this
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more familiar optimal control problem. As such, the GPC control strat-
egy is an open loop control policy, since Nu future control increments are
computed explicitly through the minimization of (2.7). However, at time t,
one solves this optimization problem with criterion J(u, t) for the control
strategy {∆ut+j , j = 0, . . . , Nu − 1} but one applies only the first element,
ut = ut−1 + ∆ut. A new problem is solved at time t + 1, with criterion
J(u, t + 1) and solution {∆ut+1+j , j = 0, . . . , Nu − 1}, and only ut+1 is ap-
plied. In a nonadaptive implementation with a time-invariant model, this
leads to a time-invariant controller, as already noted. This re-solution of
the optimization problem at each instant indicates how this seemingly open
loop strategy is in fact implemented in closed loop. The incorporation of all
preceding plant input and output information into the generation of the pre-
dictions necessary for the solution of these optimizations is the mechanism
for closing the loop. This will be amply demonstrated shortly by calculation
and by example.

2.3 Optimal Prediction and GPC Solution

To solve the problem posed by the minimization of (2.7), we have to com-
pute a set of j-step ahead predictions of the output yt+j, for j = N1, . . . , N2,
based on information known at time t and on the future values of the control
increments, which we will later choose so that the GPC criterion J is opti-
mized. These predictions involve the use of Diophantine 1 equations arising
from the plant ARIMAX model as is standard in the theory of prediction
of such stochastic processes, see [ÅW84] and [GS84]. Specifically, to com-
pute the j-step ahead output prediction one solves the following Diophantine
equation,

C(q−1) = Ej(q
−1)A(q−1)∆ + q−jFj(q

−1), (2.8)

where each of the variables is polynomial in q−1 and deg(Ej) = j− 1. Using
(2.6) and dropping the explicit arguments in q−1, we then obtain

yt+j =
B

A
ut+j−1 + Ejξt+j +

Fj

A∆
ξt.

1Recent nationalistic historical investigations have led to discussions of the priority of
certain mathematicians in the study of these equations over integral domains. Vidyasagar
[Vid85] has attributed them to Aryabhatta rather than to Diophantus. We have applied
different investigative methods, more attuned to our view of history, and conducted a poll.
We would like to reveal here that, by popular acclaim, these equations were first written
down by a Mr Eddy Van Compernolle of Linkebeek, Belgium, in 1973.
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If we replace ξt using (2.6), this yields

yt+j =
Fj

C
yt +

EjB

C
∆ut+j−1 + Ejξt+j,

where the last term contains information which is independent from signals
measurable at time t. It is then obvious that the minimum variance pre-
diction of yt+j given data known at time t is obtained by replacing the last
term by zero, yielding

ŷt+j =
Fj

C
yt +

EjB

C
∆ut+j−1. (2.9)

In this expression ŷt+j is a function of known signal values at time t and
also of future control inputs which have yet to be computed. We then use a
second Diophantine equation to distinguish between past and future control
values,

Ej(q
−1)B(q−1) = Gj(q

−1)C(q−1) + q−jΓj(q
−1), (2.10)

which yields the following expression for the prediction,

ŷt+j = Gj∆ut+j−1 + Γju
f
t−1 + Fjy

f
t , (2.11)

with uf
t and yf

t being filtered versions of ∆ut and yt,

uf
t = C−1(q−1)∆ut, (2.12)

yf
t = C−1(q−1)yt. (2.13)

Equivalently,
ŷt+j = Gj(q

−1)∆ut+j−1 + ŷt+j|t (2.14)

where ŷt+j|t is the free response prediction of yt+j assuming that future
control increments after time t− 1 will be zero,

ŷt+j|t = Γj(q
−1)uf

t−1 + Fj(q
−1)yf

t . (2.15)

The first set of Diophantine equations (2.8) are classical to define optimal
predictions [Åst70]. It can be shown that the C polynomial arising in (2.9)
determines the dynamics of the observer equivalent to that obtained by a
steady-state Kalman filter. The idea behind this remark is that instead of
taking the C polynomial as the one delivered by some identification proce-
dure of a real process, it can also be chosen by the user as specifying the
observer dynamics.
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One may interpret (2.8) and (2.10) as implementing polynomial division,
with j determining the degree of the quotient required. Thus one has for
(2.8),

C(A∆)−1 = Ej + q−jFj(A∆)−1,

and hence, substituting for Ej in (2.10),

CB(A∆)−1 = BEj + q−jBFj(A∆)−1

= GjC + q−jΓj + q−jBFj(A∆)−1

B(A∆)−1 = Gj + q−jΓjC
−1 + q−jBFj(A∆C)−1. (2.16)

Note that these multiple Diophantine equations may all be solved recursively,
i.e. using simple order update expressions, which results in considerable com-
putational savings over their individual and several calculation [FDR88]. It
can also be seen from (2.16) that the polynomial Gj contains the first j
Markov parameters gi of the plant model transfer function B/A∆.

Define the vector f , composed of the ‘free response’ predictions,

f = [ŷt+1|t, ŷt+2|t, . . . , ŷt+N2|t]
T , (2.17)

i.e. the predictions of ŷt+k, k = 1, . . . , N2, given {us−1, ys; s ≤ t} assuming
that {ut+k = 0, k = 0, . . . , N2 − 1}. Next define the vector of future control
increments ũ (recall that we have set ∆ut+j = 0 for j ≥ Nu),

ũ = [∆ut,∆ut+1, . . . ,∆ut+Nu−1]
T , (2.18)

and define the vector of predicted controlled plant outputs,

ŷ = [ŷt+1, ŷt+2, . . . , ŷt+N2
]T . (2.19)

From the prediction equations (2.14) the predicted input–output relationship
of the plant can be written as the vector equation,

ŷ = Gũ + f , (2.20)

where the matrix G is composed of the impulse response parameters, gi, of
the plant model B/A∆,

G =





















g0 0 . . . 0
g1 g0 . . . 0
...

...
. . .

...
gNu−1 gNu−2 . . . g0

...
...

...
gN2−1 gN2−2 . . . gN2−Nu





















. (2.21)
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(The dimensions of G are N2 × Nu, since we have taken into account the
constraints on ∆ut+j for j ≥ Nu and have taken N1 equal to one for sim-
plicity in (2.21). The effect of altering N1 is to delete rows from the top of
G. Also, we have denoted the first delayed impulse response parameter g0
since, by assumption, the plant has unit delay.) The quadratic minimization
of (2.7) now becomes a direct problem of linear algebra, with

J = (ŷ − r)T (ŷ − r) + λũT ũ (2.22)

and the solution of the future incremental control vector ũ is

ũ = (GT G + λI)−1GT (r − f), (2.23)

where r has been obviously defined from the reference signal as

r = [rt+1, rt+2, . . . , rt+N2
]T . (2.24)

Equation (2.23) yields the future control increments for times t to t+Nu−1
as an open loop strategy based upon information available at time t. The
mechanism utilized for closing the loop and forcing a feedback control in GPC
is to implement only the first element of ũ, i.e. ∆ut, and then to recompute
the solution to the optimal control problem again for the next step using data
available at time t+ 1 in the specification of f . This procedure is known as
Receding Horizon Control and is, by now, a classical method [Tho75]. With
regard to (2.23), the effect of implementing a receding horizon control law is
that the control gain calculated in (2.23) remains fixed and only the vectors
f and r are updated from time instant to time instant.

The combined closed loop control strategy of GPC is embodied in the
design stage, incorporating the calculation of the gain matrices and filters,
together with the implementation involving signal construction of f from
(2.15)–(2.17) and control computation, ũ, via (2.23), with only ∆ut actually
implemented. We next devote a short section to the presentation of a simple
example which should help to clarify the picture.

2.4 A Simple GPC Example

We consider here the GPC control of a plant with ARIMAX description,

yt = 1.7yt−1 − 0.7yt−2 + 0.9∆ut−1 − 0.6∆ut−2 + ξt, (2.25)

with ξt a zero mean white noise signal. With the notation of (2.5), this
corresponds with

A(q−1) = 1 − 0.7q−1

B(q−1) = 0.9 − 0.6q−1
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Note that we have taken the C polynomial unity in this plant model, and that
the differentiator ∆ has been incorporated into the A polynomial. Further,
we consider prediction and control horizon parameters to be N1 = 1, N2 = 3
and Nu = 3, and take the control weighting constant λ = 0.1.

Predicted plant outputs up to a range of three are therefore needed.
These may be derived by back substitution into the plant model (2.25), with
ξ̂t+i = 0, i ≥ 1, as follows:

ŷt+1 = 1.7yt − 0.7yt−1 + 0.9∆ut − 0.6∆ut−1

ŷt+2 = 1.7ŷt+1 − 0.7yt + 0.9∆ut+1 − 0.6∆ut

= 2.19yt − 1.19yt−1 + 0.9∆ut+1 + 0.93∆ut − 1.02∆ut−1

ŷt+3 = 1.7ŷt+2 − 0.7ŷt+1 + 0.9∆ut+2 − 0.6∆ut+1

= 2.533yt − 1.533yt−1 + 0.9∆ut+2 + 0.93∆ut+1 + 0.951∆ut

−1.314∆ut−1,

or by the computation of the predictor polynomials à la [CMT87],

1 = E1(q
−1)A(q−1)∆ + q−1F1(q

−1)

1 = 1(1 − 1.7q−1 + 0.7q−2) + q−1(1.7 − 0.7q−1)

and similarly, following the schema (2.8) and (2.10),

1 = (1 + 1.7q−1)(1 − 1.7q−1 + 0.7q−2) + q−2(2.19 − 1.19q−1)

1 = (1 + 1.7q−1 + 2.19q−2)(1 − 1.7q−1 + 0.7q−2)

+q−3(2.533 − 1.533q−1),

E1B = 0.9 − 0.6q−1

E2B = 0.9 + 0.93q−1 − 1.02q−2

E3B = 0.9 + 0.93q−1 + 0.951q−2 − 1.314q−3.

This yields finally the form of (2.20),





ŷt+1

ŷt+2

ŷt+3



 =





0.9 0 0
0.93 0.9 0
0.951 0.93 0.9









∆ut

∆ut+1

∆ut+2





+





1.7yt − 0.7yt−1 − 0.6∆ut−1

2.19yt − 1.19yt−1 − 1.02∆ut−1

2.533yt − 1.533yt−1 − 1.314∆ut−1



 ,
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where the matrices G, ũ and f are explicitly identified. The gain matrix
may now be calculated,

(GTG+ λI3)
−1GT =





0.8947 0.0929 0.0095
−0.8316 0.8091 0.0929
−0.0766 −0.8316 0.8947



 .

Further carrying through the calculation of the first row above with the
coefficients of yt, yt−1 and ∆ut−1 in the vector f given earlier yields the
receding horizon closed loop control law,

∆ut = −0.644∆ut−1 + 1.7483yt − 0.7513yt−1

+0.8947rt+1 + 0.0929rt+2 + 0.0095rt+3 . (2.26)

This is a time-invariant controller, since the model is time-invariant.
With the specification of the closed loop control via (2.26), we divine the
connection between the GPC formulation and more normal linear controller
designs. In particular we see, with this specific plant and controller spec-
ification, that the controller achieved is a second order dynamical system
acting on the plant output and on the reference rt. We shall return to study
this example from an optimal control viewpoint in the following chapter and
we now further motivate the reason for this book by developing some closed
loop formulae for this Generalized Predictive Control strategy.

2.5 Closed Loop Formulae

We will now derive some closed loop formulae for the Generalized Predictive
Controller in the nonadaptive case in order to show how the design parame-
ters N1, N2, Nu and λ might affect the stability of the controlled plant. We
first define αi, i = 1, . . . , N2, as the coefficients of the first row of the matrix
in (2.23),

(α1 . . . αN2
) = ( 1 0 . . . 0 ) (GTG + λI)−1GT . (2.27)

It is then easy to see that the first component of the vector equation (2.23)
can be rewritten as

∆ut = −
N2
∑

i=1

αi
Γi

C
∆ut−1 −

N2
∑

i=1

αi
Fi

C
yt +

N2
∑

i=1

αirt+i. (2.28)

This then leads to the controller equation

(C +
N2
∑

i=1

αiΓiq
−1)∆ut = (C

N2
∑

i=1

αiq
−N2+i)rt+N2

− (
N2
∑

i=1

αiFi)yt, (2.29)
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or, with obvious definitions for the polynomials R, T1 and S,

R∆ut = CT1rt+N2
− Syt. (2.30)

This shows that GPC is a way of synthesizing linear feedback controllers by
means of an optimization criterion instead of, say, a pole placement design.
Of course, every linear controller, whatever the synthesis technique, will have
a structure like (2.30).

Next consider the closed loop which is obtained by combining the plant
model (2.6) with the controller equation (2.30). This immediately gives the
following closed loop,

(A∆R+BSq−1)yt = BCT1rt+N2−1 + CRξt. (2.31)

Using the definitions of R, S, and T1 and after some calculations, one can
show that:

A∆R+BSq−1 = A∆C +
N2
∑

i=1

αi(A∆Γi +BFi)q
−1

= C(A∆ +
N2
∑

i=1

αi(B −A∆Gi)q
i−1)

= CAc. (2.32)

Hence, equation (2.31) becomes:

yt =
BT1

Ac
rt+N2−1 +

R

Ac
ξt (2.33)

where we see that the C polynomial cancels in the closed loop transfer func-
tions (as is usually the case with observer dynamics) and that the stability
and performance of the closed loop system are governed by the roots of the
Ac polynomial. How the roots of this polynomial are affected by different
choices of the design parameters N1, N2, Nu and λ is hard to tell from the
definition of Ac. The case of Nu = 1 has been studied in [WGZ87], giving
rise to a root-locus analysis. In practice, approaches have been made to op-
timize on-line the value of the design parameter λ in order to get reasonable
values for the roots of Ac but this is not always possible. Notice also that
Ac(1) =

∑N2

i=1 αiB(1) and (BT1)(1) =
∑N2

i=1 αiB(1) so that the static gain of
the closed loop transfer function from reference to output is always 1.

Coming back to the rôle of the C polynomial as an observer polynomial,
we point out that if a simpler model is chosen for the plant, with C = 1,
and if an observer polynomial T0, chosen by the user, is used instead of
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C in the Diophantine (Aryabhatta/Van Compernolle) equations (2.8) and
(2.10), these observer dynamics will also disappear in the closed loop transfer
function from rt to yt but not in the noise to output transfer function. A
much more thorough discussion of the rôle of the observer polynomial T0 and
its use as a design choice can be found in [Moh88]. In the last section of this
chapter, we shall show how some modifications of this GPC control strategy
can result in prescribed closed loop dynamics between reference and output.
The comfort to be drawn from this section and the preceding example is
that the GPC control law produces (in the nonadaptive case) linear time-
invariant controllers indistinguishable from those perhaps designed by other
methods.

2.6 GPC Based on a ‘Performance Model’

A variant of the GPC algorithm has been proposed by Irving, Falinower and
Fonte and later studied by several authors [IFF86], [GWZ87], [MSD87]. It
has been coined by its authors ‘GPC based on a performance model’, but
we claim no responsibility for the relevance of that name. We shall see, in
fact, that it implements a pole placement design objective rather than a
performance optimization objective. The reasons for presenting it here are
manifold.

• It is representative, or symptomatic, of the variations made to control
design formulations within the GPC framework under the banner of
performance enhancement and/or stability promises. It is included for
the sake both of contemporaneity and of completeness, but absolutely
no imposition is made upon the reader necessarily to absorb fully this
material, since it can be subsumed by our later adaptive LQG analysis.

• It implements a pole placement technique, namely a procedure with
precise and separate specification of the closed loop tracking and reg-
ulation dynamics.

• It possesses the (potential at best, apocryphal at worst) robustness
associated with predictive control or linear quadratic control strategies.

• It appears to have had some success in practice, and to have admit-
ted assertedly stable designs via a deadbeat strategy, but without the
apparent inherent problems. These claims are supported by empirical
and/or anecdotal evidence, and so deserve our attention.

• It is not supported by an existent robustness theory, although that
presented in this book may help to justify it.
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• It provides a motivational example where the theory needs to come
forward to embrace practically engendered methodology.

• Its formulation in terms of reference models and noise models, applied
on top of (effectively) singular control techniques, demonstrates close
similarities to the available methods for the pursuit of LQG control
strategies that will be further pursued in this book.

To make the variation of GPC more precise, the on-line solution of the
Van Compernolle equation

AR+ q−1BS = Am,

which appears in pole placement methods, often leads to numerical problems
due to near common factors in the A and B polynomials. These may happen
in the transient phase of the identification algorithm or may be produced by
overparametrization. Hence, this equation should be avoided in an adaptive
context, and is replaced in the following method by a ‘performance model’.

The stability of GPC controllers is hard to ensure, unless deadbeat con-
trol settings are chosen for the design parameters of the criterion (2.7). How-
ever, deadbeat control often leads to wild control inputs unless, as is the
case here, this deadbeat control strategy is applied on a filtered performance
model instead of the process model itself.

We start from the process model (2.6) and define directly a tracking
reference model for rt by the following equation,

rt =
BT

Am
nt, (2.34)

where nt is the input of the reference model, and where Am is a monic
polynomial chosen by the user in order to have desired tracking dynamics:
Am contains the desired closed loop poles. T is a scalar constant which
serves to ensure unit static gain. We again drop the dependency on q−1 for
notational convenience. Note that we have chosen to keep all the process
zeros in the closed loop transfer function. Well damped zeros could of course
be canceled if desired (see [ÅW84]).

We then denote by ur
t the control input that would produce an output

yt identical to the output rt of the reference model if there were no noise.
Since the open loop plant is q−1B/A, ur

t is defined as

ur
t =

AT

Am
nt+1. (2.35)

Note that (2.34) is the desired closed loop reference (nt) to output (yt) trans-
fer function, which is classical in conventional pole placement techniques, but
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that (2.35) is the corresponding closed loop reference to input transfer func-
tion which is usually not explicitly used but which plays a central rôle in
the subsequent development. We now define deviations from the reference
values by

eyt = yt − rt (2.36)

eut = ∆(ut − ur
t ), (2.37)

and filtered versions of these deviations,

eyf
t = Afe

y
t (2.38)

euf
t = Afe

u
t , (2.39)

where Af is a stable monic polynomial which will influence the regulation
closed loop transfer function, as will be shown within a few minutes to the
fast reader.

The classical model reference method, which in our case simplifies to a
pole placement method since the reference model and the plant model have
the same zeros, then amounts to finding the linear controller which sets eyt to
zero (and simultaneously also sets eut to zero), but this involves the solution
of the previously mentioned Van Compernolle equation. Instead of forcing
eyt and eut identically to zero to achieve exact model matching, the way which
will be followed here is to minimize the following criterion,

J(u, t) = E{
N2
∑

j=N1

[eyf
t+j ]

2 + λ
Nu
∑

j=1

[euf
t+j−1]

2} (2.40)

subject to euf
t+j = 0, j = Nu, . . . , N2.

Thus we have transposed a pole positioning aim into a GPC framework.
When using (2.40) one will still apply a receding horizon strategy: Nu future
control actions are defined by the optimization of the criterion but only the
first one is actually applied at time t. In order to minimize (2.40) we need a

model which relates euf
t to eyf

t and which is called the ‘performance model’.
Multiplying both sides of (2.6) by Af , subtracting AfA∆rt from both sides
and taking into account (2.34), (2.35), (2.38), (2.39) yields

A∆eyf
t = Beuf

t−1 +AfCξt. (2.41)

Optimal predictions for eyf
t+j can then be obtained using the following Dio-

phantine equations

Af (q−1)C(q−1) = Ej(q
−1)A(q−1)∆ + q−1Fj(q

−1), (2.42)

Ej(q
−1)B(q−1) = Gj(q

−1)Af (q−1)C(q−1) + q−jΓj(q
−1). (2.43)
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In a way entirely similar to previous derivations, we obtain the following
equation for the prediction

AfCê
yf
t+j = AfCGje

uf
t+j−1 + Γje

uf
t−1 + Fje

yf
t . (2.44)

We then define the following quantities, in complete analogy with (2.15),
(2.17), (2.18) and (2.19)

êyf
t+j|t = Γj(AfC)−1euf

t−1 + Fj(AfC)−1eyf
t (2.45)

f = [êyf
t+1|t, ê

yf
t+2|t, . . . , ê

yf
t+N2|t

]T (2.46)

eu = [euf
t , euf

t+1, . . . , e
uf
t+Nu−1]

T , (2.47)

êy = [êyf
t+1, ê

yf
t+2, . . . , ê

yf
t+N2

]T . (2.48)

The predicted input–output relationship of the performance model can
then be written as the vector equation,

êy = Geu + f ,

where the matrix G is the same as in (2.21). The control criterion becomes

J = êyT

êy + λeuT

eu, (2.49)

and its solution is given by

eu = −(GTG + λI)−1GT f . (2.50)

Since again a receding horizon strategy is sought, only the first value of eu

is applied and, using (2.27), we get

euf
t = −

N2
∑

j=1

αj ê
yf
t+j|t.

Taking into account (??), this leads to

(AfC +
N2
∑

j=1

αjΓjq
−1)euf

t = −
N2
∑

j=1

αjFje
yf
t

(AfC +
N2
∑

j=1

αjΓjq
−1)∆(ut − ur

t ) = −
N2
∑

j=1

αjFj(yt − rt).
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Figure 2.1: Controller structure for the ‘performance model’ GPC

If we define

R = (AfC +
N2
∑

j=1

αjΓjq
−1)

S =
N2
∑

j=1

αjFj ,

we then have a classical linear expression for the controller,

R∆ut = −S(yt − rt) +R∆ur
t . (2.51)

This reveals the structure of the control system as shown in Figure 2.1. The
control input consists of a feedback term, which is based on the error between
the output of the process and that of the reference model, and a feedforward
term which is computed by this reference model.

It is worth computing explicitly the closed loop transfer functions arising
from this control strategy. We combine (2.34), (2.35), (2.6) and (2.51) to
yield

(

AR∆ + q−1BS
)

yt =
(

AR∆ + q−1BS
)

rt +CRξt. (2.52)

Then, if and only if
(

AR∆ + q−1BS
)

has all its roots inside the unit circle,
this is equivalent to

yt = rt +
CR

AR∆ + q−1BS
ξt
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=
BT

Am
nt +

CR

AR∆ + q−1BS
ξt, (2.53)

which means that the closed loop tracking transfer function approaches
asymptotically the desired reference model, independently of the process
parameters and the particular design variables of the criterion, while the
regulation dynamics do depend on these parameters and design variables.
These conclusions of course hold only if the model is capable of describing
the true plant exactly. In such case, the optimal value of the criterion is
just the variance of the noise contribution and is independent of the de-
sign variables λ, Nu and N2. In fact, the idea behind the criterion (2.40)
is not to achieve a compromise between minimization of the tracking error
and minimization of the control energy, but it is to minimize the error of
the pole placement Diophantine equations. Hence, the GPC with a ‘perfor-
mance model’ is not an honest predictive control method, but a devious (and
clever) way of doing pole placement in disguise. It reformulates the solution
of the sometimes poorly conditioned Diophantine equations as a better con-
ditioned quadratic minimization problem, thereby counting on the superior
numerical properties of the latter over the former. In the ideal case of perfect
modeling, the two solutions are identical.

We further note that the GPC minimization (2.40) provides the feedback
component of the design. The tracking property is achieved by the reference
model which provides a feedforward contribution [Wit85]. Further, straight-
forward calculations show that

AR∆ + q−1BS = AfC[A∆ +
N2
∑

j=1

αj(B −A∆Gj)q
j−1]

= AfCAc.

Hence one attempts to choose the design variables of the criterion in order
that the dynamics associated with the roots of Ac become negligible com-
pared to those of Am and Af , i.e. they are relatively fast. Certain choices
of GPC design parameters permit the nominal placement of Ac poles close
to zero, and these could be used here. We shall investigate such settings
further in Section 4.6.4.

We have now shown an example of how the use of reference and noise
models in GPC style formulations is promulgated, and further, how these
methods are manipulated to allow a single design philosophy (GPC) to per-
form different tasks. Once again, we remark that the genesis of these meth-
ods in adaptive control practice is reason enough for their interest, but also
strong motivation for their analysis in a broader framework.
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2.7 Conclusions

Our aim in this chapter has been to present the Generalized Predictive Con-
trol algorithm and one of its recent variants which motivates our investi-
gations into the robustness properties of predictive control algorithms in
general, especially in an adaptive context. The main ideas which we have
illustrated in this chapter are shared by most of the long range input–output
predictive control methods and can be summarized as follows:

• These algorithms have been developed as extensions of and in the
line of Minimum Variance control strategies. Hence, the weighting on
control signals in the criterion, when applicable, is usually chosen small
provided closed loop stability is accomplished.

• A main feature of these control methods is that they can handle many
different control problems, on a wide range of plants, with a manage-
able number of design variables in the criterion. These variables have
to be specified by the user depending upon their prior knowledge of
the plant and control objectives and constraints.

• These control strategies have been used in several industrial applica-
tions and have shown good performance and a certain degree of ro-
bustness with respect to overparametrization or poorly known delays.

• These algorithms are nothing other than finite horizon quadratic opti-
mization strategies which can be (and will be) recast in an LQG control
framework in the next chapter.

• A theoretical analysis in order to assess the influence of the design
variables (prediction and control horizons, weighting factors) on the
stability of the closed loop control system can only be done for very
specific choices of these design variables. The absence of stability,
performance and robustness guarantees is the most serious failing of
the strategy.

Having exposed the reader to these ideas of the establishment adaptive con-
trol practitioner, we shall next indulge in a little sedition to cobble these
applications methods onto mainstream LQG control theory. As a matter
of fact, we shall show in passing that GPC is a particular example of LQG
controller for special choices of weighting matrices.



Chapter 3

Linear Quadratic Gaussian
Optimal Control

3.1 Introduction

Linear Quadratic Gaussian1 (LQG) Optimal Control laws are firmly estab-
lished bastions of state-space-based linear control systems design. They are
well understood, well tried and, some would say, old-fashioned and/or su-
perseded by newer optimal control methods such as H∞. Nevertheless, it is
just these features in their linear application which make LQG controllers of
great practical significance, and their rôle is to underpin our development of
new adaptive predictive controllers, extensible later (Chapter 8) to adaptive
H∞ optimal control. We present their requisite properties here.

In Chapter 2 we have provided some motivational support for the use of
criterion-based controller design methods. GPC is one particularly simple
optimal control design criterion, formulated in an input–output framework,
which has met with popular acclaim. One of the often quoted advantages
claimed for GPC is its particularly simple computational solution which,
unlike state-space formulated optimal control problems, does not require
the solution of a Riccati equation.

Whereas they are undoubtedly simple computationally, the GPC control
formulae do not lend themselves easily to an analysis of the closed loop

1Throughout this book, we shall use the terms Linear Quadratic Gaussian (LQG) to
denote the interconnection of linear state estimation with linear state-estimate feedback.
These feedback/observer combinations need not necessarily have arisen from LQ optimal
control and Kalman filtering. This means, in particular, that the acronym LQG will be
used without necessarily the requirement of a Gaussian noise assumption, or possibly even
without any noise assumption.

43
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stability and performance properties of GPC such as: the computation of
closed loop poles, the amount of unmodeled dynamics that can be tolerated
while still preserving closed loop stability, or the comparison between the
designed performance and the achieved performance when receding horizon
controllers are used.

One way to analyse the stability and performance properties of GPC is
to embed it into the more powerful framework of Linear Quadratic Gaussian
(LQG) optimal control, since GPC can be, and will be, recast as a spe-
cial case of LQG. Therefore this chapter will review the central features of
feedback controller design via Linear Quadratic (LQ) optimal control design
plus Kalman Filter (KF) or Kalman Predictor (KP) state-estimate design.
Chapter 4 will then be devoted to a thorough analysis of the stability and
performance of LQ receding horizon controllers, with a particular, almost
maternal, attention paid to GPC.

However, exposing the reader, you, to a wide range of basic features about
LQ optimal control, Kalman predictors and filters, and LQG design for the
sole purpose of studying the properties of GPC controllers would be like
using a ferry boat to cross the Nile.2 Despite our meritorious rescue efforts,
GPC, at least in its present-day formulation, will have to be jettisoned on the
grounds of the stability analysis of Chapter 4. The central theme of our book
will thereafter turn to the application of the fuller design methods of LQG
controllers and Least Squares (LS) parameter estimation within the context
of adaptive control systems. The present chapter will therefore introduce the
notations, lay down the mathematical foundations, and present the formulae
necessary for the analysis to follow in Chapters 4, 5 and 6. Even though some
readers might like to indulge in the derivation of the various expressions, if
only to check whether the authors are foolproof formulae producers, some
others may prefer only to have a cursory glance at this chapter and to use
it mainly as a reference guide for the later chapters.

There is a wealth of literature available on the subject of Linear Quadratic
Optimal Control and Estimation, see for example [AM71], [AM79], [AM90],
[KS72], [Lew86a], [Lew86b], which explores the derivation of results and
methods, as well as their application to time-varying systems, and their
varied behaviors in the case of special (sometimes pathological) choices of
designer specifications. Our needs here are less ambitious since, in adaptive
control, one normally deals with controller designs based upon time-invariant
models, frozen at each iteration at the present value of the parameter esti-
mate, generally without pathological choices in cost criterion specification.

2As is well known, the Nile (called Nil in French) is a 1.5m wide creek in Belgium that
flows close to the University of Louvain la Neuve, where much of this book was written.
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LQG control is formulated in terms of state-space models of the plant
system rather than simpler input–output models. Consequently, we suppose
that we are provided with a state-space model of the linear plant, which we
further assume to be strictly proper,

xt+1 = Fxt +Gut + wt (3.1)

yt = Hxt + vt. (3.2)

Here xt is the n-dimensional state vector of the plant, ut the m-dimensional
control input vector, yt the p-dimensional measured plant output vector, and
wt and vt are zero mean white noise processes of appropriate dimensions
representing state disturbance and measurement noise respectively.

We shall begin by considering the LQ optimal control problem, which
focuses upon the behavior of the state xt in response to the control signal
ut. This problem is thus associated with the equation (3.1) alone and does
not involve the output measurement equation (3.2) directly. Although we
shall see later how specific choices of design matrices can be made to produce
an LQ solution which reflects input–output properties and so is invariant
to the particular state coordinate basis chosen. Firstly the LQ regulator
problem will be treated, where the aim is to select the control sequence so
as to maintain xt suitably close to zero. This will then be extended to the
tracking problem more closely related to GPC, where xt is controlled in a
fashion to force the tracking by yt of a reference trajectory, rt. Whether
the objective is to regulate the state or the output of a system or to track a
reference trajectory, LQ optimal control is a versatile control philosophy that
admits a variety of cost criteria leading to different control laws, time-varying
or time-invariant, with differing computational loads. GPC is a receding
horizon strategy, as we have seen in Chapter 2. The formal derivation of a
receding horizon LQ control law necessitates the solution of a finite horizon
LQ control problem, while the asymptotic stability and performance of the
resulting closed loop are most naturally studied in the framework of infinite
horizon LQ theory. Therefore, we shall present the finite horizon, infinite
horizon and receding horizon problem formulations. Chapter 4 will focus on
the stability and performance characteristics of the associated closed loops.

Since the stability properties are dependent only upon the regulator prob-
lem features, we begin with the LQ regulator problem, and subsequently
show that the tracking problem can be recast into a regulator framework by
state augmentation.
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3.2 The Linear Quadratic Regulator

3.2.1 The Finite Horizon Regulator

The quadratic cost criterion which we seek to minimize with respect to the
sequence ut, ..., ut+N−1 in the LQ regulator problem is given by

J(N,xt) (3.3)

= E







xT
t+NP0xt+N +

N−1
∑

j=0

{

xT
t+jQc,N−j−1xt+j + uT

t+jRc,N−j−1ut+j

}







,

where E denotes expectation and P0, Qc,j and Rc,j are non-negative definite
symmetric matrices, and where perfect state (xt) measurement has been
assumed. This is a finite horizon (N) optimal control problem which we
specify for the state-space model (3.1) above. We note that we have used
expectations with respect to the stochastic uncertainties here to generate our
cost function. We could as easily have treated the deterministic LQ problem
(wt = 0) with deterministic cost. The solution is invariant to this feature.

The solution of the LQ optimal regulator problem may be given directly
in closed loop form as follows. One iterates the Riccati Difference Equation
(RDE),

Pj+1 = F TPjF − F TPjG(GTPjG+Rc,j)
−1GTPjF +Qc,j, (3.4)

from the initial condition P0 and implements the feedback control sequence
given by

ut+N−j = −(GTPj−1G+Rc,j−1)
−1GTPj−1Fxt+N−j , (3.5)

= Kj−1xt+N−j , j = 1, . . . , N,

where F , G and Rc,j arise from the control problem, Pj is the matrix solution
of the RDE, and xt is the state of the plant. The evaluated optimal cost,
J(N,xt)

⋆, is given as follows by PN , which itself does not explicitly appear
in the control law,

J(N,xt)
⋆ = xT

t PNxt. (3.6)

We note that the direction of iteration of the RDE (3.4) is reverse-time
compared with the direction of evolution of the plant (3.1). This can be seen
directly by observing the index of the gain in (3.5). In the next chapter we
shall focus more closely on the dynamics of the RDE and so it suits us better
to consider its evolution also as being forward in time. Hence our need for
complicated indexing in (3.3) and (3.5).
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3.2.2 The Infinite Horizon Regulator

In the general formulation of LQ optimal control problems, there is no need
to presume the underlying plant time-invariant — the plant matrices F , G,
H in (3.1) may change as functions of time just as the weighting matrices
Qc,j and Rc,j may in the criterion (3.3). If, however, we consider a problem
with both time-invariant plant and with constant weighting matrices Qc and
Rc, and if we then allow N to approach infinity, then (3.3) (divided by N)
yields an infinite horizon optimal control problem which is also well posed:

J(xt) = lim
N→∞

1

N
J(N,xt). (3.7)

More will be said later concerning interconnections between the LQ problems
over these finite and infinite horizons.

If a stationary infinite horizon LQ problem is formulated as in (3.7)
then the solution above alters in that, subject to P0 being non-negative

definite, Rc being positive definite, [F,G] being stabilizable, and
[

F,Q
1/2
c

]

being detectable, Pj converges to a constant matrix P∞, as j goes to infinity,
which is the maximal solution of the Algebraic Riccati Equation (ARE),

P∞ = F TP∞F − F TP∞G(GTP∞G+Rc)
−1GTP∞F +Qc. (3.8)

A stationary control law is therefore defined,

ut+j = −(GTP∞G+Rc)
−1GTP∞Fxt+j (3.9)

= Kxt+j .

Note that the differing directions of evolution of the state equation and the
RDE effectively move the RDE initial condition P0 into the infinitely remote
future for this problem. Thus the control gain in (3.9) is time-invariant.

3.2.3 The Receding Horizon Regulator

A direct examination of the finite horizon discrete-time LQ regulator prob-
lem discloses several simple computational features. Firstly, since the cost
function J(N,xt) revolves solely around the selection of N control values, the
optimal control sequence may, in principle, be found by finite-dimensional
optimization, as in GPC. Secondly, the RDE (3.4) may be explicitly iterated
from P0 to PN using simple linear algebra. By contrast, the infinite horizon
problem at first sight involves an infinite-dimensional optimization or the
solution of an algebraic matrix equation, the ARE (3.8), whose solution typ-
ically requires eigenvalue methods for symplectic matrices. Balancing these



48 Linear Quadratic Gaussian Optimal Control

computational niceties of the finite horizon regulator are the facts that its
solution for the control signal is not obviously extensible to the infinite in-
terval, it is not time-invariant state feedback over the interval, and if derived
via finite-dimensional optimization will typically be specified as open loop
control values.

One method proposed to admit the calculation simplicity of finite horizon
LQ methods while addressing an infinite horizon implementation and pre-
serving the time-invariance of the infinite horizon feedback is the receding
horizon LQ regulator. In this formulation one chooses ut as the first element
of the finite horizon solution minimizing J(N,xt), ut+1 as the first element
of the solution minimizing J(N,xt+1), and so on. Comparison with the
description of the finite horizon regulator above demonstrates immediately
that, for this receding horizon strategy, one has

ut = ut

(

arg min
ut,...,ut+N−1

J(N,xt)

)

= −(GTPN−1G+Rc,N−1)
−1GTPN−1Fxt (3.10)

= KN−1xt.

We shall re-address receding horizon methods much more fully in the next
chapter, since they underlie much of the thinking behind GPC. Our next
immediate task is, however, to extend this LQ regulator analysis to address
the Linear Quadratic Tracking Problem similar to that of the GPC criterion.
To the surprise of at least one of the authors, one may achieve this simply
by extending the plant model (3.1) to include an elementary description of
the evolution of the reference signal and posing an LQ regulator problem for
the combined system.

3.3 The Linear Quadratic Tracking Problem

We alter the finite horizon criterion (3.3) to include deviations of the output
from a reference signal rt as follows:

J(N,xt) = E{(yt+N − rt+N )TP0(yt+N − rt+N ) (3.11)

+
N−1
∑

j=0

{

(yt+j − rt+j)
TQc,N−j−1(yt+j − rt+j) + uT

t+jRc,N−j−1ut+j

}

}.

Note that P0 and Qc,j are not the same as those of (3.3): in particular, they
have different dimensions. Recognizing that rt is an externally prescribed
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signal, we may incorporate an artificial, dimension N , state model for it,

xr
t+1 = F rxr

t +Grnt (3.12)

rt = Hrxr
t (3.13)

with nt zero mean white noise of dimension p, and

F r =















0 I 0 . . . 0
0 0 I . . . 0
...

...
. . .

...
0 0 0 . . . I
0 0 0 . . . 0















(3.14)

Gr = ( 0 0 0 . . . I )T (3.15)

Hr = ( I 0 0 . . . 0 ) . (3.16)

Here the 0 and I in the matrices F r, Gr, Hr indicate matrices of dimension
p × p. Thus the sequence of elements {rt+i, i = 0, . . . , N − 1} is ‘stacked’
into the initial condition, xr

t , and the further distant future elements enter
the stack via nt, which is unpredictable at time t. Now we may recast the
LQ tracking criterion (3.11) as a regulation criterion (3.3) with state

xtrack
t =

(

xt

xr
t

)

.

The state equation for xtrack
t is then the direct sum of the state equations

for xt and xr
t ,

xtrack
t+1 =

(

F 0
0 F r

)

xtrack
t +

(

G
0

)

ut +

(

I 0
0 Gr

)(

wt

nt

)

, (3.17)

while yt − rt is given by

yt − rt = (H −Hr )xtrack
t .

Note that this state model is not controllable from ut but that it is stabiliz-
able since the xr

t subsystem is deadbeat and noninteracting by construction.
With the P0, Qc,j and Rc,j matrices replaced by

P track
0 =

(

HT

−HrT

)

P0 (H −Hr ) (3.18)

Qtrack
c,j =

(

HT

−HrT

)

Qc,j (H −Hr ) (3.19)

Rtrack
c,j = Rc,j, (3.20)
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in (3.3), the tracking criterion (3.11) can now be rewritten as

J(N,xtrack
t ) = E

{

xtrack T
t+N P track

0 xtrack
t+N (3.21)

+
N−1
∑

j=0

[

xtrack T
t+j Qtrack

c,N−j−1x
track
t+j + uT

t+jR
track
c,N−j−1ut+j

]

} ,

plus additional terms not influenced by the controls. The tracking criterion
has thus been recast as an equivalent regulation criterion. The tracking
control law then is derived by solving this regulation problem to provide a
feedback strategy involving linear feedback of the full state xtrack

t .
The LQ tracking problem has a solution which incorporates into the

feedback law the future knowledge of the reference signal for N steps. In
this fashion it is manifest how one may transform, via such a formulation,
the finite horizon LQ tracking problem into the finite horizon LQ regulation
of the composite system. The introduction of a tracking objective into an
N -step LQ problem necessitates the augmentation of the state by N ele-
ments, thereby increasing the computational burden of solution. An infinite
horizon tracking problem is not well posed in these terms because of the
presumption that rt be prescribed into the infinitely remote future. In these
circumstances, it is still possible, however, to develop meaningful tracking
problems by adding finite-dimensional xr

t to the augmented state model and
then solving an infinite horizon regulation problem. The dimension of the xr

component of the state vector then corresponds to the number of advanced
data available for the reference signal. Future reference values outside this
scope are modeled by the unpredictable white noise process nt and so are
automatically replaced by zeros. Naturally, receding horizon LQ tracking
problems are easily posed and are, in fact, closest in spirit to GPC. This
feature will be reinforced by a computational example shortly.

For tracking of constant reference signals, one may replace the tapped-
delay-line model structure (3.12), (3.13) by the following one-dimensional
state model

xr
t+1 = xr

t = r.

This corresponds to choosing F r = I, Hr = I and Gr = 0.
It is worth making several further remarks concerning the differences

between the two LQ problems considered in these last two subsections. The
additional states xr

t augmenting the LQ regulator problem above are not
reachable from the input process ut, but they are stable by construction.
If one partitions the solution of the augmented RDE conformably with the
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state equation (3.17),

P =

(

P 11 P 12

P 12T

P 22

)

, (3.22)

then one observes that the control gain matrix K = (Kx Kr ) depends
only upon P 11 and P 12. Specifically,

Kj = −(GTP 11
j G+Rc,j)

−1 (GTP 11
j F GTP 12

j F r ) (3.23)

= (Kx
j Kr

j ) ,

and

ut+N−j = Kj−1x
track
t+N−j

= Kx
j−1xt+N−j +Kr

j−1x
r
t+N−j.

Similarly, the RDE decomposes, with P 11 satisfying the regulation RDE,

P 11
j+1 = F TP 11

j F −F TP 11
j G(GTP 11

j G+Rc,j)
−1GTP 11

j F +HTQc,jH, (3.24)

with initial condition P 11
0 = HTP0H, and P 12 satisfying a coupled Lyapunov

equation,

P 12
j+1 = (F −G(GTP 11

j G+Rc,j)
−1GTP 11

j F )TP 12
j F r −HTQc,jH

r

= (F −GKx
j )TP 12

j F r −HTQc,jH
r, (3.25)

with initial condition P 12
0 = −HTP0H

r.
In the case of constant weighting matrices, Qc and Rc, the sequences P 11

j

and P 12
j will converge to steady-state values P 11

∞ and P 12
∞ provided P0 is non-

negative definite, Rc is positive definite, [F,G] is stabilizable and [F,Q
1/2
c H]

is detectable. (Indeed, it follows from the stability of F r that these last
two conditions imply the stabilizability and detectability respectively of the
corresponding matrix pairs for the augmented system (3.17).) The time-
varying finite horizon tracking controller (3.23)–(3.25) can then be replaced
by the corresponding time-invariant controller, through the substitution of
P 11
∞ and P 12

∞ for P 11
j and P 12

j in (3.23). The dimension of xr
t in this steady-

state tracking problem is then chosen as discussed above. It is apparent from
the relations (3.24) and (3.25) and the nonreachability of the state xr

t that
the stability properties of this system are dictated solely by the properties of
the solution of the regulator problem. This will be illustrated by an example
later in the chapter.

We next move on to study the derivation of optimal state estimators or
observers.
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3.4 The Linear Optimal State Estimator

To implement the feedback control laws of LQ optimal control requires that
the state xt be available at time t for construction of the control signal. (The
reference signal rt, and hence xr

t , is always available for measurement by
assumption, as is the control signal ut.) As the state is not always perfectly
measurable, an alternative control law is used,

ut+N−j = −(GTPj−1G+Rc)
−1GTPj−1Fx̂t+N−j (3.26)

= Kj−1x̂t+N−j ,

or

ut+N−j = −(GTP∞G+Rc)
−1GTP∞Fx̂t+N−j (3.27)

= Kx̂t+N−j ,

(or their tracking equivalents) where x̂t is a state estimate produced by an
observer. We shall now consider the features of Least Squares optimal state
estimation for (3.1) where the available signals, {ut} and {yt}, are used to
generate x̂t.

3.4.1 The Kalman Predictor (KP)

The theory of linear least squares optimal observer design is dual to that
of LQ controller design [KS72]. Thus the methodology of LQ control may
be immediately transposed to observer construction. The starting point for
the design of a state estimator is, naturally, a model for the evolution of the
state (3.1),

xt+1 = Fxt +Gut + wt

yt = Hxt + vt,

where wt represents the state disturbance and vt the output noise process.
The usual assumptions concerning the noise processes in this model are that
wt and vt are mutually independent, zero mean white noises with covariance,

E

{(

wt

vt

)

(wT
t vT

t )

}

=

(

Qo 0
0 Ro

)

, (3.28)

and that the initial state, x0, is independent of {wt, t ≥ 0} and {vt, t ≥
0} and is also zero mean with covariance Σ0. Also the control signal,
ut, is perfectly known. If we denote by x̂t|t−1 the linear estimate of xt

given {ut−1, ut−2, . . . , u0} and {yt−1, yt−2, . . . , y0} and an optimal estimator
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is sought to minimize the criterion E{(xt − x̂t|t−1)
T (xt − x̂t|t−1)}, then x̂t|t−1

is given by the Kalman predictor,

x̂t+1|t = (F −MP
t H)x̂t|t−1 +Gut +MP

t yt, (3.29)

where
MP

t = FΣtH
T (HΣtH

T +Ro)
−1, (3.30)

and Σt satisfies the optimal filtering Riccati Difference Equation,

Σt+1 = FΣtF
T − FΣtH

T (HΣtH
T +Ro)

−1HΣtF
T +Qo. (3.31)

Further, as t → ∞, and provided Σ0 is non-negative definite, Ro is positive

definite, [H,F ] is detectable and
[

F,Q1/2
]

is stabilizable, then Σt tends to

the maximal solution, Σ∞, of the filtering Algebraic Riccati Equation,

Σ∞ = FΣ∞F
T − FΣ∞H

T (HΣ∞H
T +Ro)

−1HΣ∞F
T +Qo, (3.32)

and MP
t tends towards the constant MP ,

MP = FΣ∞H
T (HΣ∞H

T +Ro)
−1. (3.33)

3.4.2 The Kalman Filter (KF)

The Kalman (one-step-ahead) predictor produces the best linear estimate,
in a least squares sense, of xt given input signal data {ut−1, ut−2, . . . , u0}
and output data {yt−1, yt−2, . . . , y0}. To pass from the Kalman predictor to
the Kalman filter, one seeks the best linear estimate, x̂t|t, of xt given data
{ut−1, ut−2, . . . , u0} and {yt, yt−1, . . . , y0}. This filtered estimate is directly
computed from the predicted estimate plus the new data, via

x̂t|t = x̂t|t−1 +MF
t (yt −Hx̂t|t−1)

= (I −MF
t H)x̂t|t−1 +MF

t yt, (3.34)

with
MF

t = ΣtH
T (HΣtH

T +Ro)
−1. (3.35)

This, coupled with the time update equation, equivalent to (3.29),

x̂t+1|t = Fx̂t|t +Gut, (3.36)

then yields the recursive formula for the Kalman filter

x̂t+1|t+1 = (I −MF
t+1H)Fx̂t|t + (I −MF

t+1H)Gut +MF
t+1yt+1. (3.37)
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We note that the Kalman Filter and Kalman Predictor gains are related as
follows:

MP
t = FMF

t , MP
∞ = FMF

∞.

The equations (3.29) and (3.37) are the recursive formulae for the gen-
eration of least squares optimal linear state estimates with single observer
delay and with zero observer delay, i.e. with direct feedthrough. The gain
matrices, MP

t and MF
t , of this design method arise from the solution of a

Riccati difference equation (RDE) (3.31) running forwards in time from ini-
tial condition Σ0. Completely analogously to the LQ control problem, if we
allow the initial condition to become remote then the observer gain tends to
a constant value. One may equally well have begun with a fixed observer
gain, MP or MF , in mind and specified the state estimators

x̂t+1|t = (F −MPH)x̂t|t−1 +Gut +MP yt, (3.38)

or

x̂t+1|t+1 = (I −MFH)Fx̂t|t + (I −MFH)Gut +MF yt+1. (3.39)

The stability of these observers depends upon the selection of M and the
detectability of [F,H].

3.5 Optimal Filter Design with Disturbance
Models

The use of a white noise assumption in (3.1) for the modeled state noise
wt is a useful design choice, since its rôle is to capture the variability of
the state in spite of the control action. However, it is frequently the case
in industrial control problems that the other noise assumptions are very
much too idealized, with output disturbances consisting of steps, ramps and
sinusoids as well as white or colored noise. In such circumstances, it is
possible to incorporate the knowledge of the unwanted output disturbance
into the explicit state model above and thereby to have the Kalman filter
design automatically attempt to eliminate their influence. In this fashion
the Internal Model Principle [FW76] is asserted in the controller design, in
a manner entirely similar to the GPC technique of forcing an integrator into
the controller by modeling the measurement noise as passing through an
integrating linear system.

The control system designer could possess specific knowledge of the nom-
inal spectrum, Φvv(z), of the output disturbance process, vt. If Φvv(z) can be
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approximated reasonably well by a finite degree rationale spectrum Φ̂vv(z)
then a stable state-space model could be derived from this by factorizing
Φ̂vv(z) as

Φ̂vv(z) = [I +Hd(zI − F d)−1Gd]Rm
o [I +Hd(z−1I − F d)−1Gd]T .

Such a factorization is always possible and can, in fact, be performed using
the ARE [AM90]. This procedure yields a noise model similar to the state
model (3.1) above except for the appearance of the same process, qt, as state
and as output noise. Where the spectrum of vt is strictly non-zero on the
unit circle, it is also possible to generate a noise model identical in form to
(3.1) and (3.2) with uncorrelated driving noises, pt and qt,

xd
t+1 = F dxd

t +Gdpt (3.40)

vt = Hdxd
t + qt, (3.41)

with xd
t a k-dimensional state vector. Such a noise model pertains provided

the measurement noise, vt, has a sufficiently large unpredictable part mod-
eled by qt above. Equally, the noise model could be derived directly from
physical data as, for example, could be done by modeling a step disturbance
as being due to the unknown initial state of an integrator or by modeling
sinusoidal disturbances as being due to the presence of a marginally stable
oscillatory system generating part of vt. These latter processes formally do
not possess spectra but do admit treatment via an explicit noise model as
above.

We may now use the dual of the technique of Section 3.3 used to gen-
erate a tracking LQ controller from a regulator and write a composite state
equation by combining (3.1)–(3.2) and (3.40)–(3.41) with new state

xm
t =

(

xt

xd
t

)

. (3.42)

The total state evolution and output generation equations are now

xm
t+1 =

(

F 0
0 F d

)

xm
t +

(

G
0

)

ut +

(

I 0
0 Gd

)(

wt

pt

)

, (3.43)

yt = (H Hd )xm
t + qt, (3.44)

which again have the form of the standard state estimation problem

xm
t+1 = Fmxm

t +Gmut + Lmwm
t (3.45)

yt = Hmxm
t + vm

t , (3.46)
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with the obvious assignments of symbols,

Fm =

(

F 0
0 F d

)

(3.47)

Gm =

(

G
0

)

(3.48)

Hm = (H Hd ) (3.49)

Lm =

(

I 0
0 Gd

)

(3.50)

wm
t =

(

wt

pt

)

(3.51)

vm
t = qt (3.52)

Qm
o = LmE(wm

t w
m T
t )Lm T (3.53)

=

(

E(wtw
T
t ) 0

0 GdE(ptp
T
t )GdT

)

Rm
o = E(qtq

T
t ). (3.54)

The stationary optimal state estimator with direct feedthrough from out-
put to control signal, i.e. Kalman filter, for xm

t is then obtained [AM79] as

x̂m
t+1 = (I −MFHm)Fmx̂m

t + (I −MFHm)Gmut

+MF yt+1, (3.55)

with MF given by the solution, Σm, of a filtering ARE like (3.32),

MF = ΣmHmT

(HmΣmHmT

+Rm
o )−1. (3.56)

Otherwise, a stationary optimal state estimator without direct feedthrough,
i.e. Kalman predictor, for xm

t is obtained by replacing the matrix triple
(H,F,G) by (Hm, Fm, Gm) and MP by FMF in (3.38).

The presentation of the observer construction above including the noise
model is quite standard in the Kalman filtering literature [AM79] and, closely
similar to the LQ control theory, much of it is directly applicable in an adap-
tive context. However, there still exist many variables requiring setting or
selection before a design could be commenced and implemented. It will be
our objective later to specify how generic choices of some of the design pa-
rameters may be made in order that the observer depend upon a manageable
number of parameters and that it be relatively easily calculable. Also, be-
cause our ambit is the study of adaptive LQG control, and adaptive systems
are ipso facto input–output oriented, we shall also present methods later
which are state coordinate system independent.
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3.6 LQG Controllers

Linear Quadratic Gaussian controllers are generated through the intercon-
nection of a linear state-variable feedback control law and a linear state
estimator. Indeed, in the case where the plant is linear and exactly given by
the state model (3.1) and where the noises wt and vt are zero mean gaussian
processes as is the initial state x0, this interconnection provides the optimal
dynamic output feedback control of the plant, where optimality is measured
according to the LQ criterion. This is the so-called ‘Separation Principle’
of linear optimal control [KS82]. In this section we shall investigate further
the underlying structure of this combination, especially when reference and
disturbance models are included.

We begin by considering the inclusion of the reference and measurement
noise models to yield a composite system for LQ control. We then move
on to treat the associated state estimation issues. In both these cases, the
reachability and observability properties of the augmented models will come
into play to admit simplified solutions, where the ARE solutions may be
partitioned. Following this analysis, we shall then investigate expressions
for the overall controller transfer functions in Section 3.8.

3.6.1 The Composite System and the LQ Objective

If we start with the system state description (3.1)–(3.2) and take advantage
of the measurement noise model (3.40)–(3.41) and the reference trajectory
model (3.12)–(3.13) associated with the specification of the tracking control
objective (3.11), then we may compose a super state, x̄t, description of the
combined process as follows:

x̄t =





xt

xr
t

xd
t



 . (3.57)

This super state satisfies the equation

x̄t+1 =





xt+1

xr
t+1

xd
t+1





=





F 0 0
0 F r 0
0 0 F d









xt

xr
t

xd
t



+





G
0
0



ut +





I 0 0
0 Gr 0
0 0 Gd









wt

nt

pt





= F̄ x̄t + Ḡut + L̄w̄t. (3.58)
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The LQ tracking control objective (3.11) then yields a super state regu-
lator problem (3.3) with weighting matrices P̄0, Q̄c,j and R̄c,j given by

P̄0 =





HT

−HrT

HdT



P0 (H −Hr Hd ) (3.59)

Q̄c,j =





HT

−HrT

HdT



Qc,j (H −Hr Hd ) (3.60)

R̄c,j = Rc,j. (3.61)

The linear state-variable feedback solution to this LQ regulation problem,

ut+N−j = −(ḠT P̄j−1Ḡ+ R̄c,j−1)
−1ḠT P̄j−1F̄ ˆ̄xt+N−j

= (Kx
j−1 Kr

j−1 Kd
j−1 )





x̂t+N−j

x̂r
t+N−j

x̂d
t+N−j



 , (3.62)

produces a feedback control signal, ut, which accounts for the present state
position, the given future trajectory of the reference to be tracked, and the
predictable component of the corrupting measurement noise.

The solution of the above composite LQ regulator problem would, at
first sight, appear to involve the solution of a correspondingly large Riccati
equation. However, as with the earlier LQ regulator problem involving only
the plant model and reference model, the solution decomposes. In particular,
if we divide P̄ conformably with the state x̄t,

P̄ =





P 11 P 12 P 13

P 12T
P 22 P 23

P 13T

P 23T

P 33



 , (3.63)

then the block structure of Ḡ forces the control gain matrix K only to depend
upon P 11, P 12 and P 13. Specifically,

Kj = −(GTP 11
j G+Rc,j)

−1 (GTP 11
j F GTP 12

j F r GTP 13
j F d )

= (Kx
j Kr

j Kd
j ) . (3.64)

Similarly, the RDE decomposes with P 11 satisfying the regulation RDE
(3.24), P 12 satisfying the Lyapunov equation (3.25) and P 13 satisfying the
Lyapunov equation,

P 13
j+1 = (F −G(GTP 11

j G+Rc,j)
−1GTP 11

j F )TP 13
j F d +HTQc,jH

d

= (F +GKx
j )TP 13

j F d +HTQc,jH
d, (3.65)
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with initial condition P 13
0 = HTP0H

d.
A moment’s reflection upon the reachability subspace of (3.58) allows

the reader to realize that the control signal is able only to exert its influence
upon the plant state, xt, and that the other state components, xr

t and xd
t ,

really serve a rôle of providing predictive information to this control via the
state-estimate feedback law (3.62). These ancillary states are themselves not
reachable from the input ut.

In the case of constant weighting matrices Qc and Rc the sequences P 11
j ,

P 12
j and P 13

j will converge to steady-state values under the same stabiliz-
ability and detectability conditions (as earlier) that P 11

j converges. The
time-varying tracking control gain (3.64) can then be replaced by the corre-
sponding steady-state gain

K = −
(

GTP 11
∞G+Rc

)−1
(GTP 11

∞F GTP 12
∞F r GTP 13

∞F d )

= (Kx Kr Kd ) .

3.6.2 Observers for the Composite System

The composite super state model (3.58) contains the plant’s state, the ref-
erence state and the noise process state. One may associate with this state
model a combined measurement equation reflecting the available data,

ȳt =

(

yt

xr
t

)

(3.66)

=

(

H 0 Hd

0 I 0

)





xt

xr
t

xd
t



+

(

I
0

)

qt (3.67)

= H̄x̄t + v̄t. (3.68)

A Kalman filter may now be constructed for this (super) state model and
measurement equation, which is precisely in the form of (3.1). An immediate
simplification is, however, possible because clearly one portion of the state,
viz xr

t , is available noise-free since it represents the future values of the
reference trajectory. One proceeds exactly as in Section 3.5 to construct a
Kalman filter observer with direct feedthrough to produce state estimates
via (3.55),





x̂t

x̂r
t

x̂d
t



 =





(x̂m
t )1,...,n

xr
t

(x̂m
t )n+1,...,n+k



 . (3.69)

It is clear from the preceding material that, through the invocation of
the composite system, it is possible to formulate the complete LQ tracking
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problem with colored measurement noise disturbances as a combined LQ
plus KF, i.e. LQG, regulation task. For the control law we have

ut = (Kx Kr Kd )





x̂t

x̂r
t

x̂d
t





= (Kx Kd )

(

x̂t

x̂d
t

)

+Krxr
t

= (Kx Kd )

(

x̂t

x̂d
t

)

+Kr(zI − F r)−1Grnt. (3.70)

For the N -step-lookahead tracking problem one may take nt = rt+N . While,
for the partial observer with direct feedthrough (3.55),

(

x̂t+1

x̂d
t+1

)

= (I −MFHm)Fm
(

x̂t

x̂d
t

)

+ (I −MFHm)Gmut +MF yt+1, (3.71)

with MF , Fm, Gm, Hm coming from (3.56) and the composite disturbance
and plant model (3.47)–(3.49). Thus, we arrive at a unified description of
the LQG controller as being composed of a dynamic state estimator with its
gain matrix, MP or MF , and of a nondynamic linear state-variable feedback
law with gain K. If either infinite horizon or receding horizon designs are
performed then these gains are constant. This total feedback control system
is then a finite-dimensional time-invariant linear dynamical system which has
two inputs, the measured plant output yt and the N -step-ahead reference
value rt+N , and a single output, the control signal ut. We shall broach
the issue of the nature of the transfer function of this dynamical system
in Section 3.8; but first, for those readers whose patience we have already
abused with our deluge of formulae, we now illustrate some typical behaviors
of LQG controllers, and the rôle of their design parameters, via a numerical
example.

3.7 Examples

We consider two examples. The first is a simple, minimum phase second
order plant and the second is a more difficult third order non-minimum phase
plant derived by discretizing a continuous-time plant. We shall portray the
separate design effects of choice of control weighting, λ, choice of the noise
model, and the effect of the prediction horizon, Nr, in the construction of a
reference model.
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A Simple System

The first system we consider is described in state-space form by the following
matrices:

F =

(

−0.5 1
−0.5 0

)

G =

(

0.9
−0.6

)

H = ( 1 0 ) .

This represents a simple minimum phase stable second order process with
transfer function

0.9 z−1 − 0.6 z−2

1 + 0.5 z−1 + 0.5 z−2

= 0.9 ×
1 − 0.6667 z−1

(1 + (0.25 + j0.6614)z−1)(1 + (0.25 − j0.6614)z−1)
.

For the moment, suppose that the reference model is given by the third order
process

F r =





0 1 0
0 0 1
0 0 0





Gr =





0
0
1





Hr = ( 1 0 0 ) .

This means that, in the LQ criterion, the deviation with respect to the next
three reference values is penalized or, equivalently, that the control at time t
is computed using knowledge of the next three references. The disturbance
model is described by

F d = 1, Gd = 1,Hd = 1.

That is, we postulate an integrator to take into account step-like load dis-
turbances.

In the spirit of the earlier sections, we choose to solve an infinite time
LQG problem with Qc = (H − Hr Hd)T (H − Hr Hd) and Rc = λ as
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Figure 3.1: Step response for λ = 0.1

weighting matrices for the control criterion and with the following weighting
matrices for the Kalman Filter

Qm
o =

(

1 0
0 ρ

)

and
Rm

o = ρ.

We take ρ = 1 in all subsequent simulations. Because we consider cases
where the true plant is used in both the design and the closed loop simulation,
the observer (KF/KP) dynamics cancel and so do not affect the performance.
Later we shall see that they do play a part in the closed loop robustness,
where the plant model used for controller design is different from the true
system.

We describe now a few cases which illustrate some features of the LQ
problem.

1. We take λ = 0.1 and look at the response of the process to relatively
rapid setpoint changes. As can be seen from Figure 3.1 the desired
setpoint is not reached. This might be due to excessive weighting on
the control signal in the LQ criterion.
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Figure 3.2: Step response for λ = 0.0001

2. We perform the same simulation with λ = 0.0001. Now, we have
almost zero static error in step response, as can be seen from Figure 3.2.
This illustrates something of the rôle of λ in determining the output
performance. Consideration of the control signals in this case would
also show that the control effort increases as the weighting diminishes.

3. For the same value of lambda, Figure 3.3 now illustrates the response
of the process to step changes of the disturbance acting on the output
of the process. The dotted line represents the disturbance vt acting on
the output of the plant. Thanks to the disturbance model which con-
tains an integrator, the disturbance is rejected after an initial transient
perturbation.

4. Figure 3.4 and Figure 3.5 illustrate the response of the system to set
point changes and to output disturbances respectively, under similar
conditions to those in 2 and 3, when there is no disturbance model.
The response to setpoint changes remains unchanged, but now the
controlled system is unable to reject the disturbances.

These few simulations serve only the purpose of illustrating the influence
of weighting matrices of the LQ criterion and the rôle of the disturbance
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Figure 3.3: Disturbance rejection for λ = 0.0001

Figure 3.4: Step response without disturbance model
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Figure 3.5: Disturbance rejection without disturbance model

model in the observer. It should be noted that zero static error in the step
response could of course be obtained if the incremental control action ∆ut

was used in the criterion, instead of ut (compare with the GPC algorithm).
We now change the plant to observe the effects of design variables in more
difficult circumstances.

A More Difficult Plant

Consider the following plant, P (z), which will arise in the subsequent ma-
terial relatively frequently, and so is denoted ‘The Working Example’:

P (z) =
−0.05359 z−1 + 0.5775 z−2 + 0.5188 z−3

1 − 0.6543 z−1 + 0.5013 z−2 − 0.2865 z−3
. (3.72)

This is a sampled data version of the continuous-time plant

P(s) =
−10 s + 10

(s+ 1)(s2 + 1.5 s + 10)
,

with sampling interval Ts = 0.5. Note that the continuous-time plant P(s)
is non-minimum phase, as is its discretized version P (z). The value of ρ is
1 and Nr, the dimension of the tapped-delay-line reference model, is taken
initially to be 10.
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Figure 3.6: The Working Example output response for λ = 0.1

We again perform two simulations indicating the effect on the perfor-
mance and control signals of the weighting λ. Figures 3.6 and 3.7 depict
the plant output and control signals with λ = 0.1 while Figures 3.8 and 3.9
show the corresponding signals for λ = 0.0001. The obvious point here is
that the reduced penalty upon the control signal is reflected in a lessening
of the constraints on its deviations. Thus wild control signals can often be
associated with very small λ values, particularly with non-minimum phase
plants. This problem is known as the bounded peaking problem of singular
optimal control and has been extensively studied [FG78].

The preceding examples were performed with the reference model be-
ing finite impulse response and of dimension Nr = 10. This was helpful in
demonstrating the effects of λ for this example. Now we shall briefly investi-
gate the rôle of Nr in this problem. Specifically, we take Nr = 3 and compare
the output response keeping λ = 0.0001. Figure 3.10 demonstrates that this
smaller value of Nr dramatically affects the achievable performance.

The reasoning for this behavior rests in the precise infinite horizon LQ
problem being solved here. At time t the controller is being selected to cause
the plant output, yt, to track the infinite reference signal based upon only
Nr available future values, i.e. {rt+1, rt+2, rt+3, . . . , rt+Nr , 0, 0, . . .}. As the
plant is relatively difficult to control, for small values of Nr the LQ tracking
solution is found by focusing more on the achievable zero part of the tra-
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Figure 3.7: The Working Example control signal for λ = 0.1

Figure 3.8: The Working Example output response for λ = 0.0001
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Figure 3.9: The Working Example control signal for λ = 0.0001

Figure 3.10: The Working Example output response for Nr = 3 and for
λ = 0.0001
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Figure 3.11: The Working Example output response with an integrator ref-
erence model

jectory than on expending efforts to follow the short non-zero component.
Intermediate values of Nr between 3 and 10 display intermediate perfor-
mance. As this parameter, Nr, is central to the predictive control idea, it is
evident that careful selection needs to be made and that thought needs to
be given to a delicate interpretation of implicitly defined tracking criteria.

One method which springs to mind to overcome dimensionality problems
associated with largeNr values is to replace the finite impulse response model
for the reference with, say, a first order integrator model

rt+1 = rt + wt.

This captures the roughly constant nature of rt. The control system then is
driven with a difference signal wt = rt+1−rt. Figure 3.11 shows the achieved
performance with just such a control law. The steady-state step response
error now goes to zero but at the price of slower transient response.

These examples illustrate some of the available design variables of LQ
design based on predictive models, and indicate certain areas for care in the
selection of criteria.
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3.8 Closed Loop Control Formulae

Our goal in this section will be to develop simple formulae for the transfer
functions linking the control signal, ut, in the LQ or LQG feedback loop
with the external signals coming into the loop, namely the reference signal,
rt, and the plant output measurement noise signal, vt. These formulae are
not new, like much of the work presented in this chapter, but they are dif-
ficult to find in textbooks, and we shall need them in our later analysis of
the robust interplay between LQG control and recursive least squares iden-
tification in closed loop. Indeed, these formulae will enable us to examine
how the spectral distribution of the noise and the reference signal affect the
spectral distribution of the input signal of the plant, which in turn influ-
ences the convergence domain of the identified model. We shall therefore
derive these formulae here for several possible configurations of the feedback
observer/controller connection; we examine successively full-state feedback,
state-estimate feedback with an observer without direct feedthrough (here-
after called Kalman predictor), and state-estimate feedback with a direct
feedthrough observer (hereafter called Kalman filter). In order not to as-
sault the sensibilities of the reader, we start off gently by first considering
the easier case where there is no plant measurement noise. We establish
the dynamical connections between the reference signal, rt, and the control
input, ut, for this case.

Ideal Plant with Full State Feedback

Consider the state model,

xt+1 = Fxt +Gut, (3.73)

yt = Hxt,

with linear state-variable feedback involving direct measurements of the state
vector, xt,

ut = Kxt + rt, (3.74)

where rt is the external reference signal. Then, substituting (3.74) into
(3.73), we have

xt+1 = (F +GK)xt +Grt,

or, in transfer function terms,

xt = (zI − F −GK)−1Grt.
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Resubstituting into (3.74) then yields

ut = [I +K(zI − F −GK)−1G]rt (3.75)

= [I −K(zI − F )−1G]−1rt. (3.76)

Thus we see that the transfer function linking the LQ control signal with
the reference is given, in (3.76), by the inverse of a transfer function known
as the return difference, which shall recur frequently in later developments.
We now turn to the case where an observer is inserted into the loop.

Ideal Plant with State-Estimate Feedback and Kalman
Predictor

When an observer is used in place of full state measurement, the control
equation (3.74) is replaced by

x̂t+1 = (F −MH)x̂t +Gut +Myt, (3.77)

ut = Kx̂t + rt. (3.78)

A transfer function description of (3.77) is simply derived as

x̂t = (zI − F +MH)−1Gut + (zI − F +MH)−1Myt. (3.79)

Whence, using yt = H(zI −F )−1Gut, the system transfer function, we have

x̂t = (zI − F +MH)−1Gut

+(zI − F +MH)−1MH(zI − F )−1Gut,

= (zI − F +MH)−1{(zI − F ) +MH}(zI − F )−1Gut

= (zI − F +MH)−1(zI − F +MH)(zI − F )−1Gut

= (zI − F )−1Gut. (3.80)

Note that the observer poles, which are the zeros of det(λI −F +MH) and
are obviously presumed to be stable by design, are canceled to reach (3.80)
above.

Continuing now, one substitutes from (3.80) into (3.78) to produce

ut = Kx̂t + rt (3.81)

= K(zI − F )−1Gut + rt (3.82)

= [I −K(zI − F )−1G]−1rt. (3.83)

Several comments are in order at this point.
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• The transfer function linking the LQG control signal, ut, to the ref-
erence signal, rt, is exactly the same as that, (3.76), derived in the
case of application of full state feedback, except that the veracity of
the result depends upon the cancellation of the observer dynamics in
(3.80). That is, again the return difference inverse arises as the transfer
function from reference input to control signal.

• Even though the observer poles cancel in the transfer function from rt
to ut, the effect of these canceled dynamics will be felt in the decay of
initial condition transients.

• The exact cancellation occurs only under the condition that the plant
model, on which basis the observer is designed, is an exact description
of the actual plant. In Chapter 5 we shall study the effect of unmodeled
dynamics on the closed loop behavior of LQG controlled plants. It will
be the object of Section 5.4.2 to compute new LQG controller formulae
for the more realistic situation of a plant/model mismatch, in which
case the observer poles do not cancel.

We next turn to the case where the observer contains a direct feedthrough
term.

Ideal Plant with State-Estimate Feedback and Kalman Filter

Here the observer with delay, (3.77), is replaced by a direct feedthrough
observer

x̂t+1 = (F −MHF )x̂t + (G−MHG)ut +Myt+1. (3.84)

Rewriting this equation using (3.73) yields

x̂t+1 = (F −MHF )x̂t + (G−MHG)ut +MHFxt +MHGut

= (F −MHF )x̂t +MHFxt +Gut.

We may now substitute xt = (zI − F )−1Gut for the state, producing

x̂t+1 = (F −MHF )x̂t +MHF (zI − F )−1Gut +Gut

or

x̂t = (zI − F +MHF )−1[MHF (zI − F )−1 + I]Gut

= (zI − F +MHF )−1[MHF + zI − F ](zI − F )−1Gut

= (zI − F )−1Gut. (3.85)
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This is now identical to (3.80) and we may proceed as before to obtain the
identical relation (3.76). Note that, as in the previous case with no direct
feedthrough, the derivation of this transfer function involves the cancellation
of the observer dynamics to reach (3.85). Once again, the design assumes
that these poles are chosen to be stable.

We now consider the case where the plant output contains measurement
noise vt and construct the transfer function from vt to ut.

Plant with Measurement Noise: State-Estimate Feedback and
Kalman Predictor

To effect this analysis we must replace the plant output equation by

yt = Hxt + vt, (3.86)

where vt is the additive plant output measurement noise. Thus in the pre-
ceding calculations yt must be replaced by H(zI − F )−1Gut + vt. One may
proceed from this point as before or may use the linearity of the situation.
Replacing yt by (3.86) in (3.79) and using linearity, it follows from (3.80)
that

x̂t = (zI − F )−1Gut + (zI − F +MH)−1Mvt. (3.87)

Substituting x̂t in (3.78) yields

ut = [I −K(zI − F )−1G]−1{rt +K(zI − F +MH)−1Mvt}. (3.88)

The transfer function between the output noise, vt, and the input signal,
ut, in this case of state-estimate feedback with a Kalman predictor, is thus
given by

ut = [I −K(zI − F )−1G]−1K(zI − F +MH)−1Mvt. (3.89)

Plant with Measurement Noise: State-Estimate Feedback and
Kalman Filter

When the state estimate is computed through a direct feedthrough observer,
we can use linearity again to obtain, using (3.84) and (3.86),

x̂t = (zI − F )−1Gut + (zI − F +MHF )−1Mvt+1. (3.90)

Therefore, using (3.78) again, we get

ut = [I −K(zI − F )−1G]−1{rt +K(zI − F +MHF )−1Mvt+1}

= [I −K(zI − F )−1G]−1 (3.91)

×{rt + [KM +K(F −MHF )(zI − F +MHF )−1M ]vt}.
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The conclusions of this section are as follows.

• The transfer function linking the reference input, rt, and the closed
loop control signal, ut, in a linear state-variable feedback system is
given by the inverse of the control return difference matrix. This result
holds true whether the full state is measured or whether a state esti-
mate is generated by an observer, with or without direct feedthrough.
This is because the dynamics of the observer cancel in the closed loop
for both observers. Since these observer dynamics are stable by design,
their cancellation does not introduce direct stability problems. How-
ever, as remarked above, this exact cancellation evanesces when there
is a plant/model mismatch.

• As for the transfer functions linking the measurement noise, vt, to the
closed loop control signal, ut, direct comparison of (3.88) and (3.91)
shows that they differ in the cases of observers possessing a direct
feedthrough and of those that do not, leading to different closed loop
noise gain properties. The bandwidth of the disturbance component
of ut is greater in the case of direct feedthrough. Thus the abilities of
these two observers to influence the design are different.

A fuller analysis of filtering and prediction theory, which is beyond our brief
here, indicates that the use of observers with direct feedthrough (and hence
without propagation delay) admits superior control performance with noise
[AM79]. In the analysis of robust LQ control, with which we shall deal in
Chapter 5, this feature also has been established [Mac85], [IT86].

We note here that the results derived above refer to two specific features
of linear state and state-estimate feedback. That is, we have shown that,
at least in the case where the plant model is an exact description of the
actual system, the control signal is always the same function of the reference
signal, independently of the particular LQ or LQG feedback structure, and
we have exhibited the effects of the observer dynamics on the transmission
of the output measurement noise to the control input in the closed loop.
The introduction of a (possibly fictitious) output measurement noise is one
method of studying the robustness properties of the control system. Thus,
for example, the requirement for careful observer design only becomes ap-
parent after such a signal is introduced. More shall be said about robust
LQG design and the rôle of the observer in Chapter 5.



Sec. 3.9 GPC as LQG 75

3.9 GPC as LQG

It is immediately apparent from the comparison between the optimization
criteria (2.7) and (3.11) that the GPC problem formulation should fit within
the framework of the LQ problem. Indeed, the underlying system is linear
and the cost is a quadratic tracking criterion. We conduct this section of our
treatise in two parts: firstly we develop the formal theoretical connections
which place the control law specification of GPC as a receding horizon LQG
control law. Then, secondly, we re-present the example of Section 2.4 of
control law computation by GPC methods, but this time we carry through
the calculations using the equivalent LQG techniques. Naturally, this ex-
ercise merely verifies our theoretical knowledge but is included to convey
something of the concrete nature of these esoteric design rules and also to
persuade the intransigent reader who does not trust mathematics.3

3.9.1 Control Criterion Equivalence

Let the input–output model of Chapter 2, (2.6), be described by the equiv-
alent state-space model,

x̄t+1 = Fx̄t +G∆ut + w̄t

yt = Hx̄t + v̄t.

The finite horizon control signal ũ (see (2.18)), resulting from the mini-
mization of the GPC criterion (2.7) with zero tracking {rt} = 0 regulation
objective and with constant λ, is the same as that obtained by the mini-
mization of the LQ regulation criterion

J(N,xt) = E{xT
t+NP0xt+N +

N−1
∑

j=0

{

xT
t+jQc,N−jxt+j

+∆uT
t+jRc,N−j∆ut+j

}}

, (3.92)

provided the following substitutions are made:

N2 = N (3.93)

Qc,t =

{

HTH if t = 0, . . . , N2 −N1

0 if t = N2 −N1 + 1, . . . , N2 − 1
(3.94)

3Readers who are offended by the notion of an example confirming that which has
already been established via mathematics should take heart in the fact that the authors
resisted the temptation to include also a multitude of simulation studies still further evi-
dencing the same result.
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Rc,t =

{

∞I if t = 0, . . . , N2 −Nu − 1
λI if t = N2 −Nu, . . . , N2 − 1

(3.95)

P0 = HTH. (3.96)

For the tracking problem, we have equivalent specifications of the weighting
matrices via (3.18)–(3.20). We note that the formal mechanism employed to
enforce the control constraints of (2.7) is to select the control weighting as in-
finite for controls after time Nu. We also note that this formal requirement
of infinite weightings is easily realized and accommodated within the LQ
gain computations (3.4) and (3.5), because for those steps where the control
weighting is infinite the RDE becomes simply a Lyapunov equation. Thus,
the criteria (2.7) and (3.92) with the above substitutions are well posed and
identical. Therefore the control sequences {∆ut+j , j = 0, . . . , Nu − 1} ob-
tained through the minimization of these two criteria are identical, provided
they are computed on the basis of the same information. The GPC solution
ũ of (2.23) is based on the information available at time t, i.e. the vector f

of (2.17) is constructed using {us, ys, s ≤ t}. Hence the solution sequence
{∆ut+j , j = 0, . . . , Nu − 1} of GPC is computed in open loop on the basis
of information available at time t. The solution sequence (3.26) of LQG,
rewritten here in incremental form,

∆ut+N−j = Kj−1x̂t+N−j|t+N−j, j = 1, . . . , N

is computed under the presumption that the control at time t + k uses all
information {us, ys, s ≤ t + k} available at time t + k. Therefore the two
solution sequences {∆ut+j , j = 0, . . . , Nu −1} obtained from GPC and LQG
need not coincide exactly except for j = 0, where their computation is based
on the same information. We note that another instance where these solu-
tions coincide is in the case of purely deterministic systems, w̄t = 0, v̄t = 0,
since in such cases x̂t+k|t+k can be computed exactly from x̂t|t and the inter-
vening control signal. The distinction between GPC and LQG formulations
has been explored with considerable subtlety by Peterka [Pet89].

Now, as identified earlier, the GPC control law does not consist of the
complete application of the finite horizon control signal but rather it imple-
ments a receding horizon strategy. That is to say, only the control signal
value ∆ut from the above solution is applied at time t and the solution of a
new finite horizon problem is computed for the next instant. The import of
our discussion above is that the controls ∆ut resulting from the minimiza-
tion of the GPC and LQG criteria are the same, since they are constructed
based on the same information. In terms of the LQ problem it is then clear
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that the GPC control signal is given by the receding horizon LQ law,

∆uGPC
t = −(GTPN−1G+ λI)−1GTPN−1Fx̂t, (3.97)

where PN−1 is derived as the solution of the RDE (3.4) with variables as
specified above in (3.94)–(3.96) and where x̂t is the filtered state estimate,
x̂t|t, based on {us, ys, s ≤ t}.

Hence, we see that GPC implements a stationary, i.e. time-invariant,
feedback law derived from a particular LQ criterion. That is, the control
gain in (3.97) is fixed by the RDE solution to the optimization problem. To
complete the establishment of GPC as a subset of LQ control it behoves
us now to consider the observer generated by GPC via the Diophantine
recursions and predictor equations (2.8)–(2.13).

We make the remark here that the rôle of the predictions f in GPC
(see (2.17)) is entirely analogous to the rôle of the state estimate x̂t|t in the
LQ formulation, just as the role of r is identical to that of xr

t . Indeed, f

contains the ‘free response’ prediction of the output given {us, ys, s ≤ t}
assuming that future inputs are zero, while x̂t|t, being based on the same
information from the past, contains sufficient information also to compute
these free response predictions. This general equivalence between observers
and predictors has been explored in [ÅW84], where it is shown that the
eigenvalues of F −MPH in the observer equation (3.38) are the same as the
zeros of the polynomial C used to construct the predictors via (2.8). Since
F −MPH = F (I −MFH), it follows that the eigenvalues of F −MFHF
in the observer equation (3.39) are also the same as the zeros of C. In
particular, if C(q−1) is chosen to be unity (i.e. C⋆(q) = qN2C(q−1) is qN2),
then the equivalent observer will be deadbeat. The introduction of a non-
trivial C polynomial will allow the control signal to be written as a linear
combination of uf

t and yf
t from (2.12) and (2.13). These issues of the use

of the polynomial in (2.8) to determine observer dynamics are advanced in
[CMT87] where the choice of C is involved as part of the control design and
not necessarily as a part of the explicit system modeling. This viewpoint will
be reinforced in Chapter 7, where we shall discuss a potentially robust LQG
design attuned to the adaptive context, which includes the formal selection
of observer properties.

3.9.2 An Example

We return to the system and control problem used in Section 2.4 now to
amplify and consolidate our claims of equivalence between GPC and LQG
methods. Firstly we begin by solving the LQ regulator problem connected
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with GPC before augmenting this to the full tracking problem. This allows
us to demonstrate some of our LQ claims as well.

The plant of (2.25) is

yt = 1.7yt−1 − 0.7yt−2 + 0.9∆ut−1 − 0.6∆ut−2 + ξt, (3.98)

which has a minimal state-space description in observable canonical form,
(

x1
t+1

x2
t+1

)

=

(

1.7 1
−0.7 0

)(

x1
t

x2
t

)

+

(

0.9
−0.6

)

∆ut

yt = (1 0 )xt + ξt.

That is, taking our information from Section 2.4, we have the following
assignments:

F =

(

1.7 1
−0.7 0

)

G =

(

0.9
−0.6

)

H = (1 0 ) Qc =

(

1 0
0 0

)

Rc = 0.1 P0 =

(

1 0
0 0

)

N1 = 1 N2 = Nu = 3.

(3.99)

We compute the solution of the RDE (3.4) from initial condition P0 until
P2,

P2 =

(

1.3566 0.2354
0.2354 0.1705

)

.

Next the control gain is computed as in (3.97),

K2 = −(GTP2G+Rc)
−1GTP2F

= (−1.7483 −1.0733 ) .

This is then followed by the computation of a direct feedthrough observer
in the form of (3.56). Write

MF =

(

m1

m2

)

,

and note that the characteristic equation of the observer satisfies,

det(zI − F +MFHF ) = z2 + (m2 − 1.7(1 −m1))z + 0.7(1 −m1).

Thus to create a deadbeat observer we take

MF =

(

1
0

)

,
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yielding a direct feedthrough observer as in (3.55),

x̂t+1 =

(

0 0
−0.7 0

)

x̂t +

(

0
−0.6

)

∆ut +

(

1
0

)

yt+1. (3.100)

When this observer is coupled to the control law ∆ut = K2x̂t with K2

above, we achieve the controller transfer function

∆ut = K2

(

zI − F +MFHF − (G−MFHG)K2

)−1
MF yt+1

=
1.7483q − 0.7513

q(q + 0.644)
yt+1

= −0.644∆ut−1 + 1.7483yt − 0.7513yt−1,

which is identical to the feedback compensator part derived from the GPC
formulation in (2.26).

To develop this into a full tracking problem, and this solution could have
been addressed from the start, it suffices to consider the RDE with

F =



















1.7 1 0 0 0 0
−0.7 0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



















G = (0.9 −0.6 0 0 0 0 )T

P0 = Qc =



















1 0 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















.

The RDE is iterated twice to produce P2, and the feedback gain K2 is
computed via (3.5),

K2 = (−1.7483 −1.0733 0 0.8947 0.0929 0.0095 ) .

Thus the closed loop control strategy by the LQ tracking method is

∆ut = −0.644∆ut−1 + 1.7483yt − 0.7513yt−1

+0.8947rt+1 + 0.0929rt+2 + 0.0095rt+3 ,

which is identical to (2.26).
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3.10 Conclusions

Our aim has been to present a brief treatment of the principal features of
LQG control design which will have immediate application in our treatment
of the adaptive control of plants modeled by linear systems. In particular,
we have chosen to display, in the previous section, how the general LQG
setting subsumes the GPC control design.

The main points raised by way of this development may be summarized
as follows.

LQ Control

• An LQ regulator problem commences from a linear state-space plant
model and a quadratic cost function. This cost function may be fi-
nite horizon or infinite horizon. The infinite horizon regulator with
stationary weighting matrices produces a time-invariant control law.

• Receding horizon LQ control laws may also be derived where the con-
trol value at time t, ut, is the first element in the solution of a fixed
finite horizon problem solved at each time, t. This procedure also
produces a time-invariant control law.

• The control sequence solving an LQ regulator problem is given by
linear state-variable feedback. These feedback gains are derived from
the solution of the Riccati Difference Equation or the Algebraic Riccati
Equation. The stability properties of these solutions will be the topic
of the next chapter.

• An LQ tracking objective may be recast, via the use of state aug-
mentation, as an LQ regulation problem. The computational burden
of the solution of this larger-dimensioned problem splits conveniently
into two smaller subproblems.

State Estimation and LQG

• The implementation of an LQ control law requires the use of a state
estimator/observer. One may derive this observer as the dual to the
construction of the LQ control law, the Kalman predictor.

• With a strictly proper plant, i.e. possessing a zero at infinity, one may
use either an observer with delay, the Kalman predictor, or an observer
with direct feedthrough, the Kalman filter, without needing to address
issues of algebraic loops in the feedback system.
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• It is possible to design state estimators for processes subject to colored
measurement noise. This requires the augmentation of the state-space
model for the plant to include noise coloring states. This is dual to
the inclusion of a tracking signal in LQ and introduces similar com-
putational issues. Both the plant state estimate and the predictable
component of the noise are produced by the observer.

• By combining LQ linear state-variable feedback and KF observer con-
struction, one produces an LQG controller. If the gains of these sepa-
rate elements are constant, then the controller is a linear time-invariant
system.

• The constructs of reference and noise models from LQ and KF sepa-
rately carry over directly to the LQG design. In particular, the block
decomposition of the solution may be preserved and the control input
signal separated into components related to each subsystem.

GPC and LQG

• The GPC control law specification may be subsumed within the LQG
framework as a receding horizon LQ tracking controller with specific
choices for the cost function weighting matrices.

• The mechanism for forcing the GPC controller to admit zero tracking
error, optimizing over ∆ut rather than over ut, may be simply included
in the LQ systematization.

• Since the GPC control law is independent of a state coordinate sys-
tem, we see that the choice of Qc = HTH in the LQ criterion (which
applies to the state equation involving only F and G) has the effect of
forcing a state-space coordinate-free controller. That is, this choice of
Qc provides the mechanism for incorporating the measurement equa-
tion information into the control law selection. As adaptive control is
primarily concerned with input–output features of the linear system,
where particular state-variable realizations may not have any special
significance since the plant model itself is derived from input–output
data, it is an important feature of LQG control that the controllers
produced be capable of being coordinate-free.

• The prediction vector f of the GPC formulation contains the same in-
formation as the state x̂t|t of the direct feedthrough observer of LQG.
Their design, therefore, and the selection of the GPC polynomial C(z)
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can be reposed as a Kalman filtering issue, where this choice is con-
nected to presumed noise models.

• While GPC is presented via the receding horizon design philosophy, its
concerns are definitely associated with the infinite horizon properties
of stability and detuned minimum variance performance. The artefacts
of choosing design variables, such as Qc,j, Rc,j, N2, Nu and λ, for the
finite horizon problem should really be assessed on the infinite horizon.

Following on from this presentation of the principal features of LQG
control in our adaptive setting and its ability to encompass the empirically
supported GPC rule, we are next beholden to investigate the asymptotic
stability properties of these schemes. This is the subject of Chapter 4, where
we shall study intimately both the stability and performance properties of
receding horizon LQ and infinite horizon LQ strategies. In this way we shall
provide a theoretical basis for these studies and make more complete the
rôle of LQG theory in guaranteeing the adequate behavior of GPC. Through
this connection we open the floodgates for decades of accumulated LQG and
classical control design to inundate the practical adaptive control arena. But
more of this in the fullness of time . . .



Chapter 4

Stability and Performance
Properties of Receding
Horizon LQ Control

4.1 Introduction

In Chapter 3, we have identified three different manifestations of linear
quadratic regulation design criteria, an infinite horizon regulation criterion,
a finite horizon criterion and a receding horizon one. We have then shown
that GPC can be recast into a receding horizon LQ control problem, with
a particular, coordinate-free, choice of the criterion. While the asymptotic
stability of the infinite horizon controller is both well publicized and a rather
obvious consequence of its formulation as an asymptotic problem, and while
that of the finite horizon controller is irrelevant given its open loop and time-
varying nature, that of the receding horizon controller would appear a priori
to have no built-in justification.

Indeed, as receding horizon LQ control is a feedback strategy effected
through the application of a stationary feedback law applied prospectively
over an infinite interval, questions of stability naturally arise while solutions
are sometimes slow to emerge. One of the major drawbacks of GPC control is
that closed loop stability is not guaranteed, and that attempts at producing
stability results for GPC on the basis of its explicit input–output description
have been remarkably unsuccessful, usually necessitating the abandonment
of a specific control performance.

Having established the exact state-space LQ equivalent of GPC, we are
now in a position to bring to bear the powerful tools and properties of Riccati
equations on the resolution of these stability questions for receding horizon

83
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LQ controllers in general, and for GPC in particular. This is the starting
point of the analysis developed in this chapter, where we will use recently de-
veloped properties of the solutions of the Riccati equations to enforce closed
loop stability of receding horizon controllers. The reason why GPC in its
generic formulation may produce unstable closed loops whatever the games
played with the finite horizons Nu and N2 will then become transparent,
and so will the necessity, for guaranteed closed loop stability, to resort to
the more classical state-space LQ formulation with appropriate choices of
the weighting matrices. Of course, in a nonadaptive implementation, the
closed loop stability of any designed controller can always be verified before
actually closing the loop on the plant, and nominal stability margins can
be computed as well. But in an adaptive implementation the advantage of
using controller designs with guaranteed nominal stability margins becomes
self-evident.

Somewhat unsurprisingly perhaps, our results will show that receding
horizon controllers can be designed with guaranteed asymptotic closed loop
stability provided their cost function weighting matrices can be chosen in
such a way that the problem becomes equivalent to an infinite horizon LQ
problem with different (but related) weightings. Further, we provide a simple
test for stability with the receding horizon controller.

Our journey of discovery through the stability properties of receding
horizon control will then eventually lead us to the conclusion that, if closed
loop stability is a key requirement (and we don’t know of many practical
problems where it is not), one might as well resort to the tested and proven
infinite horizon LQ controller design formulation.

An LQ formulation of a controller design procedure incorporates an ob-
vious design and performance evaluation objective. One side-effect of our
analysis, and an added bonus to the reader, is that we shall confront the issue
of how the achieved performance of a receding horizon strategy compares to
the theoretical optimal performance over the infinite horizon.

So much for introduction, but what are the goods? We begin in this chap-
ter by studying the closed loop stability of receding horizon LQ controllers by
the use of monotonicity of solutions of Riccati Difference Equations (RDE).
One particular way of enforcing this monotonicity is a scheme due to Kwon
and Pearson [KP78], which we present thereafter. The stability behavior
(and possible misbehavior) of GPC is then illustrated. Finally, the compar-
ative performances of receding horizon and infinite horizon LQ schemes are
presented.
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4.2 Monotonicity and Stability of Receding
Horizon LQ Control

As remarked above, finite horizon LQ feedback control strategies do not guar-
antee closed loop asymptotic stability. Indeed, the mere question of asymp-
totic stability being associated with a finite horizon controller is clearly vacu-
ous since a finite horizon criterion is not designed to deliver such a property,
but this issue has direct interest with receding horizon strategies. Therefore
questions need to be asked concerning mechanisms for guaranteeing asymp-
totic stability properties of receding horizon controllers.

4.2.1 Stability via the ARE

The fundamental LQ asymptotic stability result derives from the stationary
infinite horizon regulator problem and the properties of the solution of the
Algebraic Riccati Equation (3.8) (ARE). We have:

Theorem 4.1 [dSGG86]
Consider the ARE associated with an infinite horizon LQ control problem,

P = F TPF − F TPG(GTPG+R)−1GTPF +Q (4.1)

where

• [F,G] is stabilizable,

• [F,Q1/2] has no unobservable modes on the unit circle,

• Q ≥ 0 and R > 0.

Then

• there exists a unique, maximal, non-negative definite symmetric solu-
tion P̄ .

• P̄ is a unique stabilizing solution, i.e.

F −G(GT P̄G+R)−1GT P̄F (4.2)

has all its eigenvalues strictly within the unit circle.

We shall call the solution P̄ above the stabilizing solution of the ARE.
We note that (4.2) is the state transition matrix of the closed loop system
when the stationary control law (3.9) is used. Hence Theorem 4.1 is the
fundamental closed loop stability result for infinite horizon LQ control.
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There exist other asymptotic stability results concerning the stability
of the infinite horizon LQ optimal feedback system (3.5) as a time-varying
linear control system. But the hopes of receding horizon strategists rest
firmly on the following convergence result

Theorem 4.2

Consider the ARE (4.1) above and its stabilizing solution P̄ , and consider
the RDE

Pt+1 = F TPtF − F TPtG(GTPtG+R)−1GTPtF +Q. (4.3)

Then, provided [F,G] is stabilizable, [F,Q1/2] is detectable and P0 ≥ 0, Pt →
P̄ as t→ ∞.

The conventional wisdom (see for example [CMT87], [Wou77], [WKR79])
of receding horizon has been to invoke the above results to argue that, pro-
vided N is taken sufficiently large, [F,G] is stabilizable and [F,Q1/2] is de-
tectable, one will ensure that F−G(GTPtG+R)−1GTPtF has its eigenvalues
all within the unit circle, for any t ≥ N . Indeed, this was the central mo-
tivation for the replacement of the one-step-ahead GMV controller by the
family of long range predictive controllers. The issue however has always
been: how big a value of N needs to be taken and further how can this be
affected by choice of P0? We shall now briefly present some results, due
primarily to Poubelle, which yield connections between the RDE solutions
and the ARE stability results.

We begin by rewriting the RDE as an ARE,

Pt = F TPtF − F TPtG(GTPtG+R)−1GTPtF + Q̄t. (4.4)

This equation plays such a pivotal rôle in this theory that Mademoiselle
Poubelle christened it the Fake Algebraic Riccati Equation (FARE) — a
convention we preserve. Notice that this is not so much a rewriting of the
RDE as a definition for Q̄t:

Q̄t = Pt − F TPtF + F TPtG(GTPtG+R)−1GTPtF (4.5)

or, in terms of differences of successive solution matrices,

Q̄t = Q− (Pt+1 − Pt). (4.6)

Clearly, while we have not altered the RDE in viewing it as a masquerading
ARE, we do have the immediate result following from Theorem 4.1 and (4.4).
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Theorem 4.3

Consider the FARE (4.4), or (4.5) defining the matrix Q̄t. If Q̄t ≥ 0, R > 0,

[F,G] is stabilizable, [F, Q̄
1/2
t ] is detectable, then Pt is stabilizing, i.e.

F̄t = F −G(GTPtG+R)−1GTPtF (4.7)

has its eigenvalues all strictly within the unit circle.

This theorem forms the centerpiece of our developments to translate sta-
bility properties from the ARE arena to the RDE. In particular, we shall
explore the implications of the defining relation (4.6) for Q̄t in terms of the
difference between successive solution matrices. We note that, unfortunately,
Theorem 4.3 does not admit an if and only if statement (see [BGPK85]).

Referring to Section 3.2.3, we note that the asymptotic stability of the
closed loop obtained from applying the N -step receding horizon LQ con-
troller (3.10) to the system (3.1) rests upon the eigenvalue locations of the
closed loop state transition matrix

F̄N−1 = F −G(GTPN−1G+R)−1GTPN−1F. (4.8)

This matrix will have all its eigenvalues strictly inside the unit circle if the
associated FARE (4.4), with t = N − 1, satisfies the prescriptions of Theo-
rem 4.3.

We observe, therefore, that just as the finite horizon LQ controller is
naturally connected to the associated RDE, the infinite horizon LQ controller
is naturally connected to the associated ARE, while the receding horizon LQ
controller is naturally connected to the associated FARE. The closed loop
asymptotic stability properties of the infinite and receding horizon controllers
are derived from the properties of the associated ARE and FARE. More
precisely, assuming that [F,G] is stabilizable and that R > 0, we have the
following Table 4.1.

We note that, given an N -step receding horizon control criterion with
weighting matrices Q and R, the asymptotic stability properties of the con-
troller are identical to those of an associated infinite horizon LQ controller
with the same R but a different Q, i.e. Q is replaced by Q̄N−1. We shall
see shortly that one way of guaranteeing closed loop stability of the receding
horizon controller is to enforce monotonic decrease of the solution sequence
Pt of the RDE, thereby forcing Q̄N−1 ≥ Q, (see (4.6)). Whence we notice
that, having set up a receding horizon LQ problem with a designed Q, the
stability properties of the corresponding closed loop will be those of an infi-
nite horizon LQ problem with a larger Q. We shall return in Section 4.5 to
the consequences of this observation on the performance of the corresponding
closed loop system.
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Optimal control Riccati Stability condition
problem equation (under [F,G] stabilizable, R > 0)

Finite horizon N RDE Not relevant

Infinite horizon ARE Q ≥ 0 and [F,Q1/2] detectable

Receding horizon N FARE Q̄N−1 ≥ 0 and

[F, Q̄
1/2
N−1] detectable

Table 4.1: Control problems and stability conditions

We now return to Theorem 4.3 and examine separately how the two

conditions on Q̄t (Q̄t ≥ 0 and [F, Q̄
1/2
t ] detectable) can be made to hold from

conditions on Q and the RDE. As detectability of matrix pairs is central to
our arguments, we first state the following simple lemma.

Lemma 4.1

Given two non-negative definite symmetric matrices Q1 and Q2 satisfying

Q1 ≤ Q2

then [F,Q
1/2
1 ] detectable implies [F,Q

1/2
2 ] detectable.

Proof The detectability assumption on [F,Q
1/2
1 ] requires that for every

eigenvalue, λ, of F which is greater in magnitude than unity and for its

associated left eigenvector w, wQ
1/2
1 6= 0. By the inequality of the lemma

statement, we also see that wQ
1/2
1 6= 0 implies that wQ

1/2
2 6= 0. CQFD

We now draw the connection between decreasing properties of the solu-
tion of the RDE and stability of F̄t from (4.7).

Corollary 4.1 [BGPK85]
If the RDE, with [F,G] stabilizable, has [F,Q1/2] detectable and if Pt is
nonincreasing at t, i.e.

Pt+1 ≤ Pt,

then F̄t of (4.7) is stable.

This result follows directly from (4.6) and Lemma 4.1. We shall see shortly
that the monotonicity properties are strongly determined by the initial con-
ditions of the RDE, and so stability can sometimes be assured for an entire
sequence of {F̄t}.
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4.2.2 Monotonicity Properties of the RDE

We begin by stating a recent pleasing result of de Souza [dSo89] on the
comparative properties between solutions of similar RDEs.

Lemma 4.2 [dSo89]
Let P 1

t and P 2
t be the solutions of two RDEs (4.3) with the same F , G and R

matrices but possibly different Qs: Q1 and Q2 respectively. Then, the matrix

P̃t = P 2
t − P 1

t

satisfies the equation

P̃t+1 = F̄ 1
t

T P̃tF̄
1
t − F̄ 1

t
T P̃tG(GTP 2

t G+R)−1GT P̃tF̄
1
t + Q̃ (4.9)

or
P̃t+1 = F̄ 1

t
T P̃tF̄

1
t − F̄ 1

t
T P̃tG(GT P̃tG+ R̃t)

−1GT P̃tF̄
1
t + Q̃,

where

F̄ 1
t = F −G(GTP 1

t G+R)−1GTP 1
t F

Q̃ = Q2 −Q1

R̃t = GTP 1
t G+R.

This lemma represents a simplification of the results of Nishimura [Nis67] and
[BGPK85] and is a discrete-time counterpart to those of [PBG88]. Sources
close to the President have revealed to us that a similar result was published
in [Sam80], a copy of which we do not possess.

Directly from Lemma 4.2 we have the following results, the first of which
extends the continuous-time observations of Kailath [Kai75].

Theorem 4.4 [BGPK85]
If the non-negative definite solution Pt of the RDE (4.3) is monotonically
nonincreasing at one time, i.e.

Pt+1 ≤ Pt, for some t,

then Pt is monotonically nonincreasing for all subsequent times,

Pt+k+1 ≤ Pt+k, for all k ≥ 0.

Proof Take P 1
t as Pt, P

2
t as Pt+1, Q

1 = Q2 in Lemma 4.2. Then, from (4.9),
we see that P̃t being nonpositive definite at time t implies that it remains
nonpositive definite and therefore we have the monotonicity of the theorem
statement. CQFD
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Theorem 4.5 [BGPK85]
If the solution Pt of the RDE (4.3) is monotonically nondecreasing at one
time, i.e.

Pt+1 ≥ Pt, for some t,

then Pt is monotonically nondecreasing for all subsequent times,

Pt+k+1 ≥ Pt+k, for all k ≥ 0.

Proof Take P 1
t as Pt+1, P

2
t as Pt, Q

1 = Q2 in Lemma 4.2. CQFD

These monotonicity conditions on the solution may be extended to include
monotonicity of the differences between successive solutions, using the same
device.

Theorem 4.6 [dSo89]
If the solution Pt of the RDE (4.3) has a nonpositive definite second differ-
ence at time t, i.e.

Pt+2 − 2Pt+1 + Pt ≤ 0,

then, for all k ≥ 0,

Pt+k+2 − 2Pt+k+1 + Pt+k ≤ 0.

With these monotonicity results under our wings we now turn back to
their implications for the stability of closed loop systems derived from the
solutions of the RDE.

4.2.3 Stability via Monotonicity of the RDE

By appealing to the monotonicity/stability connection in Corollary 4.1 we
may directly develop the following theorems on stability of F̄t of (4.7) thereby
rederiving the combined results of [BGPK85], [PPGB86], [PBG88], [dSo89].

Theorem 4.7

Consider the RDE (4.3). If

• [F,G] is stabilizable;

• [F,Q1/2] is detectable;

• Pt+1 ≤ Pt for some t;

then F̄k, given by (4.7) with Pk, is stable for all k ≥ t.
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Proof The monotonicity of Pt at one step implies, by Theorem 4.4, the
monotonicity at all subsequent steps. Corollary 4.1 then completes the proof.

CQFD
We have the following immediate consequence:

Corollary 4.2 [PBG88]
Consider the RDE (4.2). If

• [F,G] is stabilizable;

• [F,Q1/2] is detectable;

• Q̄0 ≥ Q;

then F̄t given by (4.7) is stable for all t ≥ 0.

Proof The third assumption implies P1 ≤ P0, and the result then follows
from the previous theorem. CQFD

The above results link the monotonic decreasing nature of the solution
of the RDE with the solution’s stability properties. This will form the core
of our stability arguments to be advanced later in this chapter where initial
conditions will be sought which cause the Pt sequence to be monotonically
nonincreasing ab initio, i.e. which force Q̄0 ≥ Q, thereby yielding stability
of F̄t for all t. This will then imply that receding horizon controllers will
produce closed loop stability whatever the horizon N used in the criterion.
These stability aspects of monotonically descreasing Pt have been used in
[BTP86] to derive stable filtering designs based effectively only on the choice
of P0. Here we also discuss possible stability issues when Pt is not mono-
tonically nonincreasing but where the difference Pt+1 − Pt is monotonically
nonincreasing. We quote the following result from de Souza [dSo89]:

Theorem 4.8

Let Pt be the solution of the RDE (4.3) and Q̄t be defined by (4.5). If for
some t:

• [F,G] is stabilizable;

• [F, Q̄
1/2
t ] is detectable;

• Pt+2 − 2Pt+1 + Pt ≤ 0;

then F̄k is stable for all k ≥ t.
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Proof The key idea used is that the subsequent nonpositive definiteness
of the second difference of Pk is implied by the theorem conditions and
Theorem 4.6. Thus after time t, Pk+1 − Pk is a nonincreasing sequence of
symmetric matrices. Therefore Q̄k is nondecreasing and so always greater
than Q̄t. CQFD

We have now established the theoretical basis for the derivation of stabil-
ity conditions for solutions of the RDE. As was demonstrated in the preced-
ing chapter, the GPC receding horizon control law implements a fixed linear
state-variable feedback gain computed as the solution of a finite horizon LQ
problem, that is as the end solution of a finite horizon RDE. The stability
properties of this and similar controllers will be addressed in the next section
by using these monotonicity ideas. But we conclude this section with some
fallacious conjectures in the spirit of [BGPK85] to help clarify matters.

Recall that Pt ≥ P∞ is a necessary condition for the RDE solution to
be monotonically nonincreasing at time t. This follows trivially from Theo-
rem 4.4 and Theorem 4.2. This, however, is not sufficient.

Fallacious Conjecture 4.1

If P∞ is stabilizing and P0 > P∞, then P0 is stabilizing.

Counterexample1 Take

F =

(

1 0
c 10

)

, G =

(

1
0

)

,

P0 =

(

a 0
0 a

)

and Q any positive definite matrix. Then, by Theorem 4.1, P∞ is stabilizing.
But

F −G(GTP0G+ rI)−1GTP0F =

( r
a+r 0
c 10

)

,

which is always unstable whatever the values of a or r or c 6= 0. Further, a
can always be chosen such that P0 > P∞. CQFD

The above fallacious conjecture serves to provide a warning against sim-
ply demanding large P0 to achieve stability. We next provide a fallacious
conjecture which gives more positive support to finding stabilizing feedbacks.

Fallacious Conjecture 4.2

F −G(GTP0G+ rI)−1GTP0F is stabilizing only if Q̄0 > 0.

1Literally exemple de comptoir.
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Counterexample Take, as in Fallacious Conjecture 3 of [BGPK85],

F =

(

0 2
2 0

)

, G =

(

1
0

)

,

P0 =

(

16 0
0 16

)

,

for which

F̄0 =

(

0 2/17
2 0

)

,

which is stable, and

Q̄0 =

(

−48 0
0 12.2

)

.

CQFD

Hence, while Q̄0 ≥ Q ≥ 0 guarantees the closed loop stability for all t ≥ 0
by Corollary 4.2, it is not a necessary condition for closed loop stability.
We shall now move on to consider design methods which are capable of
producing guaranteed stable closed loop systems in receding horizon control
via the monotonicity of an associated RDE solution.

4.3 Stabilizing Feedback Strategies

The questions naturally arising from the monotonicity results of the previous
section focus on how one could (or should) choose initial conditions, P0, for
the RDE that satisfy Q̄0 ≥ Q, in order to achieve a monotonic nonincreasing
sequence of Pt and, thereby, closed loop stability whatever the choice of finite
horizon for the receding horizon LQ strategy. We shall now address these
issues and include in our discussion two earlier methods proposed for the
design of constant stabilizing feedback gains, due to Kleinman [Kle74] and
to Kwon and Pearson [KP78].

Clearly, from Theorem 4.1, if closed loop asymptotic stability is desired
by choice of constant state feedback gain, then this may be achieved by
constructing an infinite horizon LQ problem satisfying the stabilizability and
detectability conditions and then solving an ARE for P̄ . In earlier days this
route was considered computationally prohibitive compared with iterating
the RDE and applying a receding horizon controller. This is still in part
true, especially for adaptive applications, and motivates the consideration
of these issues now. Before being able to proceed easily, we firstly develop
some necessary technical machinery.
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4.3.1 Alternative Forms of the RDE

It is apparent from the convergence theory of Theorem 4.2, and the mono-
tonicity results of Theorem 4.4, that any attempt to achieve stability prop-
erties of the solution Pt of the RDE via monotonic nonincreasing behavior
needs to commence with P0 greater than P̄ . Indeed, one might be tempted
to suggest that arbitrarily large P0 could always yield the desired stability.
This need not be true, as has been studied in [BGPK85] and treated in Fal-
lacious Conjecture 1. However, there does exist an intelligent choice for large
P0 which we explain shortly. This involves the choice of effectively infinite
P0 as implemented by specifying

P−1
0 = W0 = 0, (4.10)

and then iterating an equation for P−1
t = Wt, which is also an RDE. This

might appear to contradict Fallacious Conjecture 1, but it will be seen that
it can be roughly interpreted as insisting upon a finer structure of an infinite
initial condition. We begin by simply deriving this alternative RDE for Wt.

Rewrite the RDE iteration (4.3) as the following coupled equations:

P ⋆
t+1 = Pt − PtG(GTPtG+R)−1GTPt (4.11)

Pt+1 = F TP ⋆
t+1F +Q (4.12)

for Pt and P ⋆
t . Then, presuming for the moment that F , Pt, P

⋆
t and R are

invertible, denote
Wt = P−1

t , W ⋆
t = P ⋆

t
−1. (4.13)

This yields, via the matrix inversion lemma, the recursions

P ⋆
t+1

−1 = P−1
t +GR−1GT (4.14)

P−1
t+1 =

[

F T (P ⋆
t+1 + F−TQF−1)F

]−1
(4.15)

= F−1
[

P ⋆
t+1 + F−TQF−1

]−1
F−T (4.16)

= F−1P ⋆
t+1

−1F−T − F−1P ⋆
t+1

−1F−TQ1/2

×[I +Q1/2F−1P ⋆
t+1

−1F−TQ1/2]−1Q1/2F−1P ⋆
t+1

−1F−T (4.17)

or, in terms of Wt,

Wt = F−1W ⋆
t F

−T − F−1W ⋆
t F

−TQ1/2

×[I +Q1/2F−1W ⋆
t F

−TQ1/2]−1Q1/2F−1W ⋆
t F

−T , (4.18)
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or

W ⋆
t+1 = Wt +GR−1GT (4.19)

= F−1W ⋆
t F

−T − F−1W ⋆
t F

−TQ1/2 (4.20)

×[I +Q1/2F−1W ⋆
t F

−TQ1/2]−1Q1/2F−1W ⋆
t F

−T +GR−1GT .

That is, W ⋆
t satisfies an RDE similar to (4.3) with the assignments

F ∼ F−T , G ∼ F−TQ1/2, R ∼ I, Q ∼ GR−1GT . (4.21)

The closed loop matrix F̄t of (4.7) may be written as

F̄t = F −G(GTPtG+R)−1GTPtF

= F −G(GTW−1
t G+R)−1GTW−1

t F

= F −GR−1W ⋆
t+1

−1F. (4.22)

These alternative forms of writing the RDE and the solution to the LQ
optimal control problem are probably more familiar as duals of optimal fil-
tering equations, where the equivalent of W ⋆

t arises as the inverse of the
Kalman filter covariance in the information filter formulation [AM79]. The
relationship between Pt and P ⋆

t is equivalent to that of the covariances of the
Kalman predictor and of the Kalman filter respectively. In our LQ problem
the important feature of these issues here is that they permit us to work
alternatively with either scheme. It is worth remarking that it is possible
to pursue this approach even in the case of singular F and/or R, but this
might take us a little too far afield.

We shall see that taking zero initial conditions for the W ⋆
t equations

yields a method of correctly using infinite initial conditions for P0, which
entails monotonic nonincreasing Pt, and hence stability. We complete this
subsection by including the following result on the rank properties of Wt

when the RDE (4.18) is iterated from a zero initial condition.

Theorem 4.9

Consider the solution Wt of the RDE (4.18)–(4.20), under the assumption
that F and R are full rank and with initial condition W0 = 0. Then, provided
[F,G] is controllable (not just stabilizable), Wt will be full rank for all t ≥ n,
where n is the dimension of F .

Proof Suppose that Wn is not full rank. Then there exists a vector, x, such
that Wnx = 0. Now consider the LQ optimal control problem associated
with the RDE of the theorem. The criterion involves ‘Q’ and ‘R’ matrices
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GR−1GT and I respectively. Therefore, since xTWnx represents the opti-
mal cost and this is zero, the optimal control signal is zero and the state
trajectory is {x, Fx, . . . , Fn−1x}, which in turn produces zero cost with the
state weighting matrix GR−1GT . This clearly contradicts the controllability
assumption on the pair [F,G]. CQFD

We are now in a position to investigate stabilizing feedback gain strategies
using these results and the earlier monotonicity ideas.

4.3.2 The Stabilizing Controllers of Kwon, Pearson and
Kleinman

Kleinman presented the following novel method for stabilizing a discrete-
time linear, time-invariant system in state-variable form in [Kle74] in 1974.
This was a discrete-time counterpart to his continuous-time method of 1970
[Kle70]. The method is based on Gramian construction.

Theorem 4.10

Consider the state-variable system of dimension n

xt+1 = Fxt +Gut

and assume that [F,G] is controllable. Then, for any N ≥ n,

L = −R−1GT [(F T )NS−1
N FN ]F (4.23)

= −(R+GTVNG)−1GTVNF (4.24)

with

SN =
N
∑

i=0

F iGR−1GT (F T )i (4.25)

VN = (F T )NS−1
N−1F

N (4.26)

yields the matrix F+GL with all its eigenvalues strictly inside the unit circle.

We note that the structure of L above leads us to suspect the existence of
an underlying interpretation of this controller as an LQ solution.

Indeed, if F is invertible, we see directly from (4.23) and (4.25) that the
gain L may be rewritten as

L = −R−1GTW ⋆
N

−1F, (4.27)

where

W ⋆
N =

N
∑

i=0

F−iGR−1GT (F T )−i. (4.28)
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From (4.28) it is apparent that W ⋆
N is obtained by iterating N times the

following (Lyapunov) equation with zero initial conditions,

W ⋆
t+1 = F−1W ⋆

t (F T )−1 +GR−1GT . (4.29)

Further, comparing (4.20) to (4.29), we see that this is identical to the RDE
forW ⋆

t with Q = 0. That is to say, the Kleinman feedback gain is identical to
that derived from an LQ optimal control problem with Q = 0 and W ⋆

0 = 0.
We now note that this W ⋆

t from (4.28) is guaranteed to be monotonically
nondecreasing, which in turn, appealing to Theorem 4.9 and Corollary 7.7.4
of [HJ85], implies that the equivalent P ⋆

t and Pt sequences are well defined
and monotonically nonincreasing for all t ≥ n. Thus the stability of this
controller follows from Theorem 4.7. If F is not invertible then [KP78]
shows that the stability still holds.

While these results of Kleinman are clearly interesting in that they pro-
vide a mechanism for achieving stability, they do not yield in any sense a
solution which approximates that of a legitimate LQ problem involving spe-
cific Q and R. Further, if the Kleinman solution is to be used as the initial
condition for iteration of the RDE with Q, stability of this latter solution is
not guaranteed. Indeed, because the Kleinman solution is Q-independent,
there is no surety that PKleinman ≥ PQ

∞, where this latter quantity is the
steady-state stabilizing solution with Q 6= 0. For an extension which does
achieve monotonicity we turn to Kwon and Pearson of 1978 [KP78].

Theorem 4.11

Consider the state-variable system above of dimension n and assume that
R > 0, Q ≥ 0, F is invertible and [F,G] is controllable. Further consider
W ⋆

t the solution of the RDE (4.20) with initial condition W ⋆
0 = 0. Then

Kt = −R−1GTW ⋆
t+1

−1F (4.30)

= −(R+GTW−1
t G)−1GTW−1

t F (4.31)

yields F +GKt with all its eigenvalues strictly inside the unit circle for all
t ≥ n.

Proof Starting from W ⋆
0 = 0 and iterating the RDE for one step we have

W ⋆
1 = GR−1GT and hence W ⋆

0 ≤ W ⋆
1 . Thus the W ⋆

t sequence is monotoni-
cally nondecreasing and Wt will be full rank for all t ≥ n by Theorem 4.9.
We may then appeal directly to Theorem 4.7 for the stability result as in
the previous proof. CQFD

We see that this feedback strategy both subsumes the Kleinman result
and, further, identifies a mechanism for initializing a specific finite horizon
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LQ optimal control problem in such a fashion as to ensure asymptotic stabil-
ity if implemented as a receding horizon law. The choice of initial condition
W ⋆

0 = 0 may be interpreted as the effective method for choosing P0 as infinity
in order to achieve guaranteed monotonic decrease.

4.4 Mid Chapter Conclusion

So far, so good.

4.5 Comparative Performance of LQ Schemes

One of the major attractions of LQ methods, and of GPC in particular, is
that the optimality criterion presents a direct connection between problem
specification and achieved controller performance. The weighting of state
deviations and control energies may be relatively easily conceptualized in
terms of achieving, for example, more sluggish control dynamics by choosing
higher control cost or more vigorous closed loop behavior by increasing Q. It
is the relative magnitudes of Q and R which dictate asymptotic performance,
and guidelines for their prospective selection may be easily developed.

Our aim in this section is to present a single result on the achieved perfor-
mance of LQ control schemes (as opposed to the designed performance) and
then apply this result to receding horizon designs. That is, we shall exam-
ine by how much the performance, measured by the achieved quadratic cost
with the designer’s choice of Q and R, deteriorates when the corresponding
optimal control law is replaced by a suboptimal one obtained from the opti-
mization of a quadratic criterion with a different Q and R. This is exactly
the situation that arises in receding horizon control. Since receding horizon
control, as opposed to finite horizon control, is a design based on long term
or stationary application, the obvious way to evaluate the performance of a
receding horizon controller designed with a Q and R weighting, is to com-
pute the actual (i.e. achieved) infinite horizon cost criterion with the same
Q and R. Now, we have observed in Section 4.3 that the strategy to enforce
asymptotic stability of the closed loop system, when receding horizon LQ
controllers with designed Q and R are used, is to force the controller to be
the optimal solution of an associated infinite horizon optimal control prob-
lem with the same R and a larger Q. Therefore, it is important to evaluate
by how much the replacement of the designer’s choice of Q by a larger Q̄
deteriorates the performance of the receding horizon controller.

We begin by defining three successive quadratic performance measures
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associated with the single state equation (3.1)

xt+1 = Fxt +Gut,

and with a single infinite horizon quadratic criterion having constant Q and
R

J(Q,R) = lim
N→∞

1

N

(

N−1
∑

t=0

{

xT
t Qxt + uT

t Rut

}

)

. (4.32)

Definition 1

The optimal control performance Jopt is the minimal value of J(Q,R),

Jopt = min
u
J(Q,R).

From our earlier theory, this J(Q,R) is achieved by applying the LQ optimal
feedback control derived by solving the ARE with matrices F , G, Q, R.

Definition 2

The designed control performance Jdes is the optimal value of the LQ criterion
(4.32) associated with a design problem using a possibly different weighting
matrix pair Q̄, R̄,

Jdes = min
u
J(Q̄, R̄).

We denote the corresponding control sequence by udes,t,

udes = arg min
u
J(Q̄, R̄).

Again, our earlier theory says that this Jdes is computable by solving an
ARE with matrices F , G, Q̄ and R̄.

Definition 3

The achieved control performance Jach is the value of J(Q,R) computed
when the control law designed with matrices Q̄ and R̄ is applied to the above
state-variable system,

Jach = lim
N→∞

1

N

(

N−1
∑

t=0

{

xT
t Qxt + uT

des,tRudes,t

}

)

.

Thus Jach is the achieved performance, as measured by the J(Q,R) criterion,
of an optimal controller designed with differing weighting matrices Q̄ and R̄.

We have the following result from [PPGB86]:
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Lemma 4.3

Consider two AREs (4.1) with the same F , G and R matrices but with dif-
fering Q matrices, Q1 and Q2 respectively. Denote their respective stabilizing
solutions by P1 and P2. Then

Q1 ≥ Q2 implies P1 ≥ P2.

This is easily derived from the Riccati equation comparison formulae used
earlier but, more surprisingly, it has the following (earlier!) extension due to
Nishimura [Nis67] in the case of optimal filtering, the dual of which we now
present.

Theorem 4.12

With the above definitions of performance measures, we have

Q̄ ≥ Q, R̄ ≥ R implies Jdes ≥ Jach ≥ Jopt.

The first inequality, Jdes ≥ Jach, is apparent from the optimality criterion
(4.32) itself, since ut and xt are identical in the calculation of Jdes and Jach

but the weighting matrices are different. The second inequality stems triv-
ially from the optimality. Some further discussion of this result for optimal
filtering is included in [AM79].

We remark here that a complementary result involving Q̄ ≤ Q is not
possible because of a lack of ordering between Jdes and Jach. Further, if Q̄
is allowed to become negative (presaging a difficulty later on), even stability
need not be achieved, in spite of the earlier Fallacious Conjecture 2.

An important consequence of Theorem 4.12 for receding horizon LQ
problems can be derived if we consider the following facts. Even if a fi-
nite time receding horizon LQ problem is posed, with Q and R the matrices
in the criterion, the choice of these weighting matrices is usually made on
long term (infinite time or asymptotic) considerations, so that the user effec-
tively has an infinite time problem in mind. Hence the optimal performance
he thinks of is given by Jopt as defined previously. The FARE (4.4) tells us
that solving the finite time receding horizon problem with Q and R matrices
amounts to solving an infinite time LQ problem with matrices Q̄N−1 and R,
for which the performance could be characterized by

Jdes = xT
t P

Q,R
N−1xt = xT

t P
Q̄N−1,R
∞ xt.

Still, the achieved performance in the long term, as measured by the initial
choice of weighting matrices, will be Jach. Now, if one uses such strategies
that guarantee that Q̄N−1 ≥ Q, one obtains

Jopt ≤ Jach ≤ Jdes,
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and so one achieves guaranteed stability (by the FARE) and an upper bound
for the performance which is given by Jdes. Further, as N tends to ∞
we squeeze the upper bound on performance onto the lower bound. If a
receding horizon strategy is used which does not imply that Q̄N−1 ≥ Q,
then neither stability nor performance can be certified. We reiterate here
that the predictability of the closed loop behavior is one of the advantages
of infinite horizon LQ methods and thus it is important to preserve it in any
approximating scheme such as receding horizon.

4.6 Stability Properties of GPC

We have now run much of our course in setting the scene for a full LQ re-
assessment of the nonadaptive GPC control law based on receding horizon
control. Our path has led from Chapters 2 and 3 with the interpretation
of GPC as an explicit receding horizon LQ law implemented with specific
direct feedthrough observers, through to this chapter where stability and
performance properties of general receding horizon strategies were estab-
lished together with methods for assuring these properties via monotonicity
arguments. It next behoves us to examine the GPC control law in the light
of its satisfaction or dissatisfaction of these criteria. Recall that Theorem 4.7
states that a receding horizon strategy constructed with monotonically non-
increasing Pt will yield an asymptotically stable closed loop. We have the
following contrary result for GPC.

Theorem 4.13

Consider the solution, Pt, of the RDE (3.4) associated with the GPC control
law having Nu = N2, N1 = 1, i.e. Qt = HTH, Rt = λI and P0 = HTH.
Then, for all t ≥ 0,

Pt+1 ≥ Pt,

i.e. Pt is always monotonically nondecreasing.

Proof The RDE associated with this choice of Nu, N2 and N1 is a constant
coefficient RDE,

Pt+1 = F TPtF − F TPtG(GTPtG+ λI)−1GTPtF +HTH. (4.33)

The solution of this RDE from initial condition P0 = HTH is identical to
that produced from initial condition P−1 = 0, by inspection. Since this
entails P0 ≥ P−1, we have from Theorem 4.5 that Pt is monotonically non-
decreasing for all time. CQFD
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The import of this theorem is that it dictates that the GPC formulation
with full control horizon, Nu = N2, cannot produce monotonically decreas-
ing Pt, whatever the value of N (N2) chosen. This should then make us
somewhat suspicious about GPC’s ability always to produce stabilizing con-
trol laws. We do remark here that while GPC does not produce an explicit
calculation for Pt, the efforts of Chapter 3 have shown that it is implicitly de-
fined by PN−1 (see (3.97)). The properties of the solution of the RDE (4.33)
at t = N − 1 therefore directly determine the stability and performance of
the GPC control law. In addition to potential closed loop instability, it also
follows from Theorem 4.13 that GPC fails to inherit the nice performance
properties discussed in the previous section. In fact, with monotonicity going
the wrong way, it is hard to say anything about the achieved performance
of the receding horizon GPC controller as measured against its optimal infi-
nite horizon cost criterion except as N goes to infinity. We now provide an
example which illustrates controller misbehavior in GPC.

4.6.1 An Unstable GPC Example

Consider the second order system with transfer function polynomials given
by

A(q−1) = 1 − 4q−1 + 4q−2 = (1 − 2q−1)2

B(q−1) = q−1 − 1.999q−2.

It has a state-variable description as follows:

F =

(

2 0
1 2

)

G = ( 1 0 )T

H = ( 1 0.001 ) .

Note that this system is unstable with open loop poles both at -2. Further,
it possesses a near pole-zero cancellation, which translates into this state-
variable model being nearly undetectable.

We select as control cost weighting factor λ = 0.1 and compute the
solution of the GPC RDE (4.33) from P0 = HTH. We also compute the
closed loop pole positions, λcl, resulting from the corresponding GPC control
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law. These are listed below for several representative values.

P0 =

(

1 0.001
0.001 0.000001

)

, λcl = 0.1819, 1.9990

P1 =

(

1.3640 0.00136
0.00136 0.00000136

)

, λcl = 0.1367, 1.9990

P2 =

(

1.3731 0.00137
0.00137 0.00000137

)

, λcl = 0.1358, 1.9990

P10 =

(

1.3732 0.00137
0.00137 0.00000140

)

, λcl = 0.1358, 1.9990

P20 =

(

1.3813 0.01644
0.01644 0.02809

)

, λcl = 0.1358, 1.9881

P25 =

(

4.2486 5.3616
5.3616 9.9924

)

, λcl = 0.1358, 0.6772

P∞ =

(

5.7870 8.2294
8.2294 15.3385

)

, λcl = 0.1358, 0.5003.

It is clear from this example that the convergence speed of the solution of
the RDE is very slow from an initial condition P0 = HTH when the pair
[F,H] is almost nondetectable. The first stabilizing controller is achieved
only after 25 iterations, i.e. N2 = 25. Convergence effectively to the steady-
state value P∞ has occurred by the thirtieth iteration. This is illustrated
in Figure 4.1, which shows the achieved closed loop poles with a receding
horizon controller as the horizon is altered. The rather remarkable amount
of time before stability is achieved is due to the almost nondetectability of
the plant model.

This example illustrates several things. Firstly, it clearly shows the mono-
tonically nondecreasing properties of the GPC RDE solution, at least when
Nu = N2. Secondly, it shows that monotonically nondecreasing solutions
of the RDE do not necessarily provide closed loop stability. And thirdly,
it shows the potential difficulty arising from the choice of initial condition
matrix P0 as HTH when detectability problems exist. For this (albeit con-
trived) example it is clear that the application of a receding horizon strategy
based upon GPC would be unwise.

There are several ways to solve this dilemma. Probably the simplest way
is to just utilize an infinite horizon LQG controller by solving an ARE. This
provides guaranteed closed loop stability; the closed loop eigenvalues for
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Figure 4.1: Closed loop poles as a function of horizon

this example are 0.1358 and 0.5003, as shown above. Alternatively, one can
utilize a receding horizon LQ controller by, for example, selecting a different
Q and/or P0 matrix. Both solutions of course require more computations
than GPC, but with the speed of modern day computers this is rarely a
decisive handicap. For comparison, here we carry through the computation
of the Kwon-Pearson controller, which yields a stable closed loop after two
steps, i.e. for any N2 ≥ 2 as opposed to N2 ≥ 25 for GPC.

For the calculation of the Kwon-Pearson controller for the above system,
we have, from (4.20) with zero initial condition and Theorem 4.11,

F−1 =

(

0.5 0
−0.25 0.5

)

W ⋆
3 =

(

10.73 −0.389
−0.389 0.249

)

K2 = (−0.1085 −0.7710 )

F +GK2 =

(

0.392 −0.771
−0.25 0.5

)

,

yielding closed loop eigenvalues λcl = 0.0034, 0.8881. The point to remark
here is that closed loop stability is guaranteed by the latter controller without
further selection of design parameters or iteration on, say, N2.
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4.6.2 Time-varying Strategies in Receding Horizon Control

The above results indicate some negative aspects of the GPC algorithm in
that the Pt sequence will always be monotonically nondecreasing, which does
not augur well for guaranteeing stability. The ‘ace up the sleeve’ of GPC,
however, is that its formulation admits the use of time-varying weighting
matrices in the derivation of its control law. In particular, the ploy of using
several steps with R = ∞ is frequently asserted in GPC by selecting Nu

appropriately. This is what we mean by ‘time-varying strategies’ in receding
horizon control. Although originally introduced to achieve computational
efficiency, this tool might have the potential of alleviating some problems
by accelerating the initial increase of Pt, as we shall now explore. We shall
investigate what stability properties might be achieved by this devious act.

We study the possible effects of combining a number of initial steps of the
RDE with infiniteR value, followed by steps of the finiteR RDE. Specifically,
we are looking for indications of how this can effect stability properties of
the final solution. When R = ∞ we have the following version of the RDE
(4.3), which now has the form of a Lyapunov equation,

Pt+1 = F TPtF +Q, (4.34)

possessing the obvious solution,

Pt = (F T )tP0F
t +

t−1
∑

i=0

(F T )iQF i. (4.35)

For stable F the solution Pt above converges as t → ∞. For unstable F ,
Pt does not converge. With infinite R (and Q finite), the control signal will
always be zero and so questions of stabilizability are not sensible. Never-
theless, this may yield a useful procedure for developing an initial condition
from which to iterate the RDE with finite R.

We have some elementary results on the solutions of such infinite R
RDEs.

Theorem 4.14

Consider the infinite R RDE (4.34). If 0 ≤ P0 ≤ Q, then Pt is monotoni-
cally nondecreasing for all t.

Proof From the theorem conditions and using (4.35) we see immediately
that P1 = F TP0F + Q ≥ Q ≥ P0, and so Pt is therefore monotonically
nondecreasing for all t by Theorem 4.5. CQFD

Note that this result is not necessarily true with strict increase, i.e. Pt+1 >
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Pt, as may be seen by taking F = 0 for example. Similarly, if P0 ≥ Q it
need not be true.

Theorem 4.15

Denote the solution of the RDE with infinite R and initial condition P∞
0 by

P∞
t , and denote the solution with finite R by PR

t . Then if P∞
0 ≥ PR

0 ≥ 0
we have

P∞
t ≥ PR

t .

Proof Subtracting the two RDEs (4.3) and (4.34) we have

P∞
t+1 − PR

t+1 = F T (P∞
t − PR

t )F + F TPR
t G(GTPR

t G+R)−1GTPR
t F. (4.36)

The theorem statement follows from the non-negativity of the right hand
side above. CQFD

A simple corollary of the above theorem is that, if P∞
∞ exists (which it

will if and only if F is stable), then P∞
0 ≥ PR

0 implies P∞
∞ ≥ PR

∞. Thus one
might envisage that the choice of several steps of R = ∞ might yield a Pt

value exceeding PR
∞ and thereby the possibility of producing a monotonically

decreasing sequence of Pt+k from that point onwards. We have the following
remarkable new result (‘Funny Result 4A’), whose proof we omit in order
not to appear too funny.

Theorem 4.16

With the same notation as above, provided PR
∞ ≥ 0 exists, [F,GTPR

∞] is
observable, and either

• [F,Q1/2] is stabilizable, or

• P∞
0 > 0,

then there exists a K such that for all k > K

P∞
k ≥ PR

∞.

We shall next investigate how this observation plays a part in justifying the
GPC use of Nu.

4.6.3 The Use of Nu in GPC Stability

Recall that the use of a Nu smaller than N2 in GPC corresponds to initial
RDE steps being implemented with R = ∞, followed by iterations with a
finite R. It was shown in the previous subsection that these procedures yield
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a solution matrix, P∞
t , which always exceeds the equivalent finite R solution,

PR
t . Additionally, subject to mild assumptions, P∞

t is greater than or equal
to the steady-state value PR

∞ for all t exceeding a finite constant K. The
strategy advocated in the use of these initial infinite weightings therefore is
to allow a fixed number of steps to be taken with infinite R and then to
switch to finite R iterations of the RDE, operating under the presumption
that this latter phase of the RDE will be initialized from above the steady-
state solution and therefore be likely to yield monotonically decreasing Pt.
While this strategy certainly points in the right direction, it does not really
solve the problem of closed loop stability. The difficulty, as with GPC in
general, is that it is essentially impossible to ascertain how many steps of
each kind are necessary to achieve the desired result. To be fair, we admit
here that the application of such steps in GPC, which is a consequence of
the choice Nu < N2, is advanced mostly on computational grounds.

In addition to the ‘playing of games’ with the Nu parameter, GPC afi-
cionados have proposed other schemes to attempt to guarantee closed loop
stability via time-varying strategies within the horizon. This includes the
manipulations of Gorez, Wertz and Zhou [GWZ87], who consider altering
the value of N1 to this effect.

4.6.4 Stability Theorems of Clarke and Mohtadi

Mohtadi and Clarke [MC86], [Moh87], have advanced three theorems for
GPC stability by judicious choice of the parameter values involved. We
shall present these here and attempt to interpret them in our terms and in
terms of their efficacy of application. As we shall see, each relies on limiting
properties of specific LQ solutions and these limiting cases need not really
reflect desirable control goals.

Their first theorem is concerned with the case where N2 → ∞ which,
in RDE terms, is subsumed under the auspices of Theorem 4.2 and Theo-
rem 4.1.

Theorem 4.17 [MC86]
If the system (3.1) with dimF = n×n is stabilizable and detectable, then the
closed loop under GPC control is stable if:

• Nu, N2 → ∞ with Nu = N2 and λ > 0, or

• Nu, N2 → ∞ with Nu = N2 − n + 1 and λ > 0, provided there is no
plant zero on the stability boundary.

As remarked above, the first part of this theorem is easily absorbed into our
earlier theorems on the RDE convergence and ARE stability. The second
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part, after some cursory contemplation, is subsumed similarly because both
Nu and N2 go to infinity and the boundary effects of Nu 6= N2 play no part.
The purpose of the requirement of no plant zeros on the stability boundary
would appear to be specious. The reason for discussing this controller se-
lection in [MC86] is because of its connection to earlier proposed predictive
controllers of [Pet84].

The second theorem of [MC86] forces the GPC LQ controller to yield
a deadbeat feedback strategy by selecting N1 = n (the state dimension),
N2 ≥ 2n− 1, Nu = n and λ = 0.

Theorem 4.18 [MC86]
The GPC controller results in a stable deadbeat system if

• N1 = n, N2 ≥ 2n− 1, Nu = n and λ = 0.

The strategy here is best seen by considering the time interval (0, N2). Dur-
ing the first part of the interval, (0, n − 1), the LQ weights are Q = 0 and
R = 0 with initial condition P0 = HTH. Thus any control action is cost-free
during this period, and further state deviations are not penalized. During
the second half of the interval, (n,N2), the control cost is infinite but the
state cost is non-zero. The optimal (zero cost!) control is clearly a dead-
beat strategy which zeroes the state over the first n steps. While this stable
controller is derivable from within the GPC formalism, its use does beg the
question of whether such a circuitous route to this feedback strategy has any
advantage over an explicit deadbeat computation.

The third theorem deals with finite timescales for the GPC and so is the
most interesting from the perspective of receding horizon LQ control.

Theorem 4.19 [MC86]
The closed loop under GPC is stable if

• The state-variable model (3.1) is completely controllable and observable
with state dimension n,

• N1 ≥ n, Nu = N2 −N1 + 1 ≥ n, and

• λ = ǫ where ǫ is a sufficiently small positive constant.

We remark that, while the theorem does not rely upon limiting arguments
with time indices, it still requires the selection of a ‘vanishingly small’ con-
stant ǫ. Nevertheless, some analysis does indicate how stability is achieved
and consideration of the above example will illustrate some remaining diffi-
culties with its application.
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Referral to the GPC/LQ specifications (3.94)–(3.96) for the problem out-
lined in the theorem shows that, in RDE terms, the solution is generated by
iterating the RDE in two stages. From P0 = HTH the RDE is iterated for
Nu steps with R = ∞I and Q = HTH. Then N2 −Nu steps are performed
with R = ǫI and Q = 0. After the first stage we have

PNu =
Nu
∑

i=0

(F T )iHTHF i, (4.37)

as was illustrated in (4.35). By observability, this solution will have full rank
provided Nu ≥ n− 1. Then to implement the Q = 0 stages, we revert to the
inverse formulation of the RDE in terms of W ⋆

t .
Specifically, we define WNu = P−1

Nu
from (4.13) and thenW ⋆

Nu+1 = WNu +

GR−1GT from (4.19). The RDE (4.20) is subsequently iterated for N2 −Nu

steps, but since Q = 0 (4.20) becomes a Lyapunov equation (4.29)

W ⋆
t+1 = F−1W ⋆

t (F T )−1 +GR−1GT . (4.38)

The solution to this equation is therefore directly calculable as

W ⋆
N2+1 = F−m

{

Nu
∑

i=0

(F T )iHTHF i

}−1

(F T )−m

+ǫ−1
m−1
∑

i=0

F−iGGT (F T )−i, (4.39)

where m = N2 −Nu.
It is relatively easy to calculate examples where this W ⋆

t is not monoton-
ically nondecreasing at t = N2 + 1, and so stability is not verifiable by this
means here. Nevertheless, it is apparent from (4.39) that, for small enough
ǫ, W ⋆

N2+1 is dominated by the term (4.28) of the Kleinman controller. As
ǫ → 0, while W ⋆

N2+1 6→ WKleinman, because of the ǫ−1 factor, from (4.30)
one sees that KN2+1 → KKleinman. The stability properties of this controller
are achieved by the stability of the Kleinman controller and the continuity
of the closed loop poles with respect to the state feedback gains. We may
now return to the simple second order GPC example above to illustrate this
mechanism for stability.

With the earlier example of GPC, which has system order n = 2, we take
N1 = 2, N2 = 4, Nu = 2 and controller LQ weightings (Q,R) successively
as (HTH,∞I), (HTH,∞I), (0, ǫI), (0, ǫI). A computer analysis using Pro-
Matlab shows that, in order for closed loop stability to be achieved, it is
necessary to take ǫ ≤ 5.2× 10−13! Thus we see that, even with this example
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which is not too badly detectable, one must take an infinitesimal value for ǫ
to gain closed loop stability by this procedure. Further, the controller that
will be implemented will be close to that of the Kleinman scheme, which
does not bear a close resemblance in performance terms to a general LQ
specification since it does not involve Q.

In summary it is apparent that the systematic techniques provided for
the GPC method so far to deliver stability and/or closed loop performance
are either asymptotic in nature or involve the careful selection of various
constants in a way which would be hard to formalize in a general context
connected with a realistic performance measure. Our recommendation later
will be that, as stability for receding horizon LQ strategies can only be easily
guaranteed with monotonicity arguments, and these in turn state that the
receding horizon Riccati solution is a solution of a (Fake) algebraic Riccati
equation, one might just as well solve the ARE to generate the LQ control
law. This ensures both stability and connection to desirable performance
measures for the designed system. In the next chapter, we will also see that
stability robustness properties additionally are available.

4.7 Conclusions

The attractive feature of GPC controller design is that it yields access to the
sophisticated properties of Linear Quadratic control without necessitating
the complete expertise of the applications engineer in this subject. This is
achieved by precluding some of the design choices or recouching them in
terms of process parameters, i.e. by choosing Q = HTH. The implication
of this, as has been evidenced in this chapter, is that it can be difficult to
guarantee both closed loop stability and performance. Indeed, while the
assumption is that the GPC receding horizon strategy should approximate
an infinite horizon LQ law with its guaranteed stability property, it is quite
apparent that this need not be achieved. Further, attempts to coax GPC
to behave more adequately appear to suffer from either being asymptotic in
nature or perhaps dependent upon iterative selection of various parameters
in a trial and error type mode.

Our thesis here is that LQ state-variable feedback design, incorporating
either receding horizon methods and the RDE or, preferably, infinite horizon
methods and solution of the ARE together with observer design, may be
formulated in a similar fashion to GPC requiring the same level of expertise
of the applications personnel. As a matter of fact, after spending the next
two chapters analysing the robustness properties of infinite horizon LQG
controllers in an adaptive control implementation, we shall make a case in
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Chapter 7 for the use of a specific adaptive LQG controller whose design
choices, while as simple as those of GPC, are theoretically justified by the
combined theories of LQG robustness and of RLS identification.

In addition to guarantees of closed loop stability and performance, to-
gether with computable stability margins as we shall see in the next chapter,
the LQ formalism admits considerably more flexibility through the manip-
ulation of observer dynamics, quadratic cost weightings without artificial
constraint, and frequency weighting if such modifications are feasible and
desired. Of course, the price to pay for this added flexibility is in the cost of
computation of the controller, which must be performed at every iteration
of the adaptive control algorithm, but it is our belief that there are many
instances where the computational constraint is not an active one. This is
becoming increasingly more so with improved, cheaper computing facilities
and given the noncritical dimensions of typical applications processes, where
GPC has found a niche. Additionally, efficient algorithms are at present
available for the computations required in the solution of LQ problems, such
as the millstone Schur algorithm of Laub [Lau79b] for the solution of an
ARE equation.

Having concluded our stability and performance analysis of receding hori-
zon controllers, and established the merits, from a stability point of view,
of full infinite horizon LQ designs, we shall from now on abandon reced-
ing horizon strategies and GPC, and devote our attention to the robustness
properties of infinite horizon LQ and LQG controllers.
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Chapter 5

Robust LQG Design —
Features for Adaptive
Control

5.1 Introduction

With this chapter we mark our first excursions into the field of Robust Lin-
ear Control Systems. We shall return to this subject in Chapter 7 to refine
the issues associated specifically with LQG robustness in an adaptive con-
text. Later, in Chapter 8, we develop both a more general linear robustness
theory and its implications for less specific adaptive control laws. Thus, for
the moment, we shall concentrate upon the detailed presentation of LQG
robustness theory and leave in abeyance (rather briefly) the fuller treatment
of robust linear control. Our reasoning behind this is to explore reasonably
completely the connections between the current GPC adaptive control laws
(viewed now as a subset of LQG) and the existing linear robustness the-
ories for LQG. Our analysis will focus upon LQG controllers made robust
with Loop Transfer Recovery. Thus our tack is to develop firstly a thorough
and detailed treatment of controller robustness for LQG adaptive optimal
control, and only then in Chapter 8 to wax lyrical about more esoteric and
fanciful, broader principles. By this later stage, the reader should have
accreted the requisite intellectual baggage and intricate specific experience
to deal comfortably with the technical discussion which treats, at one fell
swoop, a plethora of control methods.

113
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5.1.1 A First Hint at the Adaptation/Robustness Interplay

Having established a solid theoretical justification for the use of infinite hori-
zon LQG control laws, we now proceed to establish the properties that these
controllers should possess in order to be utilized in an adaptive loop. The
adaptive version of LQG control consists of the interconnection of a parame-
ter identifier operating on the plant input and output signals and producing
plant model parameter estimates, and a control design stage where this es-
timated model is used as the basis for the generation of the control law. In
this framework, the LQG design needs to be performed frequently as the
estimates are refined or updated.

One of the key features of adaptive control systems is that the incor-
poration of an on-line system identifier coupled to the control law design
module of necessity involves an admission that the system modeling will,
at times, be poor. This poor quality has a double origin: most often, the
parametrized model can only at best approximate the actual plant and, in
addition, the estimated parameters do not coincide with the best possible
parameters within the chosen model structure, either because they have not
converged or because the actual plant dynamics are varying slowly in time.
As a consequence of this, it is critical that the control law chosen as the basis
for the adaptive computation should be robust to certain modeling errors.
The study of the ability of a control law to preserve closed loop stability
and performance in the face of inexact plant knowledge is the province of
robustness. Because of the inherent inaccuracy of the identified plant model
in an adaptive context, robustness of the underlying linear control law is a
critical ingredient of any adaptive controller.

In line with our definition of robustness explained in Section 1.3, this
means that, should the adaptation be stayed at some nominal parameter
value, the resulting linear controller should be capable of stabilizing a neigh-
borhood of plants about this nominal value. Of central importance in the
consideration of linear system robustness is the definition of an appropriate
topology within which this neighborhood is described and hence to delineate
the class of allowable perturbations to the plant for which the controller can
still provide stability. In this fashion the controller robustness properties can
be tied in to the demands placed upon the adaptive identifier, which deter-
mines the accuracy of the nominal plant model. Thus we see the emergence
of the first real insight into the interplay necessary between the control law
selection and the plant identifier design which is the central focus of this
book, and which makes up the (so-called) ‘Adaptive Control Problem’.

It is with this objective in mind that we now move on to consider some
existing theories which develop robustness results for LQ and LQG control.
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These notions will be formulated in the frequency domain and will produce
joint modeling and control requirements indicating the respective conditions
necessary to achieve robust stability. To complement this in the adaptive
context, recent frequency domain formulations of the Least Squares (LS) sys-
tem identification criterion, due to Ljung [Lju87] and others, will be studied
in Chapter 6 to determine how the closed loop signals generated by a con-
trol strategy will affect the properties of a model fitted by a concurrent LS
identifier, and how the identifier filters will affect the inaccuracy in the iden-
tified model. We shall then be able in Chapter 7 to specify unified goals for
the control and identification components of an adaptive LQG controller. In
Chapter 8 we then extend and complement the specific LQG analysis to cope
with more general control laws, but at the price of somewhat less focused
conclusions.

5.1.2 A Guided Tour of LQG Robustness Theory

As with much of our preceding theory, our aim in this chapter will be to
navigate a path through a body of existing literature on the subject of the
robustness of feedback control and then to interpret this specifically in the
light of how it impinges upon adaptive LQG methods. Many of the results
to be stated here are not new but, equally, many of their derivations in
discrete-time are not freely available. Throughout, our goal will be to iden-
tify what are the crucial properties affecting control robustness and, later,
to investigate how these might be affected and manipulated in the design
of adaptive LQG or adaptive predictive controllers. Our presentation of the
robustness theory of LQG controllers will proceed along the following path.

• We shall begin by recalling some classical theory on the robustness of
unity feedback control systems. The question posed in such theory is as
follows: if a nominal plant model, in a unity feedback loop, produces a
stable closed loop, how large is the neighborhood of plants around this
nominal model that can also be stabilized in the same unity feedback
loop? The main result is a criterion that exactly connects the amount
of relative plant model error that is allowed at any frequency with the
return difference margin, at that frequency, of the nominal plant. The
return difference of a plant in a feedback loop will be defined in due
time; the result roughly tells us that the return difference margin of
the nominal plant model must be large where the relative plant model
error is large in the passband of the plant. This is a specific robustness
criterion of many possible criteria (some of which will be presented in
Chapter 8) which is appropriate when the nature of the plant model
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error centers on gain variations in the passband, rather than, say, a
robustness criterion which revolves around roll-off errors or stopband
phase for example. It is robustness to this class of uncertainty which
is demonstrable for LQ and LQG systems.

• Turning then to full state feedback LQ controllers and to Kalman pre-
dictors, the designs of which are dual of one another, we shall observe
that a key Linear Quadratic design equality, called the Return Differ-
ence Equality, provides us with a constant (i.e. frequency independent)
and computable lower bound on the stability margin for an LQ con-
trolled system or for a Kalman predictor. In view of its important rôle,
we shall call this Return Difference Equality the EDR (for Égalité de
la Différence du Retour) in order not to confuse it with the Riccati
Difference Equation, RDE.

• We shall then observe that when an observer or Kalman filter is in-
cluded in the loop, i.e. when full state feedback is replaced by state-
estimate feedback, the stability margin guaranteed to the designer by
the EDR in the case of LQ control, may evanesce in this situation of
LQG control. This is not to say that LQG feedback laws have no ro-
bustness to unmodeled dynamics; it just points to the fact that the tool
for providing us with robustness bounds in the case of LQ controllers,
the EDR, is no longer there to produce guaranteed margins in the case
of LQG controllers.

• Finally, we shall show that, in the case of LQG design, Loop Transfer
Recovery (LTR) techniques can be called on to rescue the guaranteed
margins offered by full state feedback LQ design, with the guarantees
only holding for minimum phase, minimum delay systems. In contin-
uous time LQG design, these techniques consist of choosing either the
noise variances of the Kalman filter or the weighting matrices of the
LQ control criterion in such a way that the open loop transfer func-
tion of the combined ‘plant model/LQG controller’ converges to the
corresponding open loop transfer function of the Kalman predictor or
LQ controller, thereby inheriting their EDR-derived stability margins.
As we shall show, in the discrete-time case that is of interest to us in
this book, this situation is slightly more complicated: the guaranteed
stability margin of the Kalman predictor only (and not that of the LQ
controller) can be recovered by a specific choice of control weighting
function matrices.
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Figure 5.1: Feedback system

5.2 Robustness of Unity Feedback Systems

We begin by considering the underlying formulation of the unity feedback
robustness problem à la Lehtomaki et al. [LSA81]. We reiterate that this
represents just one of many possible robustness formulations, but it is ar-
guably the most appropriate for LQG systems.

We suppose that our linear plant system is described by

yt = P (z)ut + vt, (5.1)

where yt, ut and vt are the plant output, input and measurement noise sig-
nals, respectively, and P (z) is the true or actual linear plant transfer function.
Based on input–output measurements, however, we presume that we have
an identified plant model or nominal plant transfer function P̂ (z). For the
moment we treat the case where P̂ (z) is fixed and consider characterizations
of circumstances under which stabilizing feedback controllers designed for
P̂ (z) maintain stability also for the actual plant P (z).

Suppose that the linear controller is described by

ut = −C(z)yt + rt, (5.2)

where rt is an external reference signal and C(z) is the controller transfer
function. The feedback system combining the plant (5.1) and the controller
(5.2) can then be represented as in Figure 5.1.

Note that in an adaptive context such a controller would be designed
based upon the nominal plant P̂ (z) and applied to the actual plant P (z).
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Figure 5.2: Plant/controller cascade unity feedback system

We denote the cascaded plant/controller pairs as

G(z) = C(z)P (z) (5.3)

Ĝ(z) = C(z)P̂ (z). (5.4)

Further, we presume that the nominal model, P̂ (z), differs from the actual
plant, P (z), by a multiplicative perturbation, L(z), i.e. we have

P (z) = P̂ (z)L(z) (5.5)

and, hence,
G(z) = Ĝ(z)L(z). (5.6)

With the definitions made above, the closed loop system (5.1)–(5.2) can
be depicted as a unity feedback system as shown in Figure 5.2, where L(z)
represents the multiplicative modeling error if the actual feedback system is
considered, and L(z) = I if the nominal closed loop system is considered.
Thus [1 + G(z)]−1G(z) is the achieved closed loop transfer function, while
[1 + Ĝ(z)]−1Ĝ(z) is the designed closed loop transfer function. The robust
stability question is: under what conditions does stability of the designed
closed loop imply stability of the achieved closed loop? The transfer function
[1 + Ĝ(z)] is called the return difference of the nominal model, and it will
play an important rôle in how much plant model error is tolerated while still
preserving closed loop stability.

It will prove to be convenient also to consider unity feedback configura-
tions where the output signal is fed back into the loop, in which case G(z)
represents the controller/plant cascade,

G(z) = P (z)C(z) (5.7)

Ĝ(z) = P̂ (z)C(z). (5.8)
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Figure 5.3: Controller/plant cascade unity feedback system

In such case, the multiplicative perturbation between P (z) and P̂ (z) will be
assumed to take the following form

P (z) = L(z)P̂ (z) (5.9)

and, similarly,
G(z) = L(z)Ĝ(z). (5.10)

With these definitions, the closed loop system can now be depicted as shown
in Figure 5.3. Note that the closed loop stability properties do not depend in
any way upon the ordering of the plant and the controller in these pictures.

Whatever the chosen configuration, we suppose that Ĝ(z) has a state-
variable description (recall that P (z) is assumed strictly proper throughout
this book):

ζt+1 = Aζt +Bνt,

ξt = Cζt.

With vt = 0 and the configuration of Figure 5.3, νt is the error signal, while
ξt is the output, yt, of the nominal model; with vt = 0 and the configuration
of Figure 5.2, νt is the input applied to the plant (or plant model), while
ξt is the computed control signal that is fed back. The nominal open loop
poles are then defined to be the zeros of φ̂ol(z), where

φ̂ol(z) = det(zI −A). (5.11)

Note that, so far, no assumption of controllability or observability has been
made, so the open loop poles therefore will include all poles canceled by open
loop zeros as well.
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When unity output feedback is applied to this system, we have

νt = −ξt + rt = −Cζt + rt,

so that the nominal closed loop has a state-variable description,

ζt+1 = (A−BC)ζt +Brt

ξt = Cζt.

Thus we define the nominal model closed loop poles to be the zeros of φ̂cl(z),
where

φ̂cl(z) = det(zI −A+BC). (5.12)

Again, this definition of closed loop poles will include those which might be
canceled by the plant zeros.

Since the nominal model closed loop transfer function is given by [I +
Ĝ(z)]−1Ĝ(z), we have the following characterization of the nominal feedback
system’s return difference, obtained by noting that the poles of [I + Ĝ(z)]
are precisely the poles of Ĝ(z), and the zeros of [I+ Ĝ(z)] are the closed loop
poles:

det[I + Ĝ(z)] =
φ̂cl(z)

φ̂ol(z)
=

det(zI −A+BC)

det(zI −A)
. (5.13)

Poles which are uncontrollable or unobservable in the state-variable descrip-
tion will not be moved by the output feedback and so will cancel between
the polynomials φ̂ol(z) and φ̂cl(z).

The Nyquist stability criterion is familiar to most people only in the
continuous-time case, where the Principle of the Argument is used with a
contour encompassing all possible finite plant poles in the right half of the
complex plane (see for example [FH77]). Thus, a semicircular ‘D’-shaped
contour is chosen with sufficiently large radius. In discrete time the criterion
is actually easier to apply because the contour chosen is simply required to
be the unit circle, suitably indented inwards around open loop poles on the
circle. Denote this contour by Ω. Then we have:

Theorem 5.1

The nominal closed loop system (i.e. with L(z) = I) will be internally asymp-
totically stable, i.e. φ̂cl(z) will have no zeros outside or on the unit cir-
cle, if and only if the number of counter-clockwise encirclements of zero by
det[I + Ĝ(z)], as z traverses the contour Ω in an anticlockwise sense, equals
the number of zeros of φ̂ol(z) outside or on the unit circle.
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Proof The Principle of the Argument. CQFD

As is clear in the theorem statement, the above result applies only to the
stability of the nominal system. However, following the line of argument of
Lehtomaki et al. [LSA81] or Rosenbrock [Ros74], it is possible to extend this
Nyquist stability result to describe the robust stability, i.e. L(z) 6= I, of the
closed loop by insisting that the nominal and perturbed Nyquist diagrams
not deviate too greatly in order that their encirclements of the origin remain
fixed. We present the following result for the case where G(z) = L(z)Ĝ(z);
an identical result holds of course when G(z) = Ĝ(z)L(z).

Theorem 5.2

Let G(z) = L(z)Ĝ(z) denote the perturbed system and let φol(z) and φcl(z)
denote its open loop and closed loop characteristic equations with unity feed-
back as above. Then φcl(z) will have no zeros outside or on the unit circle
if:

1. φol(z) and φ̂ol(z) have the same number of zeros outside the unit circle;

2. φol(z) and φ̂ol(z) have the same unit circle zeros;

3. φ̂cl(z) has no zeros outside or on the unit circle;

4. det[I + (1 − ǫ)Ĝ(z) + ǫG(z)] 6= 0 for all z ∈ Ω and for all ǫ ∈ [0, 1].

Proof Because G(z) and Ĝ(z) are both finite for z ∈ Ω, the Nyquist diagram
of det[I + (1 − ǫ)Ĝ(z) + ǫG(z)] begins, for ǫ = 0, with that of Ĝ(z) and is
deformed continuously into that of G(z), for ǫ = 1. To increment or decre-
ment the number of encirclements of the origin by this deformed diagram as
ǫ changes requires that it pass either through zero or through infinity. The
second condition of the theorem statement prevents the passage through in-
finity, while the fourth condition prevents zeros. The other two conditions
force the stability of φcl(z) to be implied by the Nyquist diagram of φol(z)
having the same number of encirclements as that of φ̂ol(z). CQFD

In order to use this result concerning the deformation of the Nyquist
diagram of the nominal model into that of the plant system, we need to
introduce the following two lemmata of [LSA81], whose proofs we include
for completeness.

Lemma 5.1

For a constant complex square matrix A, denote by σ̄(A) and σ
¯
(A) the max-

imum and minimum singular values of A, i.e. λ
1/2
max(AHA) and λ

1/2
min(AHA)

respectively.1

1AH denotes the complex conjugate transpose of the matrix A.
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For constant square matrices G and L, with L invertible,

det(I +GL) 6= 0

if
σ̄(L−1 − I) < σ

¯
(I +G). (5.14)

Proof Write

I +GL = [(L−1 − I)(I +G)−1 + I](I +G)L,

and note that (5.14) implies that ‖(L−1 − I)(I +G)−1‖2 < 1, which in turn
implies that the term in brackets above is nonsingular. The nonsingularity
of L and (I +G) follows from the lemma conditions. CQFD

Lemma 5.2

If L is a square matrix and P (ǫ) is defined as

P (ǫ) = (1 − ǫ)I + ǫL,

for ǫ ∈ [0, 1], then

σ̄(L−1 − I) < α ≤ 1 ⇒ σ̄(P (ǫ)−1 − I) < α. (5.15)

Proof Rewrite σ̄(P (ǫ)−1 − I) < α as
α2PH(ǫ)P (ǫ) − (P (ǫ) − I)H(P (ǫ) − I)

= ǫ2[α2LHL− (L− I)H(L− I)]
+α2(1 − ǫ)[(1 − ǫ)I + ǫ(L+ LH)] > 0.

By the assumption on σ̄(L−1−I), the first term on the right hand side above
is positive definite. Further, with α ≤ 1, this condition also yields

L+ LH > I + (1 − α2)LHL > 0,

so that the second term on the right hand side is non-negative definite.CQFD

These two lemmata are worded for constant matrices but, by applying
their conclusions at each point on the Nyquist contour Ω, we immediately
have the following theorem:

Theorem 5.3

The closed loop characteristic polynomial φcl(z) of the actual system has no
zeros outside or on the unit circle if:
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• φol(z) and φ̂ol(z) have the same number of zeros outside the unit circle;

• φol(z) and φ̂ol(z) have the same unit circle zeros;

• φ̂cl(z) has no zeros outside or on the unit circle;

• σ̄(L−1(z) − I) < min(α(z), 1) at each z ∈ Ω, where

α(z)
△
= σ

¯
(I + Ĝ(z)). (5.16)

We make the technical observation here that, if one assumes that the unsta-
ble part of P and P̂ are identical, then L and L−1 will both be stable and
the term min(α(z), 1) can be replaced by just α(z). This will be revealed in
Chapter 8.

The importance of this theorem is that it shows that a closed loop con-
trol system, as illustrated in Figure 5.1, will remain stable when the open
loop plant/controller or controller/plant combination is perturbed multi-
plicatively, provided this perturbation is suitably small as measured by
σ̄(L−1(z) − I) and as compared to the nominal plant/controller or con-
troller/plant return difference (I + Ĝ(z)). Further, since in the case of Fig-
ure 5.2, say,

L−1(z) − I = [Ĝ(z)L(z)]−1[Ĝ(z) − Ĝ(z)L(z)]

= G−1(z)[Ĝ(z) − G(z)], (5.17)

we have the clear interpretation of Theorem 5.3 as demonstrating the robust-
ness of feedback control systems to multiplicative perturbations provided the
relative, or percentage, error of the frequency response of the plant/controller
combination is kept small. As remarked earlier, this relative error is typi-
cally only easily bounded in the closed loop passband, making this criterion
of primary use in ensuring stability when passband gain uncertainties exist.
It further imposes conditions on the nominal controlled plant model that the
quantity α remain sufficiently large, especially where the model is inaccu-
rate. Since Ĝ(z) is directly determined by the controller design and L(z) can
be shaped by the identification algorithm, as we shall see in Chapter 6, we
see that robustness can be enhanced by choosing the controller C(z) so that
the nominal (i.e. designed) return difference has its minimum singular value
large at the frequencies where the model is inaccurate, and by shaping the
identification algorithm in such a way that the relative plant/model error is
small where the designed α(z) is small. The designs of the controller and
the identifier can therefore be made to reinforce one another so that the
total robustness is larger than the sum of those delivered by two individual
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designs. Finally, we note that for single input–single output systems the re-
sult of Theorem 5.3 states simply that the Nyquist diagram of the cascaded
plant/controller should remain well clear of the minus one point.

We may now state a set of prioritized criteria for controller design in an
adaptive control scheme.

• Stabilize the nominal closed loop system.

• Achieve adequate closed loop performance for the nominal plant with
respect to tracking of references and disturbance rejection.

• Maximize robustness so that stability and performance are preserved
in the face of modeling errors.

In operational terms these requirements are reflected in conditions on the
chosen control law schema for the adaptive controller. The final point above
indicates that, after satisfaction of the first two conditions, a control law
which endeavors to keep the return difference frequency response large is
preferred.

5.3 LQ and KF Robustness — Return Difference
Equalities

5.3.1 The LQ Return Difference Equality

Our analysis of unity feedback systems has led us to conclude that, provided
some conditions on zeros of the nominal and actual systems are satisfied,
the controller based on the nominal plant will stabilize a class of neighboring
plants if, at every frequency, the relative plant uncertainty is smaller than
the smallest singular value, α(z), of the nominal return difference. It clearly
follows that if one can choose a controller design that makes α(z) large,
then one can allow for a large amount of plant model uncertainty, i.e. this
controller will stabilize a large neighborhood of plants around the nominal
one. We shall now show that full state feedback LQ controllers, as well
as Kalman predictors, have the property of a guaranteed stability margin,
namely the smallest singular value of their corresponding return difference
is strictly positive everywhere around the unit circle, and it can actually be
computed. This guaranteed stability margin of LQ controlled systems and
of Kalman predictors can be shown to be endowed upon them by virtue of
an important algebraic equation, called the Return Difference Equality (or
EDR for short, for reasons explained earlier).
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We commence here with a short development of the Return Difference
Equality, which can be considered as the fundamental frequency domain
equality of infinite horizon LQ optimal control, since many of the robustness
results of LQ control stem from it. We subsequently present the dual EDR
of the stationary Kalman predictor (KP). These equalities form the linchpin
of the LQG robustness theory to follow. Specifically, we shall use these
two equalities to derive global bounds on the particular LQ or KP return
difference matrix, σ

¯
(I + G(z)), appearing in the earlier general robustness

analysis. We do, however, forewarn the good-natured reader that the next
two subsections consist chiefly of unenjoyable algebraic manipulations.

Take the Algebraic Riccati Equation of LQ optimal control (3.8),

P = F TPF − F TPG(GTPG+Rc)
−1GTPF +Qc, (5.18)

and rewrite this in terms of the quantity

S = GTPG+Rc, (5.19)

and the feedback gain (see (3.9))

K = −(GTPG+Rc)
−1GTPF = −S−1GTPF, (5.20)

yielding
P = F TPF −KTSK +Qc.

From which description, we may establish the following identity directly by
multiplying and equating like powers of z,

Qc −KTSK = (z−1I − F )TP (zI − F ) + (z−1I − F )TPF + F TP (zI − F ).
(5.21)

Thus,

(z−1I − F )−TQc(zI − F )−1 = P + PF (zI − F )−1

+(z−1I − F )−TF TP + (z−1I − F )−TKTSK(zI − F )−1,

and hence, adding Rc to both sides of the above multiplied on each side by
GT and G respectively,

Rc +GT (z−1I − F )−TQc(zI − F )−1G

= Rc +GT {P + PF (zI − F )−1 + (z−1I − F )−TF TP

+(z−1I − F )−TKTSK(zI − F )−1}G

= (Rc +GTPG) +GTPF (zI − F )−1G

+GT (z−1I − F )−TF TPG+GT (z−1I − F )−TKTSK(zI − F )−1G

= S − SK(zI − F )−1G−GT (z−1I − F )−TKTS

+GT (z−1I − F )−TKTSK(zI − F )−1G

= [I −K(z−1I − F )−1G]TS[I −K(zI − F )−1G].
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This latter equality is known as the Return Difference Equality ,

Rc +GT (z−1I − F )−TQc(zI − F )−1G (5.22)

= [I −K(z−1I − F )−1G]T (GTPG+Rc)[I −K(zI − F )−1G].

Recall that the closed loop poles of our state-variable feedback system
are given by the zeros of det(λI − F − GK). In the case of full state LQ
feedback, I −K(zI − F )−1G is the return difference I +G(z). This follows
directly from the state equation (3.73) and the control equation (3.74): see
also (3.76). We shall call this return difference I + GLQ(z). Thus,

GLQ(z) = −K(zI − F )−1G. (5.23)

The zeros of the return difference are related to the closed loop poles
directly by the following formula:

Lemma 5.3

[I −K(zI − F )−1G]−1 = I +K(zI − F −GK)−1G. (5.24)

Proof The Matrix Inversion Lemma [Kai80] states that

[A+BCD]−1 = A−1 −A−1B[C−1 +DA−1B]−1DA−1.

Here we take A = I, B = −K, C = (zI − F )−1, and D = G to yield the
lemma statement. CQFD

It follows directly from (5.24) that the closed loop poles are the zeros of
the return difference.

The importance of the Return Difference Equality has been recognized
by many researchers, both in discrete-time and in continuous-time, using the
corresponding version. Even though we shall be using it here to demonstrate
that it leads to guaranteed and computable stability margins for LQ con-
trollers, it is probably worth mentioning that the EDR can also be used for
the computation of the optimal control gain; this offers an alternative to the
solution of the ARE. Indeed, its expression demonstrates that the solution
of the infinite horizon LQ control problem may be obtained by computing
the left hand side of the EDR, since this depends only upon the open loop
plant and the LQ weighting matrices, and then finding the minimum phase
spectral factor of this term with the same poles as the open loop plant and
with unity gain at z = ∞. Once this spectral factor has been computed, the
feedback control gain matrix, K, may be explicitly retrieved from the return
difference subject to controllability conditions. Lemma 5.3, together with
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the stability properties of infinite horizon LQ control, Theorem 4.1, dictates
that it is the stable zeros of the above factor that need to be included in
the computation. By observation, the poles of the return difference are the
same as those of the plant.

5.3.2 The KP Return Difference Equality

Before turning to the use of the EDR of LQ optimal control for the com-
putation of stability margins, we now consider the dual stationary optimal
estimation problem as in Chapter 3. Recall the filtering ARE (3.32),

Σ = FΣF T − FΣHT (HΣHT +Ro)
−1HΣF T +Qo, (5.25)

and the predictor gain MP computation (3.33),

MP = FΣHT (HΣHT +Ro)
−1. (5.26)

By direct comparison with the EDR of LQ control, i.e. by duality, we
have the dual EDR of optimal prediction,

Ro +H(zI − F )−1Qo(z
−1I − F )−THT (5.27)

= [I +H(zI − F )−1MP ](HΣHT +Ro)[I +H(z−1I − F )−1MP ]T .

In the case of the Kalman predictor, I +H(zI − F )−1MP is the return
difference I + G(z). The corresponding open loop transfer function will
therefore similarly be given a specific name,

GKP (z) = H(zI − F )−1MP . (5.28)

The LQ and KP EDRs will play a central rôle in our subsequent theory
from two points of view. The KP EDR will serve a pivotal task in the de-
velopment of a robustness result for the Kalman predictor which we shall
endeavor to carry over to the complete LQG controlled system through ap-
peals to the recent theory of LQG Loop Transfer Recovery. Secondly, the
LQ EDR will allow us to describe the spectral properties of the closed loop
input signal to the plant operating in feedback with the LQG controller, a
feature intimately coupled to the integrity of adaptive LQG control since it
links the control law properties to those of the parallel identifier.

5.3.3 The EDRs and LQ, KP Robustness

Having defined the open loop transfer functions GLQ(z) and GKP (z) of the
LQ controller and Kalman predictor problems via (5.23) and (5.28), respec-
tively, we shall now appeal to their corresponding Return Difference Equal-
ities to derive lower bounds on the quantity α(z) defined in (5.16). It will
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then follow that unity feedback systems whose open loop transfer functions
are equal to GLQ(z) or GKP (z) inherit the corresponding stability margins.

Recall that the LQ EDR is as follows:

Rc +GT (z−1I − F )−TQc(zI − F )−1G

= [I −K(z−1I − F )−1G]T (GTPG+Rc)[I −K(zI − F )−1G].

Also, notice that with full state feedback LQ control and the identity (5.23),
we have

[I + GLQ(z)] = [I −K(zI − F )−1G]. (5.29)

This leads us directly to the following:

Theorem 5.4

Consider the LQ control system with full state feedback above, for which we
assume [F,G] to be stabilizable, [F,Qc] to be detectable and Rc to be full
rank, then one has the following bound on the minimum singular value of
the return difference matrix. There exists a positive constant ᾱ ≤ 1 such
that

σ
¯

(

I −K(zI − F )−1G
)

≥ ᾱ > 0,∀z ∈ Ω. (5.30)

Proof From EDR it is clear that, for z ∈ Ω,

[I −K(z−1I − F )−1G]T (GTPG+Rc)[I −K(zI − F )−1G] > Rc,

since the remaining term is a spectrum and hence non-negative definite on
the unit circle. Further, from the theorem conditions and the work of de
Souza, Gevers and Goodwin [dSGG86], a finite maximal positive definite
solution, P , of the ARE (5.18) exists. Therefore there exists a positive
scalar, β, such that GTPG+Rc < βI, and so (5.30) holds with

ᾱ = σ
¯
(Rc)/β.

We also note that necessarily ᾱ ≤ 1. CQFD

We note that, since the solution of the LQ problem is usually effected
via the computation of the solution P of the ARE, the bound ᾱ comes as
an easy by-product. In the work of Shaked [Sha86] a more precise bound
for ᾱ is found which includes explicit bounds on P , G, F and Qc. Our
result here is quantitatively poorer, but qualitatively the same. Since our
goal is to derive conceptual rules for adaptive predictive control design, we
shall make do with this more conservative bound. In the continuous-time
theory one does not have the term involving GTPG in the left hand side of
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the EDR and so one immediately has that ᾱ = 1 in the scalar case, and an
equivalent result in terms of the maximal and minimal eigenvalues of R in
the multivariable case. Presumably, if one samples a continuous-time plant
sufficiently fast, then GTPG+R ≈ R as well.

The importance of Theorem 5.4 is that it shows that if a LQ controller
is designed on the basis of a nominal (estimated) plant, P̂ (z), then the
corresponding nominal return difference, I + Ĝ(z), will have its smallest
singular value lower bounded by ᾱ. Hence this LQ controller will be capable
of stabilizing a neighborhood of plants with a robustness margin at least as
large as ᾱ.

With this bound on the frequency response of the return difference, we
may now appeal directly to Theorem 5.3 to produce the following result on
LQ robustness.

Theorem 5.5

The LQ optimal controller designed on the basis of the nominal model will
produce an actual closed loop system with denominator φcl(z) having no poles
outside or on the unit circle provided:

• φol(z) and φ̂ol(z) have the same number of zeros outside the unit circle;

• φol(z) and φ̂ol(z) have the same unit circle zeros;

• [F,G] is stabilizable, [F,Qc] is detectable and Rc has full rank;

• with γ(z)
△
= σ̄

(

L−1(z) − I
)

, either of the following hold, with ᾱ from
Theorem 5.4,

– Qc > 0 and γ(z) ≤ min(ᾱ, 1),∀|z| = 1;

– φ̂ol(z) 6= 0 and γ(z) < min(ᾱ, 1),∀|z| = 1.

We remark that the final complication in the last condition of the theorem
statement is concerned simply with preventing unit circle poles of the closed
loop. If Qc is of full rank then the stability theorems of [dSGG86] will force
the unit circle zeros of φ̂ol(z) to be moved inside the circle by an LQ control.
The third condition of the theorem is included to guarantee the stability and
robustness of the nominal LQ closed loop.

Taking the dual Kalman predictor return difference,

[I + GKP (z)] = [I +H(zI − F )−1MP ], (5.31)

one achieves the immediate dual result producing a stability margin for the
Kalman predictor, using the dual Return Difference Equality (5.27).
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Theorem 5.6

Consider the Kalman predictor above, for which we assume [F,Qo] stabiliz-
able, [F,H] detectable and Ro full rank. Then there exists a positive constant
δ̄ such that

σ
¯

(

I +H(zI − F )−1MP
)

≥ δ̄ > 0,∀z ∈ Ω. (5.32)

This particular theorem, rather than its LQ dual Theorem 5.4, will act as
the hub of our robustness theory to be developed since, as we shall see,
the KP robustness is more easily preserved for discrete-time systems than is
the LQ counterpart. Naturally, a direct KP equivalent of Theorem 5.5 can
immediately be stated.

Having now established that a full state feedback LQ controller or a
Kalman predictor have return differences that have a guaranteed stability
margin via the inequalities (5.30) and (5.32), respectively, we have now laid
the foundations for the robust design of LQG systems. Indeed, the strategy
will be to design either the controller or the Kalman filter to achieve closeness
of the LQG return difference, I + Ĝ(z), to that of either the LQ return
difference I+ ĜLQ(z) or the KP return difference I+ ĜKP (z), which will ipso
facto imply that they recover their closed loop stability robustness properties.
The design procedure to achieve this recovery is the subject of Loop Transfer
Recovery, which we examine now.

5.4 Robustness of LQG Control — Loop Transfer

Recovery

The central general robustness conditions of Theorem 5.3, upon which we
shall focus with our study of LQG, are

σ
¯
(I + Ĝ(z))

△
= α(z) > 0, (5.33)

and
σ̄(L−1(z) − I) < min(α(z), 1), (5.34)

where Ĝ(z) is the cascaded plant/controller or controller/plant pair, so that
I+Ĝ(z) is the return difference, which we have identified earlier in (5.29) and
(5.31), and L(z) is the multiplicative plant perturbation, so that L−1(z)−I is
the relative plant error between the nominal plant model and the actual plant
as derived in (5.17). This latter condition (5.34) is a matter of achieving a
system model with good percentage error, which problem is the subject of
Chapters 6 and 7. The former condition is, however, a matter of controller
design, which we now address.



Sec. 5.3 Loop Transfer Recovery 131

5.4.1 Loop Transfer Recovery Rationale

The results of the preceding subsection deal primarily with the robust sta-
bility of an LQ controller or of the KP system, even though the robustness
theory of Section 5.2 is demonstrably applicable to any feedback system ca-
pable of being written as a unity feedback structure, which includes LQG. It
is just the feature of LQ control without observers or of the Kalman predictor
without feedback control that the EDR leads immediately to the satisfaction
of (5.33) for a particular α. The difficulties in extending the results to LQG
arise in quantifying the properties of the return difference when an observer
is included in the open loop transfer function, since then the Ĝ(z), which we
shall derive in the next section, differs from those above for which the EDR
may be applied directly. Stated otherwise, no EDR is available to us when
Ĝ(z) is obtained from a LQG controller.

Doyle [Doy78] and Doyle and Stein [DS79] have analysed the effects of
observers on the robustness of LQG designs in a continuous-time setting
with the conclusion that, with the incorporation of an observer into the LQ
feedback law, much or all robustness of the LQ design can be lost. In terms of
the transfer functions above, that is to say that the robustness of the closed
loop to perturbations L(s), inherent in the LQ state-variable feedback design
open loop matrix Ĝ(s), need not be preserved when Ĝ(s) is replaced by a
form including an observer. This is not to say that LQG controllers have
no robustness to unmodeled dynamics, but only that, unlike the full state
feedback LQ design, there is no tool available, such as the EDR, to guarantee
robustness margins.

The topic of Loop Transfer Recovery (LTR) is devoted to the formulation
of Kalman observer design methodologies (by specific choices of Ro and Qo)
and/or state-variable feedback design methodologies (by specific choices of
Rc and Qc) which attempt to cause the open loop transfer LQG matrix Ĝ(s)
to approach either that of the LQ, ĜLQ(s), or that of the Kalman predictor

design, ĜKP (s), and thereby to ‘recover’ the consequent degree of robust-
ness associated with this latter system. A potential mechanism to achieve
this effect was first identified by Kwakernaak [Kwa69] and later reformu-
lated by Doyle [Doy78] as follows. The observer is designed by choosing the
Kalman filter for the system with Qo = GGT but with measurement noise
covariance matrix, Ro, tending to zero. Thus, an asymptotically singular
optimal filtering problem is posed. For minimum phase plant systems (i.e.
those systems possessing neither finite nor excessive infinite zeros outside
the unit circle), arbitrarily closed loop recovery is possible by designing a
Kalman filter observer in this way [SA87], although the method achieves its
robustness through the use of very large observer gains. This means that by
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designing the observer this way and letting Ro tend to zero, the open loop
LQG transfer matrix Ĝ(s) will converge to the open loop LQ transfer ma-
trix ĜLQ(s) obtained with full state feedback. Also, because in continuous
time one does not draw a distinction between the Kalman predictor and the
Kalman filter, the LQ recovery and the KF/KP recovery are completely dual
and so LQ robustness recovery via observer design may be replaced by KP
robustness recovery using LQ design. Naturally, the price of this robustness
will be with the closed loop performance of the nominal system.

Having discussed something of the continuous-time LTR history and
philosophy, we shall next turn to the development of discrete-time LTR
results following the methodology of Maciejowski [Mac85]. To do this, we
first need to derive the expressions of the open loop transfer functions Ĝ(z)
for the various situations of LQG design.

5.4.2 LQG Controller Transfer Functions

We shall combine the observer and control law equations (3.70) and (3.71)
to derive complete expressions for the open loop transfer function Ĝ(z) of
the LQG controller in a unity feedback loop. In pursuing the derivation
of this transfer function, we shall suppress the explicit appearance of the
separate reference model and noise model for the sake of clarity. Indeed, the
distinction between plant states and the states of the other models need only
be drawn for explanatory reasons — the critical features of the super-state
model being its stabilizability and detectability.

The dynamical equations of an observer/controller pair are encapsulated
by

ut = Kx̂t, (5.35)

for the control law and, for an observer with no direct feedthrough,

x̂t+1 = (F −MPH)x̂t +Gut +MP yt, (5.36)

while, for an observer with direct feedthrough,

x̂t+1 = (F −MFHF )x̂t + (G−MFHG)ut +MF yt+1

= [F −MFHF + (G−MFHG)K]x̂t +MF yt+1

= (I −MFH)(F +GK)x̂t +MF yt+1. (5.37)

In order to identify the nature of the LQG controller transfer function
vis-à-vis the LQ controller with full state feedback we consider the LQG
controller in a unity feedback loop, and compute the forward path trans-
fer functions for the plant/controller and controller/plant cascades. That
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is, these cascade transfer functions appear as the forward path of a unity
feedback description of the LQG controlled system. We first consider the
plant/controller case, where the computed control signal −Kx̂t is fed back
into the system, and we compute the transfer function from plant input ut

to the computed control −Kx̂t. This is the situation depicted in Figure 5.2.
We have the following lemma:

Lemma 5.4

Consider the transfer function, Ĝ(z), from system input, ut, to computed
control output, zt = −Kx̂t, arising in a unity feedback representation of the
LQG controlled plant (see Figure 5.2). Then,

• with an observer possessing no direct feedthrough term

ĜKP
LQ (z) = −K(zI − F +MPH −GK)−1MPH(zI − F )−1G, (5.38)

• with an observer possessing a direct feedthrough term

ĜKF
LQ (z) = −K

×
{

I + (I −MFH)(F +GK)[zI − (I −MFH)(F +GK)]−1
}

×MFH(zI − F )−1G. (5.39)

Proof The first part follows by substituting ut = Kx̂t into the observer
equation (5.36), since this is the value of ut presumed by the observer. Then
zt is gained by equating zt = −Kx̂t.

The second part follows as the first, and is repeated here for completeness.
From (5.37) we have

x̂t+1 = (F −MFHF )x̂t + (G−MFHG)ut +MF yt+1

= [F −MFHF + (G−MFHG)K]x̂t +MF yt+1.

Therefore the transfer function from yt to zt (see Figure 5.2) is given by

K(z) = −zK(zI − F +MFHF − (G−MFHG)K)−1MF

= −zK(zI − (I −MFH)(F +GK))−1MF

= −K[I − z−1(I −MFH)(F +GK)]−1MF

= −K[I + z−1(I −MFH)(F +GK)

+z−2[(I −MFH)(F +GK)]2 + . . .]MF

= −K[I + (I −MFH)(F +GK)[zI − (I −MFH)(F +GK)]−1MF .

CQFD
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The point of this lemma is to compare the open loop transfer functions
ĜKP

LQ (z) and ĜKF
LQ (z) of LQ control when an observer is used to reconstruct

the state, i.e. LQG control is used, with the transfer function ĜLQ(z) of
(5.23) when full state feedback is applied.

In a fashion completely dual to the above derivation, one may derive
equivalent open loop transfer functions for a unity feedback LQG controller
with the plant output yt being preserved as the feedback signal. The result-
ing transfer functions are achieved simply by forcing the observer/controller
block back around to the input of the loop. In this case it is the Kalman pre-
dictor (or observer) return difference which appears as an underlying object
modified by the presence of the control law, rather than the control return
difference of the previous case.

Lemma 5.5

Consider the transfer function, Ĝ(z), from the error input signal, et, to the
system output, yt, arising in a unity feedback representation of the LQG
controlled plant (see Figure 5.3). Then,

• with a Kalman predictor or observer possessing no direct feedthrough
term

ĜLQ
KP (z) = −H(zI − F )−1GK(zI − F +MPH −GK)−1MP , (5.40)

• with a Kalman filter or observer possessing a direct feedthrough term

ĜLQ
KF (z) = −H(zI − F )−1GK

×
{

I + (I −MFH)(F +GK)[zI − (I −MFH)(F +GK)]−1
}

×MF . (5.41)

This formulation follows directly as in the previous lemma or simply by
recognizing that the explicit appearance of the output signal can be achieved
by forcing the observer/controller part of the transfer function back around
the loop from the previous case of input feedback. Again, the idea of this
lemma is to illustrate the differences between the open loop transfer functions
ĜLQ

KP (z) and ĜLQ
KF (z) when a LQ controller is inserted into the system and

the open loop transfer function ĜKP (z) (see (5.28)) of the Kalman predictor
without feedback control input, for which a guaranteed stability margin has
been shown to exist.

At this stage we should ask what the distinction is between these transfer
function calculations and those already presented in Section 3.8. The answer
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is ‘not much really’, since they are the same except for the fact that the
earlier results absorb the open loop plant transfer function into the control
calculation to permit the algebraic cancellation of observer poles. Here in
the robustness study, our goal is to examine the effects of incorrect open
loop models upon the closed loop stability. Thus it is not permissible to
regard yt as precisely H(zI − F )−1Gut when H, F , G are the parameters
of the nominal (or estimated) model on the basis of which all the stability
margins are computed. The distinction is that the formulae of Section 3.8
are closed loop formulae incorporating cancellations, while those here are
a computation of the forward path or open loop transfer functions of the
controller/plant cascade which does not possess the cancellation unless the
above substitution for yt is made.

5.4.3 The Discrete-time LTR Theory of Maciejowski

We present the Loop Transfer Recovery design methodology as converted
to the discrete-time situation by Maciejowski [Mac85]. We shall begin by
considering the KP robustness recovery using LQ design, and comment upon
the LQ version via KP or KF design later. The alert reader should be aware
of the fact that, in a practical situation, including the adaptive situation
to which the present robustness results will ultimately be applied, all the
models P (z) and open loop plant/controller transfer functions G(z) to be
considered in this subsection are the nominal ones. However, since LTR
theory is about recovering one transfer function from another by proper
design, it does not matter whether the transfer functions are actual plant or
model transfer functions, and we shall therefore not use chapeaux on top of
these transfer functions.

We first recall that in discrete time, the ideal, guaranteed robust ĜKP (z)
associated with the Kalman predictor is given by

ĜKP (z) = H(zI − F )−1MP . (5.42)

The achieved LQG closed loop ĜLQ
KF (z), however, with the Kalman filter and

LQ control included, is

ĜLQ
KF (z) = −H(zI − F )−1GK

×
{

I + (I −MFH)(F +GK)[zI − (I −MFH)(F +GK)]−1
}

×MF , (5.43)

where we recall thatMP = FMF . The LTR paradigm is to design a feedback
gain K such that ĜLQ

KF (z) approaches ĜKP (z) for z on the unit circle, and
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thus the LQG system inherits the robustness of the Kalman predictor. This
design proceeds by taking LQ control design with

Qc = HTH (5.44)

Rc → 0. (5.45)

We start by considering the solution of the LQ problem with Qc given by
(5.44) and Rc = 0.

Lemma 5.6

Provided the open loop plant model, P (z) = H(zI − F )−1G, satisfies

det(HG) 6= 0, (5.46)

the solution of the stationary LQ optimal control problem with weighting
matrices,

Qc = HTH (5.47)

Rc = 0, (5.48)

has ARE solution
P = HTH, (5.49)

and control gain,
K = −(HG)−1HF. (5.50)

Proof With the parameters of the lemma statement one has the ARE,

P = F TPF − F TPG(GTPG)−1GTPF +HTH.

By direct substitution of P = HTH into the right hand side we have

F TPF − F TPG(GTPG)−1GTPF +HTH

= F THTHF − F THTHG(GTHTHG)−1GTHTHF +HTH

= HTH

= P,

where the invertibility of HG is used explicitly to reduce the expression. K
may then be computed as

K = −(GTPG)−1GTPF

= −(GTHTHG)−1GTHTHF

= −(HG)−1HF. CQFD
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We have imposed no minimum phase assumption in Lemma 5.6, but it
is of course well known that if P (z) is non-minimum phase, the control gain
(5.50) leads to internal instability. We now immediately apply this explicit
solution of the singular LQ problem to demonstrate that full loop transfer
recovery is achieved under a minimum phase condition.

Theorem 5.7

With the same conditions applying as in Lemma 5.6 we have the following
equality

ĜLQ
KF (z) = ĜKP (z). (5.51)

Thus provided the open loop plant has no zeros in |z| ≥ 1 and is minimum
delay, i.e. det(HG) 6= 0, we have full loop transfer recovery with internal
stability by selecting Qc = HTH and Rc = 0.

Proof Denote by Π the matrix G(HG)−1H. Then, clearly, one has H(I −
Π) = 0. Further, F + GK = (I − Π)F , and so the closed loop system
matrix is in the null space of H, i.e. H(F + GK) = 0. Now write the
controller/observer transfer function of the KF/LQ pair as

zK[zI − (I −MFH)(F +GK)]−1MF = zK(zI − F −GK)−1MF .

Next we use the relations GK = −ΠF and MP = FMF and rewrite

ĜLQ
KF (z) − ĜKP (z)

= H(zI − F )−1[−zGK(zI − F −GK)−1MF −MP ]

= H(zI − F )−1[zΠF (zI − F + ΠF )−1 − F ]MF

= H(zI − F )−1{zΠ[zI − F (I − Π)]−1 − I}FMF

= H(zI − F )−1(F − zI)(I − Π)[zI − F (I − Π)]−1FMF

= −H(I − Π)[zI − F (I − Π)]−1FMF

= 0.

This establishes (5.51). However, notice from the expressions (5.42) and
(5.43) that the poles of ĜKP (z) occur only at the open loop poles of the
plant P (z). Therefore, by default, the poles of the controller/observer must
have been canceled by the plant zeros through this particular selection of
the LQ control law. Thus, although the identity (5.51) still pertains, for
plants P (z) possessing zeros outside |z| < 1 it does so by unstable pole/zero
cancellation, which violates internal stability. CQFD

We now offer some remarks concerning this Loop Transfer Recovery re-
sult.
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• The LTR property of Theorem 5.7 is effected by placing the controller
poles at the open loop plant zeros — hence the need for stable plant
zeros. If one performs a singular optimal control, not by setting Rc = 0
but by taking Rc → 0, then the controller poles tend to the stable plant
zeros plus the stable reflections in the unit circle of those zeros outside
the circle. To see this, observe that the controller/observer poles, which
are guaranteed stable for any LQG designed system, are the poles of
zK(zI − F − GK)−1MF . Now, by Lemma 5.3, these poles are the
zeros of the return difference I − K(zI − F )−1G. Since Rc is close
to zero, it then follows from the EDR (5.22) that the stable factor of
the right hand side of this EDR will contain the stable zeros of the
plant model and the reflections of the unstable ones. Thus exact or
full LTR with Rc = 0 relies upon the minimum phase property of the
plant. To preserve internal stability with non-minimum phase plants,
one must take Rc → 0. Only for minimum phase systems does this
solution converge to that for Rc = 0.

• Maciejowski [Mac85] makes the point that for many discrete-time sys-
tems the non-minimum phase zeros due to sampling (as opposed to
those due to a non-minimum phase continuous-time system) lie close
to the negative real axis and, therefore, have an effect on the design
which falls outside the control bandwidth. He makes the point that,
while LTR is only guaranteed for minimum phase, minimum delay
plants, it frequently works well for other systems — the limiting fea-
ture being how small one may take the value of Rc before striking too
serious a performance deterioration. We should note that the effected
control strategy is still LQG but with specific choices of Qc and Rc.
The LTR component is simply a robustness enhancement feature.

• One might suppose that, by some universal duality theorem, the LTR
of an LQ controller via singular Kalman filtering should be possible.
This is not the case because, by observation, the LQ control of a strictly
proper linear system is dual to the Kalman predictor design for that
system. The Kalman filter is not dual to LQ control, as may be seen
by observing the noninterchangeable rôles of GK and MFH in the
LQ/KF transfer function. As remarked earlier, this is a peculiarity
of the discrete-time case because in continuous time the distinction
between KP and KF evanesces. Thus LTR is only achievable with
this class of plants via KF design followed by LQ recovery. Since
the designer is frequently more concerned with output regulation than
control input properties, this need not be such a restriction.



Sec. 5.3 Loop Transfer Recovery 139

• The condition det(HG) 6= 0 is a requirement that the open loop plant
be minimum delay. The effect of violating this condition can be seen
from (5.42) and (5.43). The ideal KP transfer function will in general
possess a unit delay and, by construction, the LQ controller is causal,
hence should the plant P (z) possess more than a unit delay then it is
impossible to recover fully the ideal transfer function. If sample-and-
hold devices are used in developing a discrete plant from a continuous
one then det(HG) 6= 0 is generic, except for systems with a significant
deadtime. In this latter case, again a limit to achievable recovery exists
and one is limited by both the achievable level of recovery and by the
undesirable signal values introduced into the control.

• Similarly to the above remark, the use of the Kalman predictor in place
of the Kalman filter causes the LQG controller to become strictly causal
and hence Ĝ(z) to be the product of two strictly proper systems, again
making the complete recovery impossible. In other words, ĜKP (z)
cannot be recovered from ĜLQ

KP (z), whatever the LQ control design.

• Ishihara and Takeda [IT86] have investigated what type of return dif-
ference is recoverable from LQG systems if one incorporates a delay
into the control law. They use the results of Mita [Mit85] concerning
the LQ optimal control law with controller delay and the Kalman pre-
dictor to show that if a singular KP is used with the LQ delay control
law then one recovers the LQ delay return difference. Similarly, if sing-
ular LQ with delay is applied to the KP, then the KP with controller
delay return difference is recovered. These results are technically in-
teresting and indicate a duality not present in the theory above. The
connection between these delay controllers and achievable robustness
has also been investigated [Ish88].

• It is frequently the case that the plant and achievable control objectives
are known to be bandlimited to a region ω <Ws beyond which model-
ing and attempts to move the closed loop gain crossover are unlikely to
succeed. This information may be taken into account in determining
the control law and the model class to support robustness. We shall
discuss this further in later chapters.

• The robustness ‘recovered’ by the LTR methodology is precisely that
robustness of the Kalman predictor without control input. The theory
does not state that this robustness is necessarily better or worse than
that of any particular LQG design incorporating this KP or KF. It is
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only the guaranteed minimum level of robustness which is assured by
this procedure.

• The cost of robustness achieved by this (and probably most other meth-
ods yielding controllers of a similar complexity) is that the closed loop
performance may be degraded in the pursuit of robust stability in the
face of modeling errors. We know that for the nominal system the com-
bination of LQ control plus KF yields the optimal feedback controller
according to the LQ criterion. The LTR design, however, deliberately
detunes the LQ part of the controller away from the ‘natural’ values of
Qc and Rc in order to achieve robustness. Thus the optimality of LQG
is lost. Clearly a compromise between robustness and performance is
needed.

• In adaptive control one usually proceeds from input–output data to a
plant model and thence to controller design. One of the favorable
features of LQG/LTR design is that, although it involves a state-
variable description, the resulting solution for the LQ control law is
state-variable coordinate basis independent, i.e. is an input–output
description, because Qc is chosen to be HTH. Notice how this in-
tersects with the GPC control law specification interpreted as LQG
(3.93)–(3.96).

• With small values of Rc taken in the LQG/LTR formulation, we see
several undesirable effects with non-minimum phase plants. Firstly,
the LTR is not ensured completely. Secondly, the control signals in
this case can become excessive as the weighting is reduced. Thirdly
and more subtly, as the control weighting Rc is reduced, the controller
gain increases and the closed loop bandwidth increases. This increases
the likelihood of meeting stability problems because of the failure of the
robustness conditions in this larger bandwidth. We shall see examples
of these issues later in this chapter and in Chapter 7.

Having developed the LTR theory for LQG robustness in discrete time
à la Maciejowski, we shall next perform a brief computational example to
reinforce some of these issues. In an adaptive control context, where the
underlying system model is not precisely known and, indeed, is expected to
be changing with time, one must adopt tactics cautiously. We shall return
to the design issues for LQG/LTR controllers in the adaptive context in
Chapter 7, where the design variables specified will allow a simple supervision
of the controller design stage.
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5.5 An LQG/LTR Example

We reconsider the two systems of Section 3.7 — a simple second order mini-
mum phase plant and a more difficult non-minimum phase third order plant,
the working example.

A Simple Example

We treat again the system described in state-space form by the following
matrices:

F =

(

−0.5 1
−0.5 0

)

G =

(

0.9
−0.6

)

H = ( 1 0 ) ,

and expose it to various LQG and LTR treatments to demonstrate that
which has been established by theory above. Note that this plant is minimum
phase, minimum delay and stable, and so is a prime candidate for guaranteed
robustness recovery with LTR.

We performed several LQG designs with constant Ro = ρ = 1, Qo =
GGT , Qc = HTH and varying values of Rc = λ. Additionally, the transfer
function ĜLQ

KF = P̂C was computed for the Kalman predictor with this plant
and this Qo, Ro. The data are plotted as discrete Nyquist diagrams with
the dotted curve representing the uncontrolled KP function ĜKP .

Figure 5.4 illustrates several features. Firstly, the dotted curve of ĜKP

displays the maintenance of a fixed distance from the point -1. This estab-
lishes the implicit KP robustness discussed in Section 5.3. The ĜLQ

KF = P̂C of
the LQG system, however, is considerably further from minus one essentially
at all frequencies. The implication here is that the LQG system is rather
more robust to multiplicative passband modeling uncertainties than its KP
equivalent.

Figure 5.5 shows that, with decreasing value of λ (here 0.01), the two
transfer functions approach. With λ = 10−5 (see Figure 5.6) the functions
effectively coincide. As we saw in Chapter 3, the choice of such small values
of λ with this plant does not necessarily lead to excessive control gains
but does tend to produce good tracking properties. Therefore we see that
good tracking performance here is associated with diminished robustness,
although a particular LQG performance criterion need not reflect a lesser
robustness than its LTR version.
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Figure 5.4: ĜLQ
KF = P̂C Nyquist plot with λ = 1 versus ĜKP

Figure 5.5: ĜLQ
KF = P̂C Nyquist plot with λ = 0.01 versus ĜKP
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Figure 5.6: ĜLQ
KF = P̂C Nyquist plot with λ = 10−5 versus ĜKP

A More Difficult Plant

Next we conduct a similar experiment for the more difficult plant, the ‘Work-
ing Example’:

P (z) =
−0.05359 z−1 + 0.5775 z−2 + 0.5188 z−3

1 − 0.6543 z−1 + 0.5013 z−2 − 0.2865 z−3
. (5.52)

This is non-minimum phase and third order and was shown in Section 3.7 to
demonstrate control difficulties with LQ control having light control weight-
ing, Rc.

Figure 5.7 shows the Nyquist plots of the Kalman predictor loop transfer
function, ĜKP (dotted curve), and that of the LQG system designed with
λ = 1. Two features are immediately apparent. Neither system’s loop
function tends particularly closely to minus one over the entire range, nor
do the two curves remain close. For this value of λ one could argue that the
KP system is less robust than the LQG system.

Figure 5.8 contains the Nyquist plot with λ = 0.01, and Figure 5.9 shows
the same plots for λ = 10−5. Further reduction of λ does not result in any
further approach of the two curves. Nevertheless, it is apparent that the two
curves do lie considerably closer for small λ values than for large values. It
is also evident from Figure 5.9 that the loop function of the LQG system
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Figure 5.7: ĜLQ
KF = P̂C Nyquist plot with λ = 1 for the Working Example

versus ĜKP

Figure 5.8: ĜLQ
KF = P̂C Nyquist plot with λ = 0.01 for the Working Example

versus ĜKP
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Figure 5.9: ĜLQ
KF = P̂C Nyquist plot with λ = 10−5 for the Working Example

versus ĜKP

actually lies further from the -1 point than its KP counterpart and so is
potentially the more robust system. What is masked by this figure is that
its concomitant control signal in, say, its step response will be very large.

These two examples serve to display some of the features of linear ro-
bustness via LQG/LTR. Further, since robustness is concerned with vaguely
specified uncertainties, we also see that this theory is not really very useful
for predicting the detailed properties of individual systems. This reinforces
the notion that robustness comes at a price in terms of performance and that
robustness per se is not the major control objective. Methodologies such as
LTR should really be regarded as ancillary features for the enhancement of
basic designs.

5.6 Conclusion

The aim in LTR robust controller design is to produce an open loop transfer
function Ĝ(z) which satisfies the requirements of maintaining σ

¯
(I + Ĝ(eiω))

sufficiently positive. That this may be achieved by LQ control with full state
feedback is evidenced by Theorem 5.5. The potential loss of LQ robustness
with the inclusion of state estimators is demonstrated by the examples of
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Doyle and others [Doy78]. However, it still may be possible to generate a
robust feedback law using observers since the loss of margins is not a generic
property. Equally, control laws other than LQ can be contemplated in robust
applications. The point to be drawn here is that the automatic design of ro-
bust feedback control laws, i.e. without operator intervention and iteration,
is difficult but it is possible to specify some simple LQG controller formula-
tions in which this design can take place without involving too many tunable
parameters. This will be the subject of Chapter 7, where we incorporate the
robust control law design with the parameter identification methods to be
described in the next chapter. For the moment, though, we move on to
consider the identification component of the Adaptive Controller.



Chapter 6

Recursive Least Squares
Identification in Adaptive
Control

6.1 Introduction

In most publications on adaptive control, the effort is spent either on the
control design with only scant attention paid to the properties of the pa-
rameter estimator, or on the parameter estimator with little consideration
given to the way the regulator affects the parameter estimator or the transfer
function estimates. And yet, because the identification is being performed
in closed loop (that is, there is explicit dependence of the plant input signal
upon the plant output and the identification is performed on the plant in
situ in a closed loop, not that the plant is identified from input and output
measurement of the closed loop), and because the parameters of the regula-
tor are being continuously adapted, there is an intimate interplay between
the mechanisms of parameter adaptation, the properties of the estimated
models and the stability of the closed loop system. (This was demonstrated
in part by our Gedankenexample of Chapter 1.) It is our purpose in this
chapter to unveil part of this intimacy and, without excessive voyeurism, to
display the bare essentials about the interconnection between the stability
properties of the closed loop system, the spectral properties of the reference
signals and of the noises, and the prefilters.

Our discussion in this chapter is entirely focused on the nonexact model-
ing case, i.e. the case where the parametrized model can at best approximate
the true plant. This situation, where the true system is not in the model set,
has been given a variety of exotic names in the control literature, such as

147
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mismodeling, nonexact modeling, restricted complexity model, plant-model
mismatch, neglected dynamics or — with reference to the French ‘dynamique
négligée’ — dynamical nightie. In Chapter 5 we have shown that a control
design that stabilizes a plant model will also stabilize the true plant provided
the relative error between the true plant and the model is bounded, at each
frequency, by a quantity that depends on both the plant and the controller.
In order to apply fully this robustness theory in an adaptive framework, it is
therefore important to be able to characterize the plant-model mismatch over
the frequency range when the model arises as the result of an identification
algorithm. This is the object of the present chapter.

The first part of our analysis will be nonadaptive. To set the stage
and reveal our good schooling in identification theory, we start with a very
brief review of off-line prediction error identification with a Least Squares
criterion. We then use Ljung’s [Lju87] frequency domain expression for the
asymptotic bias distribution to examine the effect of the input signal, the
noise and the filters on the asymptotic plant-model mismatch in the case of
open loop identification. This expression is then extended to the somewhat
more difficult case where the identification is performed in closed loop with
a fixed (i.e. constant) regulator. The influence of the regulator transfer
functions and of the reference signal spectrum will then come to light.

When the plant-model parameters are adjusted on-line, and when the
regulator parameters are simultaneously adjusted as a function of these
plant-model parameters according to a regulator design criterion, this chang-
ing feedback law will influence the signals in the loop and therefore the
convergence point, if any, of our closed loop parameter adaptation law. Pre-
cautions must then be taken to guarantee that the parameter vector estimate
converges to a point that is close enough to the minimizing argument of a
correctly frequency weighted off-line prediction error criterion and for which
closed loop stability can still be ensured. Recall the central robust stability
condition (5.14) for linear systems,

σ̄(L−1 − I) < σ
¯
(I + Ĝ).

In adaptive control, the nominal plant model fit, and therefore the frequency
domain characteristics of its error, is determined by an identifier, while the
robustness of the control design for this nominal system is determined by the
control law schema. Thus the identification plays the part of ensuring that
the left hand side above is sufficiently small, while the control law design is
concerned with maintaining the right hand side sufficiently large.

A proper way to analyse this situation involving both the identifier and
controller effects is to study the global nonlinear system made up of all
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the dynamical equations of the closed loop control system, together with
the parameter adaptation equations, and to study the asymptotic behavior
of this complete nonlinear system. The powerful tools of averaging theory
and of time scale separation can be used to show that, provided certain
precautions are taken, the solution of the parameter update equation will
converge to a point that is close to the asymptotic solution of the off-line
parameter estimation criterion. These precautions take the form of slow
adaptation, persistency of excitation, restriction on the minimal achievable
modeling error, low sensitivity of the regressors to the parameter vector,
amongst other features.

In Section 2 we shall give an exceedingly brief introduction to predic-
tion error identification, the aim being mainly to introduce notations and to
set the stage for the presentation of the bias formulae of Section 3. These
formulae give a precise description of how the plant-model mismatch is dis-
tributed over frequency when there is such a mismatch. They will also tell
us how to influence the model obtained through the minimization of an off-
line prediction error criterion by a proper choice of data filters. Section 4
then examines the behavior of a recursive identification algorithm operating
in an adaptive feedback loop using integral manifold theory. This is a local
analysis which presumes that the parameter is adapted slowly and that the
algorithm is initialized with a parameter value that is not too far removed
from an optimal one. In Section 5 we shall briefly examine the basic ingre-
dients that need to be utilized when the algorithm is extended for global
convergence.

6.2 Prediction Error Identification

6.2.1 Off-line Prediction Error Identification: a Refresher

We consider an input–output description of the systems and models des-
cribed in Chapters 2 and 3. We assume that there is a true system given
by

yt = P (z)ut + vt, (6.1)

where P (z) is a strictly proper rational transfer function matrix, ut is the
control input and vt is an unmeasurable disturbance acting on the output yt.
We shall assume that {ut} and {vt} are quasistationary: see Ljung [Lju87].
A signal {zt} is called quasistationary if the following conditions hold for all
t, s,

|Ezt| ≤ C, (6.2)
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lim
N→∞

1

N

t+N
∑

τ=t

zτzτ−s
△
= Rz(s), |Rz(s)| ≤ C, (6.3)

where C is a finite constant and E denotes expectation with respect to all
the stochastic components in the signals. We then define the spectrum of
{zt} as

Φz(ω) =
∞
∑

s=−∞

Rz(s)e
−jωs. (6.4)

For the system (6.1) we assume that the signals {yt}, {ut} and {vt} possess
spectra Φy(ω), Φu(ω) and Φv(ω), respectively. Thus, for the moment, we
presume that stability of P (z) holds.

We also consider a parametrized model set

{

P̂ (z, θ), Ĥ(z, θ), θ ∈ Dθ

}

. (6.5)

A particular model in that model set will be described by

yt = P̂ (z, θ)ut + Ĥ(z, θ)qt, (6.6)

for a particular value of θ, where θ in Rd is a parameter vector, {qt} is white
noise and P̂ (z, θ) and Ĥ(z, θ) are, respectively, strictly proper and proper
rational transfer function matrices, with Ĥ(z, θ) and Ĥ−1(z, θ) having all
their poles strictly inside the unit circle. We shall for simplicity assume that
yt is a scalar signal, although this is not essential to our future developments.
For brevity of notation, we shall in future often refer to a model P̂ (z, θ),
Ĥ(z, θ), for a particular value of θ in Dθ, as the model θ. Associated with
the model (6.6) is the one-step-ahead predictor

ŷt|t−1(θ) = Ĥ−1(z, θ)P̂ (z, θ)ut + [I − Ĥ−1(z, θ)]yt. (6.7)

It is worth noting that in very many cases the predictor ŷt|t−1 can also be
written in pseudolinear regression form

ŷt|t−1(θ) = φT
t (θ)θ, (6.8)

where φt(θ) is a d-vector of pseudoregressors. This form is useful for the
derivation of algorithms minimizing a positive function of the prediction
errors. The prediction error is then

ǫt(θ) = yt − ŷt|t−1(θ)

= Ĥ−1(z, θ)[(P (z) − P̂ (z, θ))ut + vt]. (6.9)



Sec. 6.2 Prediction Error Identification 151

In the special case of models that are linear in the parameters, such as
autoregressive models with exogenous inputs (usually called ARX models),
φt in (6.8) depends only on the data and not on the parameter vector: it
then becomes a true regressor, rather than a pseudoregressor. The prediction
error ǫt(θ) is also linear in the parameters in this case.

Perhaps the most common way to identify a ‘best’ model in the model
set (6.5) is to select the parameter vector θ that minimizes

VN (θ, η) =
1

N

N
∑

t=1

[ǫft (θ, η)]2, (6.10)

where ǫft (θ, η) denotes the prediction errors filtered through a stable linear
filter with transfer function D(z, η):

ǫft (θ, η) = D(z, η)ǫt(θ). (6.11)

The parameter vector η indicates that the filter may depend on another set
of parameters that are tuned in order to achieve a desirable objective. The
parameter estimate is then defined as

θ̂N = arg min
θ∈Dθ

VN (θ, η), (6.12)

where Dθ in Rd is a subset of admissible values.
Except for models that are linear in the parameters (such as ARX mod-

els), the solution of (6.12) cannot be stated explicitly as a closed form expres-
sion. A battery of iterative algorithms exists that can be used to compute
an off-line solution of this minimization problem: see [Lju87].

6.2.2 Recursive Least Squares Identification

Alternatively to iterative off-line computation, θ̂ can also be computed re-
cursively or on-line. This means that, at time t and with θ̂t−1 available,
one new prediction error is computed from the observed output yt and the
predicted output ŷt|t−1:

ǫt(θ̂t−1) = [yt − ŷt|t−1(θ̂t−1)]. (6.13)

The filtered prediction error is obtained by filtering these ǫt by D(z, η), as
anybody could have guessed:

ǫft (θ̂t−1, η) = D(z, η)[yt − ŷt|t−1(θ̂t−1)]. (6.14)
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We notice that the computation of ǫft (θ̂t−1, η) through the filtering operation
(6.14) involves past prediction errors ǫt(θ̂t−1), ǫt−1(θ̂t−2), ǫt−2(θ̂t−3), . . . that
are computed with different θ̂. This is typical of any recursive identification
scheme. The parameter vector is then updated as follows:

θ̂t = θ̂t−1 + γtR
−1
t ψf

t (θ̂t−1, η)ǫ
f
t (θ̂t−1, η), (6.15)

where

ψf
t (θ̂t−1, η) = D(z, η)

∂ŷt|t−1(θ̂t−1)

∂θ
, (6.16)

γt is a positive scalar that determines the step size of the adaptation, and Rt

can take various forms. In a more general context one could take different
filters in (6.14) and (6.16) for the error and the regressor respectively (see
[Joh88]). The algorithm (6.15) becomes a gradient algorithm for Rt = I. It
becomes a recursive Gauss-Newton algorithm when Rt is updated as

Rt = Rt−1 + γt

[

ψf
t (θ̂t−1, η)ψ

fT

t (θ̂t−1, η) −Rt−1

]

. (6.17)

Where φt in (6.8) is independent of θ, as in the case with ARX models,

ψf
t is equal to the filtered regression vector, which is also independent of θ:

ψf
t (θ̂t−1, η) = φf

t (η) = D(z, η)φt. (6.18)

The algorithm (6.14)–(6.17), with ψ replaced by φ, then becomes the well-
known recursive least squares algorithm for linear-in-the-parameter models.
For the sake of simplicity, in our further developments we shall use the term
Recursive Least Squares for any recursive algorithm that results from min-
imizing a Least Squares cost function recursively in the general framework
just described, whether the model is linear in the parameters or not. We
shall deal later with some of the many variations that have been proposed for
the general algorithm (6.14)–(6.17) in order to improve either its robustness
or its tracking capabilities, particularly when used in adaptive control. What
will be important for our further exposé is the rôle played by the adaptation
gain, γt, which determines the speed of adaptation. This gain can be explic-
itly related to an exponential forgetting factor for the LS criterion, and in an
identification application (as opposed to an adaptive control application) its
selection represents a trade-off between tracking ability and noise rejection.
In an adaptive control context, other considerations in addition to tracking
such as closed loop stability may prevail, as we shall see later in this chapter.
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6.3 Frequency Domain Properties of the
Identified Model

As we stated earlier in this chapter, we shall be primarily concerned with the
analysis of the case where the chosen model structure is unable to represent
the true system for any of its parameter values. This is almost always the case
in practice, because the true system is of much higher complexity than the
available model structures. It is then important to be able to characterize
the misfit between the true system and the estimated model. The misfit
between the true system and the best possible model within the model set
(i.e. the model that would be obtained if an infinite number of data were
available and the model were fitted off-line) is called the bias. As it turns
out, it is possible to give a precise characterization of the distribution of this
bias in the frequency domain, and to extract from this characterization the
means of affecting this bias distribution by a suitable manipulation of the
input signal spectrum, the filter D(z, η) and, possibly, the choice of the noise
model, Ĥ(z, θ).

When the identification experiment is carried out in closed loop with a
fixed regulator, the input signal spectrum is of course a function both of this
regulator and of the reference input, and again it is important to examine
how these quantities will affect the distribution of the bias of the estimated
model. The situation becomes more complicated, but more crucial from a
convergence and closed loop stability point of view, when the regulator pa-
rameters are themselves functions of the model parameters, as is the case
in an indirect adaptive control situation, where the regulator parameters
are continuously adjusted on-line as a function of the estimated model pa-
rameters. We shall later be appealing to the timescale separation of slowly
adapting systems to apply the results for fixed closed loop controllers to
adaptive control.

In this section, we shall present the formulae for the asymptotic (as the
number of data tends to infinity) distribution over frequency of the bias of
an estimated model fitted with a filtered LS criterion and quasistationary
signals. We shall first do this for the case where identification takes place in
open loop, then for the case of closed loop identification. The derivation of
the asymptotic bias expressions which we shall present is due to the pioneer-
ing work of Wahlberg and Ljung [WL86]. In the next section, we shall then
examine the consequences of these results in the case of simultaneous iden-
tification and control, i.e. in the case of adaptive control. All our formulae
will be derived for the simple case of a single input–single output system.
The extension to the multivariable case is reasonably straightforward, but
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the multivariable formulae do not add any additional insight that cannot be
gained from the simpler scalar formulae.

6.3.1 Open Loop Identification

Under reasonable conditions [Lju87], the RLS parameter estimate θ̂ will
converge asymptotically to a value θ⋆ defined as follows:

θ⋆ = arg min
θ∈Dθ

V̄ (θ, η), (6.19)

where

V̄ (θ, η) = lim
N→∞

EVN (θ, η)

= lim
N→∞

1

N

N
∑

t=1

E[ǫft (θ, η)]2. (6.20)

Denoting by Φf
ǫ (ω) the spectrum of the filtered prediction errors ǫft (see

(6.11)), (6.3)–(6.4) and using Parseval’s identity allows us to re-express the
limiting value θ⋆ as follows:

θ⋆ = arg min
θ∈Dθ

∫ π

−π
Φf

ǫ (ω)dω. (6.21)

Using (6.9) and (6.11), the filtered prediction errors can be written as

ǫft (θ, η) = D(z, η)Ĥ−1(z, θ)[(P (z) − P̂ (z, θ))ut + vt]. (6.22)

When the system operates in open loop, ut and vt are independent, and
therefore (6.21)–(6.22) yields

θ⋆ = arg min
θ∈Dθ

∫ π

−π

[

|P (ejω) − P̂ (ejω, θ)|2Φu(ω) + Φv(ω)
] |D(ejω, η)|2

|Ĥ(ejω, θ)|2
dω.

(6.23)
The asymptotic model can therefore be seen as a compromise between fitting
the input–output transfer function, P̂ (z), to the true transfer function, P (z),
in a frequency weighted norm, and fitting the noise model spectrum Ĥ(z, θ)

to the error spectrum of {ǫft }. A thorough discussion of the consequences of
this result and of ways of manipulating this asymptotic bias can be found
in either [WL86] or in [Lju87]. Let us just note that, in the case of a fixed
noise model (Ĥ(ejω) independent of θ), the formula shows that the open
loop transfer function is fitted to the true transfer function with a frequency
weighting that is proportional to the input spectrum and the data filter
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spectrum, and inversely proportional to the fixed noise model spectrum.
(Note that under these assumptions Φv(ω) does not play any part in the
minimization.) This allows the user, by a proper choice of these design
quantities, to decide in which frequency bands she wants a tight fit between
the estimated model and the true plant transfer function, and in which
frequency bands she tolerates more slackness.

6.3.2 Closed Loop Identification

We now consider the case where the identification is performed while the
system is operating in closed loop. The formulae for the frequency distribu-
tion of the asymptotic model bias in the closed loop identification case have
been derived in [Gun88]. We shall here give slightly different formulae that
will be better suited to our subsequent discussion of their application to the
case of LQG regulators. Suppose for the time being that the regulator is
fixed, and call ρ the vector of regulator parameters. In order subsequently
to specialize our analysis to the case of LQG regulators, we shall consider
two degree of freedom regulators of the following form,

ut = F1(z, ρ)rt − F2(z, ρ)yt, (6.24)

where rt and yt are, respectively, the reference signal and the measured
output of the plant and F1 and F2 are the transfer functions of the two com-
ponents of the two degree of freedom regulator, parametrized by a parameter
vector ρ. Replacing ut in (6.22) by this regulator expression and using (6.1)
yields

ǫft (θ, η, ρ) = D(z, η)Ĥ−1(z, θ)

[

∆P (z, θ)
F1(z, ρ)

1 + F2(z, ρ)P (z)
rt

+
1 + F2(z, ρ)P̂ (z, θ)

1 + F2(z, ρ)P (z)
vt

]

(6.25)

= D(z, η)Ĥ−1(z, θ) [∆P (z, θ)W1(z, ρ)rt

+(∆P (z, θ)W2(z, ρ) + 1)vt] , (6.26)

where

∆P (z, θ) = P (z) − P̂ (z, θ)

W1(z, ρ) =
F1(z, ρ)

1 + F2(z, ρ)P (z)
(6.27)

W2(z, ρ) = −
F2(z, ρ)

1 + F2(z, ρ)P (z)
. (6.28)
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It is worth noting that W1(z, ρ) and W2(z, ρ) are the transfer functions from
rt to ut and from vt to ut, respectively, in the closed loop system,

ut = W1(z, ρ)rt +W2(z, ρ)vt. (6.29)

For a system operating in closed loop with the regulator (6.24), the
limiting value of θ⋆ is therefore given by the following expression:

θ⋆ = arg min
θ∈Dθ

V̄ (θ, η, ρ), (6.30)

where

V̄ (θ, η, ρ) = lim
N→∞

1

N

N
∑

t=1

E[ǫft (θ, η, ρ)]2, (6.31)

with ǫft (θ, η, ρ) defined by (6.25) or (6.26). This yields the following expres-
sions for the frequency distribution of the limiting model in closed loop:

θ⋆ = arg min
θ∈Dθ

∫ π

−π

[

|∆P (ejω, θ)|2
|F1(e

jω, ρ)|2

|1 + F2(ejω, ρ)P (ejω)|2
Φr(ω) (6.32)

+(|∆P (ejω, θ)|2
|F2(e

jω, ρ)|2

|1 + F2(ejω, ρ)P (ejω)|2
+ 1)Φv(ω)

]

|D(ejω, η)|2

|Ĥ(ejω, θ)|2
dω.

= arg min
θ∈Dθ

∫ π

−π

[

|∆P (ejω, θ)|2|W1(e
jω, ρ)|2Φr(ω)

+(|∆P (ejω, θ)|2|W2(e
jω, ρ)|2 + 1)Φv(ω)

] |D(ejω, η)|2

|Ĥ(ejω, θ)|2
dω.

= arg min
θ∈Dθ

∫ π

−π

[

|∆P |2
(

|Ŵ1|
2Φr + |Ŵ2|

2Φv

)

|ŴA|
2 + Φv

] |D|2

|H|2
dω,

(6.33)

where

Ŵ1(z) =
F1(z, ρ)

1 + F2(z, ρ)P̂ (z)
(6.34)

Ŵ2(z) = −
F2(z, ρ)

1 + F2(z, ρ)P̂ (z)
(6.35)

ŴA(z) =
1 + F2(z, ρ)P̂ (z)

1 + F2(z, ρ)P (z)
. (6.36)

Note, at this point, that the weighting functions Ŵ1 and Ŵ2 depend only
upon the controller design and not upon the actual plant P (z). The influence
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of the true plant on this frequency domain optimization is via the factor ŴA

of (6.36) which, as will be shown in Chapter 8, is the ratio of achieved
to designed sensitivity functions. This factor should, for well modeled and
robustly controlled systems, be close to one over the passband of the closed
loop system. If, as is reasonable, we take |ŴA| ≈ 1 over this band, then the
effect of the control design on the identification becomes clear from (6.33).

This expression shows exactly how a parametrized model of the form
(6.6) approximates the true system in the limit as the number of data tends
to infinity when that true system is not in the model set and when the iden-
tification is performed in closed loop with the regulator (6.24) operating.
Even though it only provides an implicit expression for the minimizing θ⋆, it
clearly exhibits the influence over the frequency distribution of the asymp-
totic bias of the noise and reference signal spectra Φv and Φr, of the prefilter
D(z, η) and of the regulator transfer functions F1(z, ρ) and F2(z, ρ).

Finally, we can describe the limiting model in the special case of LQG
control (see Chapter 3). It suffices to replace Ŵ1(z, ρ) and Ŵ2(z, ρ) by their
expressions from (3.88) and (3.91). In the case where observers with direct
feedthrough are used, which is the simpler case to write down, we have from
(3.91):

Ŵ1(z) = [1 −Kx(zI − F̂ )−1Ĝ]−1Kr(zI − F r)−1GrzN+1 (6.37)

Ŵ2(z) = [1 −Kx(zI − F̂ )−1Ĝ]−1Km(zI − F̂m +MF ĤmF̂m)−1MF z,

(6.38)

with Hm, Fm defined in Section 3.5 and Km △
= (Kx Kd ). The formula

(6.33) is the fuller analysis of closed loop identification promised with the
Gedankenexample in Section 4 of Chapter 1. The reader is invited to review
this computational example for moral support at this stage.

Here we draw the reader’s attention to a crucial point in the foregoing
presentation which will recur at several stages in the forthcoming develop-
ment. That is, that the controller transfer functions Ŵ1(z) and Ŵ2(z) are
computed based upon the identified model P̂ (z, θ) and not upon the actual
plant P (z). Hence we have made explicit the matrices with chapeaux in
(6.37) and (6.38). The dependence upon the identified parameters of the
weighting factors in the RLS equivalent integral represents a further compli-
cation of proceedings where the minimization in (6.33) becomes an opaque
implicit optimization problem. What is required to alleviate matters and
reassert the transparency of this frequency domain analysis is to insist that
these weighting functions are, to first order, independent of θ, at least in the
neighborhood of θ⋆. That is, we require that the achieved closed loop be



158 RLS Identification in Adaptive Control

roughly impervious to local changes in θ. That is not to say that the predic-
tion error becomes independent of θ but that the nondifferenced signals do
so. This is clearly a robustness requirement on the applied control law and a
statement with implications for local validity of the heuristic interpretation
of these formulae. We shall return again to this issue later but flag at this
stage that, just as identifier performance affects the controller through its
robustness, so does the controller and its robustness arise as critical for the
adequate predictable behavior of the identifier.

6.4 Recursive Identification in Closed Loop

Control — Local Theory

6.4.1 Heuristic Motivation

We have seen in the previous section that, when identification is performed
in closed loop in an off-line manner, the regulator influences the frequency
spectrum of the plant input, and therefore affects the bias distribution of
the estimated model. This is apparent from the expression (6.30)–(6.33),
which we rewrite in a concise way as a mapping from the regulator and filter
parameters to the asymptotic value θ⋆,

θ⋆ = Π(ρ, η). (6.39)

This mapping brings out quite clearly the fact that different regulator pa-
rameters and different filters will asymptotically lead to different estimated
models. We stress that this mapping is representative of an off-line identi-
fication applied to a closed loop system with a fixed regulator and a fixed
filter.

In an adaptive control-type situation, the regulator parameters will be
continuously adjusted as a function of the on-line estimates θ̂t. Depending
on the designer’s choice, the filter parameters may either be fixed, or they
may also be recursively updated as a function of the θ̂t. This means that the
parameter vectors ρ and η may be functions of the recursively estimated θ̂t:

ρt = ρ(θ̂t) ηt = η(θ̂t). (6.40)

As a consequence there is no guarantee, in an adaptive closed loop, that the
solution of the recursive parameter estimator will converge, and, even if it
does so, it is not clear what the meaning of the convergence point might be.
To get a handle on this question, it is perhaps easiest to try and first for-
mulate the off-line problem of which the recursive scheme is an approximate
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iterative minimization. It is natural to consider the minimization problem
(6.30) in which η and ρ are replaced by η(θ) and ρ(θ), respectively,

θ⋆ = arg min
θ∈Dθ

V̄ (θ, η(θ), ρ(θ)). (6.41)

This is a highly nonlinear minimization problem, and it is not clear that it
has a unique (or any) solution in general, or that its solution θ⋆, if it exists,
yields a stabilizing closed loop when it is used to design an LQG regulator.
We shall henceforth call a stabilizing solution, or stabilizing model, a model
θ for which the corresponding LQG regulator yields a stabilizing closed loop
when applied to the real plant. Our first task in this section will be to
specify, via the LQG criterion, a domain Dθ for which the problem (6.41)
has a stabilizing solution.

Having defined a minimizing and stabilizing value θ⋆ of the off-line min-
imization problem (6.41), we now assert that the solution of the recursive
parameter estimation problem, within an adaptive closed loop, need not con-
verge near such a solution or may even diverge to infinity. The mechanism
for such ‘bad craziness’1 can be intuitively understood as follows. Assume
that at time t the plant model parameter estimates are given by θ̂t. Let
the corresponding regulator parameters be ρt; assume for simplicity that
the filter parameters are constant. The new regulator parameters will affect
the new input signal, which itself affects the new parameter estimate θ̂t+1.
As the recursions proceed, the regulator may progressively push the input
signal spectrum into high frequency bands, say, that will produce a θ̂ model
for which the closed loop system has a poor stability margin. This will then
produce an input signal spectrum with even higher frequency contents, pro-
ducing a model of even worse quality, which eventually can become unstable.
The reader is referred back to the Gedankenexample of Chapter 1 for partial
evidence of just this effect.

Our next task, therefore, will be to prove that if the adaptive algorithm
is initialized with a value θ̂0 that is close enough to the optimal value θ⋆ of
the off-line minimization problem (6.41), and if the adaptation gain γ of the
parameter estimator is small enough, then the trajectory of the parameter
estimation algorithm will remain within a set of stabilizing models, with the
additional assumption of persistency of excitation of the external reference
signal. And further, the estimate will converge to the neighborhood (and
not necessarily a single point in this neighborhood) of a point that is close
to the optimal solution of the off-line problem. We will appeal here to the
powerful integral manifold theory developed for similar problems by Riedle
and Kokotovic [RK86a], [RK86b].

1op. cit. Fear and Loathing in Las Vegas, Hunter S. Thompson.
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6.4.2 Potential Convergence Point

As promised above (promises are one thing we do like to keep), we now set
ourselves the task of defining a domain Dθ for which the minimization prob-
lem (6.41) will yield a stabilizing solution. When the true system is contained
in the model set and when the external reference signal is persistently excit-
ing, the identified model P̂ (z, θ̂) will, under reasonable conditions, converge
to the true system P (z), and therefore, if the regulator has been designed
by a lucid control engineer, the closed loop will be stable. However, in the
case of model mismatch, and unless special precautions are taken, there is
no reason why a model that minimizes a prediction error criterion should
also minimize in any way a control criterion and therefore stabilize the plant.
Since our aim is to promote the use of indirect LQG control, we shall define
a desirable θ⋆ model, which is the solution of a minimization problem (6.41)
via the solution of an LQG model selection problem.

Consider that the true plant is described by (6.1), and that a model set
has been selected together with corresponding state-variable descriptions

(see Chapter 3 and (6.5)),
{

P̂ (z, θ), Ĥ(z, θ), θ ∈ Dθ

}

. Consider now that we

have decided on a particular LQG criterion for our control design problem
that only involves measurable signals (i.e. inputs, outputs and reference sig-
nals) such as (3.11). For any model θ in our model set, the solution of the
LQG problem leads to a particular regulator, parametrized by a vector, say
ρ(θ), and the application of that regulator to the actual plant yields a corre-
sponding LQ cost J(θ). Note that J(θ) is computed from the LQ criterion
using the measured inputs and outputs. It is the achieved cost, but with
a regulator computed on the basis of the model P̂ (z, θ), Ĥ(z, θ). Hence the
notation J(θ).

We then define the best model within our model set as the model that
produces a regulator that will minimize the achieved LQ cost, as measured
on the controlled plant. We call θ⋆⋆ the parameter vector that defines that
model:

θ⋆⋆ = arg min
θ∈Dθ

J(θ). (6.42)

Note that by construction, and provided the standard stabilizability assump-
tion is satisfied and the LQG control problem has been selected properly,
θ⋆⋆ must correspond to a stabilizing controller.

When the true plant is in the model set, the minimization of the criterion
(6.42) and that of any reasonably formulated prediction error criterion will,
under suitable conditions, yield the same (i.e. exact) model. In the case
of unmodeled dynamics, θ⋆⋆ need not be obtainable as the solution of a
prediction error criterion minimization, for the simple reason that the criteria
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are entirely different. We shall now show that, provided the model set is such
that the plant-model mismatch is not too large, one can define a model θ⋆,
obtained via the minimization of the prediction error criterion (6.41), that is
close enough to the θ⋆⋆ model also to be stabilizing, provided the domain of
admissible values Dθ is suitably restricted. In the final step of our analysis,
we will then use averaging theory to show that the recursive parameter
estimate will converge to a neighborhood of the stabilizing value θ⋆, provided
the adaptation is slow enough and the initial estimate is sufficiently close.
That is, if one starts from a reasonable parameter value then one’s solution
tends to still more advantageous values.

We first rewrite the system (6.1) as

yt = φT
t θ

⋆⋆ + ζt + vt, (6.43)

where φt is a regressor of past inputs and outputs, θ⋆⋆ is defined above, vt

is as in (6.1) and ζt denotes the unmodeled dynamics. Note that (6.43) is
as much a definition for ζt as a rewriting of the plant description. When the
plant is operating under feedback control with a stabilizing LQG regulator
computed via a model θ, φt and ζt in (6.43) are functions of θ, and will
therefore be denoted by φt(θ) and ζt(θ). We shall then assume that vt is
uncorrelated with both φt(θ) and ζt(θ). As in all our analysis in this chapter,
we assume that the reference signals and the external perturbations are such
that the signals in the time-invariant closed loop system are quasistationary.
We can then introduce the following notations,

m = E[|φt(θ
⋆⋆)|] (6.44)

λ = λminE
[

φt(θ
⋆⋆)φT

t (θ⋆⋆)
]

, (6.45)

where λmin denotes the smallest eigenvalue. We shall also from now on
denote by V̄ (θ) the value of the cost (6.31), where it is understood that ρ
and, possibly, η are functions of the model θ, with the regulator computed
as the solution of an LQG criterion.

We now introduce an important assumption on the amount of unmodeled
dynamics that is tolerated in the model θ⋆⋆.

Assumption 6.1

There exists a closed hypersphere

Br(θ
⋆⋆) = {θ : |θ − θ⋆⋆| ≤ r}

centered on θ⋆⋆ with radius r such that

1. for all θ ∈ Br(θ
⋆⋆) the closed loop system is stable,
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2. there exist positive constants α, β, δ, k such that for all θ ∈ Br(θ
⋆⋆)

E|ζt(θ
⋆⋆)| ≤ α(E|φt(θ

⋆⋆)| + k), E|
∂φt(θ)

∂θ
| < β,

E|
∂ζt(θ)

∂θ
| < δ (6.46)

with α, β, and δ small enough so that

rλ > 2[βmr2 + δmr + βδr2 + α(m+ k)(m+ βr + δ)]. (6.47)

Assumption 6.1 has the following implications:

• the first part assumes that around the ‘best’ system θ⋆⋆ there is a
neighborhood of stabilizing models. This is a very reasonable assump-
tion if the closed loop regulator is computed using a robust design
methodology as recommended in Chapter 5;

• the second part is a constraint on keeping the unmodeled dynamics
small enough relative to the regressor (α, k), as well as an assumption
of smoothness of both the regressor (β) and the unmodeled dynamics
of the closed loop system (δ) with respect to the model parameter
θ. We notice that satisfaction of the constraint (6.47) also hinges on
the amount of persistence of excitation of the regressor vector φt(θ

⋆⋆)
through the parameter λ;

• the two parts of the assumption really address the existence of Br

and then define the radius of the hypersphere through the combined
constraints of closed loop stability, small unmodeled dynamics and
smoothness. Condition (6.47) is the limiting constraint upon the appli-
cability of this analysis to establish robust stability of adaptive control
for a particular system;

• finally, we notice that the satisfaction of the constraint (6.47) is the
critical condition for the following lemma.

The model θ⋆⋆ has been defined through the minimization of an LQ cost
over all models in a set Dθ. We now show that, under Assumption 6.1,
close to θ⋆⋆ (i.e. inside the hypersphere Br(θ

⋆⋆)) there exists a stabilizing
model θ⋆ that is defined through the minimization of an off-line least squares
prediction error criterion.



Sec. 6.4 Identification in Closed Loop Control — Local 163

Lemma 6.1

Let θ⋆⋆ be defined as the LQ optimal parameter value as in (6.42) and let
Br(θ

⋆⋆) satisfy Assumption 6.1. Then there exists a θ⋆, an interior point of
Br(θ

⋆⋆), defined as the following solution of a prediction error problem:

θ⋆ = arg min
θ∈Br(θ⋆⋆)

V̄ (θ, ρ(θ), η(θ)). (6.48)

Proof Since θ⋆ is in the closed hypersphere Br(θ
⋆⋆) by construction, the

proof consists of showing that it cannot be on the boundary. Let θ0 be an ar-
bitrary point on the boundary ofBr(θ

⋆⋆); we shall show that V̄ (θ0) > V̄ (θ⋆⋆).
Recall that V̄ (θ) has to be interpreted, as indicated above Assumption 6.1,
as the value of (6.31) for a particular θ. Consider first the model θ⋆⋆ and its
corresponding optimal prediction error cost V̄ (θ⋆⋆). From (6.43), it follows
that the predicted value ŷt(θ

⋆⋆) can be written as

ŷt(θ
⋆⋆) = φT

t (θ⋆⋆)θ⋆⋆. (6.49)

The prediction error follows immediately:

ǫt(θ
⋆⋆) = yt − ŷt(θ

⋆⋆) = ζt(θ
⋆⋆) + vt. (6.50)

Therefore, with D = 1, and using the independence assumption on {ζt} and
{vt},

V̄ (θ⋆⋆) = E
[

ζ2
t (θ⋆⋆) + v2

t

]

. (6.51)

Consider now any model θ0 on the boundary. Then

V̄ (θ0) = E[yt − ŷt(θ0)]
2

= E
[

φT
t (θ0)θ̃ + ζt(θ0) + vt

]2
, (6.52)

where θ̃ = θ0 − θ⋆⋆. Using Taylor’s formula with remainder, we can write

φt(θ0) = φt(θ
⋆⋆) + θ̃T ∂φt

∂θ
(θ1)

ζt(θ0) = ζt(θ
⋆⋆) + θ̃T ∂ζt

∂θ
(θ2), (6.53)

where θ1 and θ2 are two intermediate points in Br(θ
⋆⋆) between θ0 and θ⋆⋆.

V̄ (θ0) can then be written as

V̄ (θ0) = E [ζt(θ
⋆⋆) + vt]

2

+E

[

φT
t (θ⋆⋆)θ̃ + θ̃T ∂φt

∂θ
(θ1)θ̃ + θ̃T ∂ζt

∂θ
(θ2)

]2

(6.54)

+2E [ζt(θ
⋆⋆) + vt]

[

φT
t (θ⋆⋆)θ̃ + θ̃T ∂φt

∂θ
(θ1)θ̃ + θ̃T ∂ζt

∂θ
(θ2)

]

.
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We recognize the first term as being V̄ (θ⋆⋆), and we denote the sum of the
other two terms by S. Noting that |θ̃| = r, recalling that vt is uncorrelated
with both φt(θ) and ζt(θ), and using the Cauchy-Schwartz inequality, we can
write

S ≥ E

[

φT
t (θ⋆⋆)θ̃ + θ̃T ∂φt

∂θ
(θ1)θ̃ + θ̃T ∂ζt

∂θ
(θ2)

]2

−2αr(k +m)(m+ βr + δ)

≥ λr2 − 2[βmr3 + δmr2 + βδr3 + αr(k +m)(m+ βr + δ)].

(6.55)

It follows directly that S > 0 if the inequality (6.47) is satisfied. CQFD

The point of Lemma 6.1 has been to show that, under conditions of
smoothness and limited unmodeled dynamics, there exists a closed hyper-
sphere Br(θ

⋆⋆) surrounding θ⋆⋆, the interior of which contains a stabilizing
model θ⋆ that can be obtained as the solution of an off-line prediction error
identification problem, with the search domain suitably restricted to that
hypersphere. The model θ⋆⋆ can then be seen as a vehicle for suitably defin-
ing the model θ⋆ as the solution of an off-line identification problem. The
trick that made this vehicle deliver its goods was to impose a constraint (As-
sumption 6.1) that restricted the amount of allowable unmodeled dynamics.
This causes the minimum of the prediction error criterion and the optimal
control performance to be related. We should note that conditions like As-
sumption 6.1 are very standard in the literature on robust indirect adaptive
control: see for example [Sam82]. The churlish reader will undoubtedly ex-
pect us at this point not to launch into the ubiquitous integral manifold
theory — but we will anyway. This provides the connection between the
existence of the solutions to the off-line minimization and their attractivity
for slowly adapting recursive estimators.

6.4.3 Integral Manifolds and Slow Adaptation

Having defined θ⋆, our analysis will proceed by demonstrating that, with a
suitably restricted search domain and a sufficiently small adaptation gain,
the solution of our recursive prediction error algorithm, used in an adaptive
closed loop, will converge to a neighborhood of stabilizing models around θ⋆.
The thrust of our argument will be as follows. We first describe the nonlinear
equations of the complete adaptive control system, and argue that these
can be split up into fast θ-dependent ‘state’ equations and slow parameter
update equations, provided the adaptation gain γ is small enough. The
average behavior of the parameter update equations can be described by an
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ordinary differential equation (ODE), whose convergence point θ0 is close to
θ⋆ if the unmodeled dynamics are not too important and if there is sufficient
excitation. Under suitable conditions similar to those of Assumption 6.1, the
solution of the parameter update equation can then be shown by integral
manifold arguments to converge, from a suitable region of initial conditions,
to a limiting solution, which itself is close to θ0. This solution to which we
converge need not be a point but is a function of time which remains close to
θ0. The application of integral manifold theory to the analysis of adaptive
control systems is due to Riedle and Kokotovic [RK86a], [RK86b], and we
shall refer to their work for proofs and details.

The full set of dynamical equations of the adaptive closed loop system
can be written in compact form as follows:

Ξt+1 = A(θt)Ξt +B(θt)nt, Ξ ∈ Rs, (6.56)

θt+1 = θt + γft(θt,Ξt), θ ∈ Rd, (6.57)

where Ξ includes the states of the true plant, of the plant model, of the
observer, of the regulator and of the filters, nt denotes a vector made up
of all the external signals (i.e. reference signals and noises), while the pa-
rameter update equation (6.57) is just another expression for the recursive
least squares equation (6.15) with a constant gain γ. Examples of adaptive
control algorithms rewritten in this global form can be found in [RK86b],
[ABJ+86] and others. In Adaptive Optimal Control θt in (6.57) is clearly
the parameter update. The dependence of A(·) and B(·) on θ includes the
solution of LQ and KF AREs, for example.

With θ⋆ defined as in the previous section, we now make the following
assumption:

Assumption 6.2

1. There exists a compact set Θ containing θ⋆ and constants λ ∈ (0, 1)
and K1 ≥ 1 such that ∀θ ∈ Θ and ∀t ≥ 0

|A(θ)t| ≤ K1λ
t. (6.58)

2. There exist constants c, c1 and c2 such that the frozen parameter re-
sponse

νt(θ) =
∞
∑

j=0

Aj(θ)B(θ)nt−j−1 (6.59)
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and its sensitivity ∂νt

∂θ (θ) satisfy

|νt(θ)| ≤ c, |∂νt

∂θ (θ)| ≤ c1

|∂νt

∂θ (θ) − ∂νt

∂θ (θ⋆)| ≤ c2|θ − θ⋆| (6.60)

for all t ∈ Z and all θ, θ⋆ ∈ Θ.

3. The function ft(θ,Ξ) in (6.57) is bounded, Lipschitz in θ and Ξ uni-
formly with respect to t, θ ∈ Θ and Ξ in compact sets.

The first part of Assumption 6.2 says that around the ‘optimal’ model
θ⋆ there is a compact set of models that also produce exponentially stable
closed loops. This is a reasonable assumption given that, if in the selection
of our model θ⋆ the filter D(z, θ) has been chosen so as to maximize the
robustness of the ensuing closed loop to unmodeled dynamics according to
the prescriptions of Chapter 5 (see also Chapters 7 and 8), then this will
have the effect of maximizing the size of the compact set around θ⋆ for
which closed loop stability can be guaranteed. The second and third parts
of Assumption 6.2 are essentially smoothness assumptions on the nonlinear
model (6.56)–(6.57).

The integral manifold theory of Riedle and Kokotovic is based on a time-
scale separation between the dynamical equations for Ξ and for θ. The idea
is that, if the gain γ is small enough, the solution of the parameter update
law can be approximated by the solution of an ‘averaged’ equation,

θ̄t+1 = θ̄t + γf̄(θ̄t), (6.61)

where f̄ is obtained by averaging f over t with θ̄ fixed. Asymptotically stable
solutions of (6.61) can in turn be related to solutions of the ODE,

dθ̂

dt
= f̄(θ̂). (6.62)

We then have the following important stability result, which we paraphrase
in words, leaving out the precise values of the bounds: see [RK86a], [RK86b]
for details and exact values of the bounds.

Theorem 6.1

Suppose that θ⋆, defined by (6.48), is a local minimum,

θ⋆ = arg min
θ∈BK(θ⋆)

V̄ (θ, η(θ), ρ(θ)), (6.63)
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of V̄ (θ)2, defined by (6.31), with BK(θ⋆)
△
=
{

θ ∈ Rd : |θ − θ⋆| ≤ K
}

such

that the vector ψf
t is persistently exciting ∀θ ∈ BK(θ⋆). If V̄ (θ⋆) is small

enough, then

1. the ODE (6.62) has an asymptotically stable equilibrium point θ0 such
that

|θ0 − θ⋆| ≤ bV̄ (θ⋆)for some finite b; (6.64)

2. given χ > 0, there exists a sufficiently small γ⋆(χ) such that, for
γ ∈ (0, γ⋆), the equation (6.57) possesses a bounded uniformly asymp-
totically stable solution θ̃t(γ) which is close to θ0,

lim
γ→0

|θ̃t(γ) − θ0| = 0; (6.65)

3. every solution θt(γ) of (6.57) with θ0(γ) ∈ BK−χ(θ⋆) satisfies, for
γ ∈ (0, γ⋆),

θt(γ) ∈ BK(θ⋆), lim
t→∞

|θt(γ) − θ̃t(γ)| = 0. (6.66)

The constant b in the first part of the theorem is proportional to the max-
imum value, over all the models in the hypersphere BK(θ⋆), of the average
value of the Euclidean norm of the regressors, and is inversely proportional
to the average amount of excitation in the filtered regressors ψf

t (θ).
The main conclusion to be drawn from this result is that the solution of

the recursive parameter adaptation algorithm, implemented in an adaptive
loop, will converge close to the solution θ⋆ of the off-line problem (6.48),
provided the following conditions hold.

1. The plant-model mismatch is small enough; this is embodied in the
condition that V̄ (θ⋆) must be small enough.

2. The filtered regressors are persistently exciting.

3. The initial condition of the parameter update algorithm is sufficiently
close to the ‘optimal’ value θ⋆.

4. The models are sufficiently smooth functions of θ around θ⋆.

5. The gain of the parameter update algorithm is sufficiently small.

2For reasons of conciseness we shall again delete the explicit dependence of V̄ (θ) on
ρ(θ) and on η(θ).
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Further, since under similar assumptions θ⋆ is close to the performance
criterion minimizing θ⋆⋆, we will have θ converging to the neighborhood
of θ⋆⋆.

The fuller analysis of the quantification of both the limiting and tran-
sient response of both θt and Ξt stemming from the above treatment follows
by appeal to the fixed point methods of [ABJ+86]. The achievable quan-
tifications are characterized by the level of undermodeling and the level of
persistence of excitation.

6.5 Recursive Identification in Closed Loop — Global

Methods

The results of the preceding section convey the picture of the local behavior
of a recursive identification scheme operating in an adaptive closed loop.
The term ‘local’ refers to the fact that the initial parameter estimate value
is required to reside within a fixed distance from the set of final attrac-
tion. The reward for analysis under this hypothesis is that rather precise
descriptions of the performance of the adaptive system are achievable to-
gether with bounds and rates as in the previous section and in [ABJ+86].
The alternative class of possible results is concerned with global dynamics
of the identifier, where arbitrarily large initial conditions are permitted and
ultimate convergence to a set of suitable parameters established. Typically,
however, this set is not necessarily small nor is it feasible to supply over-
bounds on transient performance during this convergence [KMABJ87]. We
study some of the rudimentary features of algorithm modifications made to
achieve global properties. We do this in order to provide a more complete
picture of the measures which might need to be contemplated to force adap-
tive controllers to function adequately in a broader setting. Unfortunately,
the interface between global and local theories is still somewhat hazy, since
it is not at present feasible to propose an algorithm which has guaranteed
properties from both camps. Certainly, because performance in spite of the
control law for these global methods is de rigueur, they are seditious in our
current development, but are added for completeness and comparison.

In order to establish the central features of the interplay between con-
trol design and identification in Adaptive Control, we have so far explicitly
needed to appeal to the local theory so that we have available suitably ac-
curate descriptions of the limiting parameter set in closed loop. However,
it is naturally desirable to guarantee convergence of the estimated parame-
ters from a rather large initial set to a region from which the local results
could be invoked. The difficulty which arises in such global theory is that,
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in adaptive feedback systems, the presence of the nonlinear feedback path
can lead to wildly unstable systems and thereby extreme ill-conditioning
of the signals, in that one (the most unstable) dynamical mode of the plant
greatly dominates all input–output data. The response then is to modify the
RLS algorithm to cope with this effect. Useful references for these classes of
modifications are [Pra88], [Joh88] and [MGHM88].

6.5.1 Normalization and Deadzones

One mechanism proposed to deal with this underinformative data at high
signal values is Normalization, an approach usually attributed to Egardt
[Ega79], Samson [Sam83] and Praly [Pra82] (see also [Pra86]). The key idea
is to replace the error signal and the regressor in RLS by derived quanti-
ties which are guaranteed bounded by dividing by a normalization signal
constructed from past plant inputs and outputs.

Typically one selects positive constants ρ̄ and µ and computes

ρt = µρt−1 + max
(

|ψf
t |, ρ̄

)

, (6.67)

where µ is connected with a stability margin known (or assumed) to be
achievable for the actual plant. One then replaces the filtered prediction
error, ǫft , and filtered regressor, ψf

t , in the RLS updates (6.15) and (6.17) by

ψ̄f
t =

ψf
t

ρt
(6.68)

ǭft =
ǫft
ρt
. (6.69)

The growth properties of the solution ρt of (6.67) with respect to the closed
loop signals dictates the boundedness of the normalized signals and, there-
fore, limits the potential overindulgence of the identifier during unstable
adaptation transients. Naturally, this interference in the operation of RLS
affects its ability to respond to these transients and so wild excursions in the
state Ξt are possible during initial phases.

An ideologically similar algorithm modification to cope with similar prob-
lems is the Relative Deadzone, due (at least in discrete time) to Kreisselmeier
and Anderson [KA86]. Here the normalized prediction error above is re-
placed by its normalized deadzone counterpart,

ǫ̃ft = F
(

ǭft

)

, (6.70)
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with

F(x) =







x− d0, if x > d0

0, if |x| ≤ d0

x+ d0, if x < −d0

(6.71)

where d0 is a constant threshold below which the normalized error is ignored.
One intriguing aspect of systems involving deadzones is that they reject

those errors which are too small. Such errors could arise due to normal-
ization with very large signals or, equally, with underexcitation. Thus they
frequently have the capacity to switch off during quiescent periods when per-
sistence is lacking. Performance issues still need to be adequately resolved.
Initial results are given in [Pra88]. Other embellishments such as directional
dependent deadzones and normalization have also been proposed.

6.5.2 Projection and Leakage

As the bulk of the difficulty in ensuring globally adequate behavior of the
identifier occurs when attempting to handle local instability, several methods
have been advanced which apply a priori knowledge of a region of the pa-
rameter space in which closed loop stability is assured to restart adaptation
from new conditions when instability is detected.

Projection is concerned with forcing a restart of the estimator at a suit-
able reinitialization after stability is lost for the previous parameter value.
This stability could refer either to that of the actual closed loop as detected
by signal magnitudes or to that of a computed model. Various suggestions
have been brought forward for the precise means of restarting, including pro-
jection to a single fixed point, random restart in a given set, backtracking in
the history of the adaptation. Each method has its pros and cons.

Leakage refers to the artificial addition of terms in the RLS update
which encourage the parameter estimates to tend towards a known reason-
able point. In Adaptive Control this is typically introduced as a method
for overcoming the drift introduced by additive output disturbances act-
ing upon underexcited systems (see [IK83]). An interesting error-dependent
leakage has been suggested by Narendra and Annaswamy [NA87] based on
the magnitude of the local error. Unfortunately, the local dynamics of such
an adaptive controller demonstrate very complex nonlinear effects.

For both the above methods, information on the potential convergence
points of the identification algorithm is required which permits incorporation
of these data into the design at the cost of some globality. The performance
effects of projection are very difficult to assess, while leakage introduces
an offset to the identified parameter even with ideal model matching. A
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fatalistic assessment is that these are just the requisite costs to be borne for
having the desirable features.

6.5.3 Covariance Resetting

In adaptive RLS estimation problems operating in conditions with variable
signal levels there are two effects which can disturb the correct performance
of the identification algorithm, viz signal levels being too large and signal
levels being too small. The difficulty in either of these conditions is that the
step size matrix Rt in (6.17) is affected too greatly by recent signals. Signals
being small causes Rt to become large, thereby making the algorithm step
size too active. Signals being large causes the opposite effect through the
step size turning off.

To overcome these effects, it is common practice to restrict the variability
of the Rt matrix by artificial means, so that it neither becomes too large nor
too small, yet still preserves a measure of responsiveness to data variations.
Such methods might consist of the addition of positive definite terms to the
recursion (6.17) and/or the inclusion of negative definite terms which switch
in when signal levels become excessive. Many of these types of modifications
are discussed in [GS84], [SGM88].

6.5.4 A Global Comment

The theme of our work up to this section has been the coupling between
controller objective and identifier objectives in formulating an adaptive con-
trol law. This ‘interplay’ has been demonstrated in the local robust stability
framework. The central property of the modifications above aimed at global
convergence of the identifier is that the parameter estimation algorithm is
‘robustified’ to the effects of the control law. Thus these methods reek of the
philosophy of which we complained earlier, i.e. the exclusive focus upon only
one component of the adaptive controller, and so are not consistent with our
message. The difficulties associated with the global approaches vis-à-vis our
coupled local approach are that their ability to quantify the achieved closed
loop performance is reduced because the effect of the closed loop controller
on the parameter set to which the parameter identifier converges is not rec-
ognized. The dual issue is that the control law is chosen to be robust to
a whole class of potential identified systems without specific regard to the
finer modeling structure.

Nevertheless, these global techniques are included for several reasons:

1. They give an insight into the distinction between the two approaches.
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2. They indicate what measures might need to be adopted to guarantee
that the parameter value reaches a set in which one may appeal to the
robustness arguments from an initial value reasonably distant.

3. They display some techniques for handling the difficulties associated
with underexcitation.

One might interpret all of these adjustments of this section as a means
of coping with persistence of excitation problems, due to either excessive
or insufficient signal energy. Our presumption in the local theory is that
persistence of excitation is assured whenever the adaptation is active. To us
this seems a reasonable assumption, since otherwise the loop signals do not
contain sufficient information about the plant to be a good basis on which
to design a feedback control law.

One of the few works which also studies the interplay (Conflict or Con-
flux) between the parameter estimation algorithm and the control law is that
of Polderman [Pol87]. Although his conclusions, regarding the LQ control
laws, seem rather contradictory to the main claim of this treatise, we must
stress that his analysis relies on the assumptions that perfect modeling is
used (no unmodeled dynamics) and that there is no persistently exciting
reference.

The real comparison between the local and global approaches may also be
viewed as one of compromise between initial assumptions — initial condition
restrictions are traded against structural assumptions on the class of plants
and control laws.

6.6 Conclusion

The main message from Chapter 5 is that an off-line design can be guaranteed
robust provided a measure of the relative plant-model mismatch can be
upperbounded, at each frequency, by a measure of the feedback system’s
return difference. In order to utilize fully those results in an adaptive context,
it is necessary in this chapter to answer two questions:

1. Given that there is a plant-model mismatch, how can the identified
model be shaped in a way as to maximize our chances of satisfying this
robustness inequality? In layman’s language, one might rephrase this
question as ‘given that I know my model is incapable of representing
the true system, how can I organize my identification design in such a
way that the model will only be poor at frequencies where it doesn’t
hurt?’.
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2. Given that in an adaptive control loop all the computations are per-
formed on-line, and that the closed loop is now described by a com-
plex set of nonlinear equations, are the asymptotic expressions and the
design guidelines that were derived in an off-line identification con-
text still valid when the identification is performed within a constantly
changing closed loop?

Our presentation of the frequency domain expressions for the asymp-
totic models was essentially aimed at formulating the equations to allow a
response to the first question, while our examination of the consequences
of the integral manifold theory of Riedle and Kokotovic was necessary to
go from conclusions and design guidelines based on these off-line results to
conclusions and design guidelines for the recursive situation. The detailed
connections between the resolutions of these two separate issues have been
left a little understated because their main purpose is more for theoretical
support in order that they later become illuminating. The main lessons to
be drawn from this chapter from a practical point of view can briefly be
summarized as follows.

• When the plant is not in the model set, the asymptotic formulae for
the limit model tell us how the plant-model mismatch is distributed
over frequency.

• The implicit definition of an RLS optimal parameter as minimizing
a frequency domain integral allows one to view the explicit effects of
loop gain on the level of excitation at the plant input. The increase or
decrease in this excitation has an obvious effect upon the identification
of the plant model at various frequencies. This notion (informally
stated here) will later be tied to the need to identify best the plant in
certain frequency regions.

• These formulae show that, once the regulator structure has been chosen
and given that the reference signal spectrum is usually imposed by the
user, the plant-model mismatch can be shaped to fit the robustness
needs by a proper choice of the data filter D(z). This will be more
fully exploited in Chapters 7 and 8.

• In order for the solution of the adaptive parameter estimator to con-
verge to a solution that is both stabilizing and close to the one that
would be expected from a robustness-engineered off-line design, sev-
eral precautions must be taken. Essentially they are that the initial
condition must not be too far away from the ‘optimal’ solution of the
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off-line problem, that the absolute plant-model mismatch must not be
too large, that the adaptation gain must be kept small enough, and
that the reference signal must be persistently exciting.

• Techniques do exist which (theoretically at least) permit adaptation
without restriction on either or both the initial conditions and the
signal excitation, but these do not take advantage of the potential
synergistic coupling between identifier and control law.

With this chapter we have reached the stage where analysis can give way
to synthesis and we may concentrate the tools and techniques acquired in
the preceding chapters to design a candidate robust adaptive control law.
Of critical concern in this venture is the understanding gained here on the
local (linearized) behavior of the nonlinear adaptive scheme which permits
direct access to the linear robustness principles and off-line identification
interpretations. The next chapter concentrates on this synthesis.



Chapter 7

A Candidate Robust
Adaptive Predictive
Controller

7.1 Introduction

At last the analytical portion of this magnum opus is essentially behind
us and we next commence the synthetic component by proposing an adap-
tive controller coupling the robustness theory of LQG/LTR linear control
law design (i.e. Chapter 5) with Least Squares identification modeling ideas
(Chapter 6). Here it is necessary to combine both facets of the adaptive
controller, the identifier and the control law, in order that the synergism of
these disparate techniques be brought out.

Recall that the fundamental closed loop stability robustness requirement
is given by Theorem 5.3 and

σ̄[L−1(z) − I] < min
(

σ
¯
[I + Ĝ(z)], 1

)

, ∀|z| ∈ Ω, (7.1)

where Ω denotes the unit circle. Here L(z) is the multiplicative devia-
tion of the nominal or model transfer function matrix, P̂ (z), from that of
the actual or true plant system, P (z), and Ĝ(z) is the cascaded designed
plant/controller or controller/plant transfer function. Hence L(z) is inti-
mately entwined with the system identification aspects of the plant model-
ing, while Ĝ(z) is equally closely enmeshed with the control law. Our thesis
now must be to consider how the specification of an adaptive controller can
incorporate the manipulation of the identification properties and the tinker-
ing with the controller to cause the behavior of each to enhance separately

175
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the performance of the other. This must operate in closed loop, and should
yield considerable leverage to preserve the stabilizing and performance prop-
erties of the overall feedback system. As is evident from the subject matter
advanced to the reader so far, we intend to present a candidate adaptive
controller based upon LQG feedback control and RLS system identification.
Thus there will be certain similarities to the features of GPC. Indeed, many
of the observed useful properties of GPC in applications can be well ex-
plained and analysed by the LQG methods presented so far. It is mainly
for sentimental and historical reasons (which, by now, should be apparent)
that we shall retain the vestigial term predictive for our candidate adaptive
controller, although it should also by now be clear to even the most skeptical
reader that LQG controllers are just as predictive as GPC, the mechanism
for computing predictions being the Kalman predictor (or Kalman filter) in
LQG, and equivalent Diophantine equations for output predictions in GPC.

The controller which we propose here is a ‘Certainty Equivalence’ or ‘In-
direct’ controller, i.e. it consists of a parameter identifier and a control law
design module with the control law using the estimated plant parameters as
if they were the actual parameters, albeit with account being taken of their
probable inaccuracy. (An alternative class of controller, which we do not
treat, is ‘Direct Adaptive Control’, where the controller parameters them-
selves are estimated rather than generating an explicit plant model.) We
commence by considering the control law on its own and then move on to
state the identification method used, before explicitly analysing their inter-
play. It can be seen from the statement that our control law will consist
of LQG plus RLS, that already the scope for design choice has been con-
siderably narrowed. A central feature of our Candidate Robust Adaptive
Predictive controller will be the simplification still further of the available
design variables to be small enough in number to provide the engineer on the
shop floor sufficient flexibility in tuning the behavior of the adaptive system
in response to the observed properties or to a priori information about the
plant system, while avoiding the requirement for the provision of too many
ad hoc variable selections. This is a critical feature of any control design
methodology which entertains pretensions of industrial applications.

The controller we are presenting here is a candidate general purpose
robust adaptive controller based on ideas from predictive control. Following
the presentation of the candidate, the platform of support will be detailed.
The vote, however, must be left for the control populace.
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7.2 The Certainty Equivalence Control Law

Here we discuss the aspects of the sequence of design steps to be taken in
going from a priori knowledge and on-line estimated data provided by the
identifier to the generation of a complete LQG controller. We assume that
the control objective is embodied in the specification of an output tracking
problem with a given reference trajectory, rt, which is available to the control
law N steps ahead of time. While the primary objective is reference track-
ing, control signal energy and peaking are also of concern as is the internal
stability and robustness of the closed loop.

7.2.1 The Plant, Noise and Reference Models

Parameter identification schemes provide, naturally, a model of the plant
system under study as evaluated by on-line data measurements. For us with
LQG control in mind, this necessitates the passage from a parameter esti-
mate vector, θ̂, for the plant model to an equivalent state-space description
(3.1) and (3.2). That is, we define system matrices F (θ̂), G(θ̂), H(θ̂) from
the estimate. We shall not be investigating specific methods for defining
these matrices, i.e. realization procedures, because we shall be presenting a
controller which, as much as possible, has closed loop properties independent
of the state-variable realization chosen.

Also, these identification schemes may provide the user with a noise
model describing the spectral properties of the measurement noise associated
with the plant and its model. When such a noise model is available, one could
take it as a suitable specification of the noise state matrices F d(θ̂), Gd(θ̂),
Hd(θ̂) of (3.40) and (3.41) used in the construction of the state estimator
part of an LQG controller. Even when a noise modeling is explicit in the
identification algorithm, however, there is no necessity that it be taken holus
bolus into the control design. Instead, the users may substitute a noise model
of their own.

In the process control industry there appear to be two central features
militating against the use of these on-line estimated noise models. Firstly,
the plant disturbances tend to be rather sporadic and so may not be well
captured by such an identifier with a moderate forgetting factor. The inclu-
sion of a noise model also increases the parameter dimension, which affects
the convergence speed of the identifier. Secondly, it is often the case that
essential features of the output disturbance are a priori known. This in-
formation could consist of knowledge of the spectral limits of the noise, or
that the plant suffers step change or periodic load disturbances, for example.
This information can then be used to construct (or concoct) a noise model
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analogously to the procedure with a noise model provided by the identifier.
Historical experience with modern adaptive control, such as it is, seems to
indicate that a priori specification of the noise model is a preferred option
amongst applications engineers. This notion has strong links to the inclusion
of the ∆ operator in the plant/noise model for GPC (see 2.5) with the intent
of forcing the introduction of an integrator into the closed loop.

The reference signal, rt, too may have a model associated with its evo-
lution which allows us to take advantage of its availability for control signal
construction a fixed number, N , of steps ahead of time. In Section 3.3 we
have taken this model to be given by a delay line driven by a zero mean
white noise input. Alternative models, taking into account expected slug-
gishness of references or non-zero offsets, may also be constructed by using,
say, integrated random walk-type models or other constructions. Our point
here is that these models should either be chosen by the designer to reflect
likely specific features of the reference or else chosen to use the N -step-ahead
property of the model (3.14).

From this point, we presume that the information passing from the identi-
fier to the control design stage consists of the plant model matrices F = F (θ̂),
G = G(θ̂), H = H(θ̂) and that the noise model matrices F d, Gd, Hd are
either specified by the identifier or a priori by the designer. The reference
model matrices F r, Gr, Hr are presumed stipulated by the designer. The
composite state-space model available for LQG/LTR control design is then
(see Chapter 3):
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The definition of an LQG control law on the basis of this state model re-
quires the additional specification of several design variables, namely the
noise covariance matrices Qo and Ro (see Section 3.4) and the cost criterion
weighting matrices Qc and Rc (see Section 3.2). The selection of these vari-
ables in a manner that is both consistent with our previous developments
and that leads to a minimal (but sensible) number of free parameters for
design is the object of the next two subsections.
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To complete the adaptive control design, where the matrices F , G, H,
and possibly F d, Gd, and Hd, are estimated on-line, the step size gain γ,
the filter D(z) of the RLS identification algorithm and the reference input
spectrum, Φr, need to be specified. This will be done in Section 7.3.

7.2.2 Kalman Filter Design

Normally, one would address the issue of LQ control law selection before
broaching the subject of attempting to generate a state estimator. How-
ever, our viewpoint has been colored by the robustness material presented
in Chapter 5, where robust LQG design in discrete time proceeds via the
construction of the Kalman filter as the object capable of delivering closed
loop stability robustness, and then to the control law whose specifications
are determined by the requirements of Loop Transfer Recovery. Hence, we
shall indulge our newfound prejudice by starting with the KF design.

Since the state, xr
t , of the reference model need not be estimated, it

suffices for Kalman filter design to consider the composite state description
combining the noise and plant models, (3.43) and (3.44), which we rewrite
here for the sake of the reader’s comfort,

xm
t+1 =

(

F 0
0 F d

)

xm
t +

(

G
0

)

ut +

(

I 0
0 Gd

)(

wt

pt

)

, (7.4)

△
= Fmxm

t +Gmut + Lmwm
t (7.5)

yt = (H Hd )xm
t + qt, (7.6)

△
= Hmxm

t + vm
t . (7.7)

Recall that xm
t is the composite state defined in (3.42). From here one solves

the filtering ARE,

Σ = FmΣFmT

− FmΣHmT

(HmΣHmT

+Ro)
−1HmΣFmT

+Qo, (7.8)

for Σ and then computes the KF gain MF via

MF = ΣHmT

(HmΣHmT

+Ro)
−1 △

=

(

Mx

Md

)

. (7.9)

The KF state estimator then may be constructed:

x̂m
t+1 = (I −MFHm)Fmx̂m

t + (I −MFHm)Gmut

+MF yt+1. (7.10)

The system matrices above are provided directly from the identifier so
that those variables remaining to be specified before this KF design can be
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carried through are the design covariance matrices Qo and Ro. Referring to
Section 3.5, we see that these covariance matrices are given by

Qo = LmE(wm
t w

mT

t )LmT

=

(

E(wtw
T
t ) 0

0 GdE(ptp
T
t )GdT

)

Ro = E(qtq
T
t ),

where wt is the process noise of the plant, and pt and qt are the process and
measurement noises of the noise model, all assumed zero mean, white and
mutually independent. Since pt and qt both drive the noise vt corrupting the
plant output, the noise coloring will change if we allow independent variation
of E(ptp

T
t ) and E(qtq

T
t ). Therefore we take both covariances to be identical

and absorb the potential difference into the definition of Gd. Further, we
take

Ro = ρI, (7.11)

where ρ is a non-negative design constant which scales the measurement
noise power versus the plant process noise power, E(wtw

T
t ), which we shall

take to be constant.
In terms of plant state estimation, the comparison between E(wtw

T
t ) and

ρI indicates that this represents a signal to noise ratio property for the plant
output measurement, yt. Separate scaling of both values achieves nothing
that could not otherwise have arisen by selecting ρ and leaving E(wtw

T
t )

fixed. Thus, once E(wtw
T
t ) is specified, ρ becomes our sole design parameter

for the KF component of LQG.
Harking back to Chapter 3 and the GPC controller interpreted as LQG,

recall that the LQ control design problem depends centrally upon the system
matrices F and G, themselves, which depend greatly upon the particular
state-space coordinate basis chosen for the realization. One method to force
coordinate system independence of the controller was to select Qc = HTH,
which includes the output matrix into the LQ criterion and also reflects a
tracking objective. For the Kalman filter here we choose the dual of this
scheme,

E(wtw
T
t ) = GGT ,

which causes the KF to exhibit input–output properties which will remove
the state coordinate system dependence from the LQG controller.

Summarizing this Kalman filter design stage, we choose:

1. From the parameter vector θ̂ provided by the identifier, construct a
realization [F,G,H] for the plant.

2. Either from the identifier or from a priori information, construct a
disturbance model realization [F d, Gd,Hd].
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3. Select the design variables Ro and Qo as follows:

Ro = ρI (7.12)

Qo =

(

GGT 0
0 ρGdGdT

)

. (7.13)

4. Solve the filtering ARE (7.8) and compute the KF gain, MF , via (7.9).

7.2.3 LQ State-variable Feedback Design

Given the plant, noise and reference model specifications from the identifier
and the user, we may begin with the super-state model (7.2) embodying all
these subsystems and proceed to design the LQ state-variable feedback con-
trol law analogously to the KF design above. We use the following tracking
criterion in which the reference, rt, is assumed to be known up to N steps
ahead,

J(N,xt) = E
N−1
∑

j=0

{

(yt+j+1 − rt+j+1)
T (yt+j+1 − rt+j+1) + λuT

t+jut+j

}

.

(7.14)
This corresponds to the following design choices for the weighting matrices,
Q̄c and R̄c, on the super-state and control of the model (7.2),

Q̄c =





HT

−HrT

HdT



 (H −Hr Hd ) , R̄c = λI. (7.15)

Compare this with Section 3.6. Further, in line with the stability arguments
developed in Chapter 4 and the robustness properties in Chapter 5, we now
use the corresponding infinite horizon regulator gains, which are associated
with allowing the cost horizon in (7.14) to tend to infinity while preserving
the property that the reference is only available N steps ahead. These are
obtained by using the super-state model (7.2) and the design choices above
in (7.15) and by specializing the formulae of Sections 3.6 and 3.3. The LQ
regulator ARE yields

P 11 = F TP 11F − F TP 11G(GTP 11G+ λI)−1GTP 11F +HTH, (7.16)

which is connected with the solution of the output regulation problem for
the plant system with neither noise model nor reference model. From this
we define the regulation gain

Kx = −(GTP 11G+ λI)−1GTP 11F, (7.17)
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and the ancillary gain matrices, Krand Kd, via the Lyapunov equations

P 12 = (F +GK1)TP 12F r −HTHr (7.18)

P 13 = (F +GK1)TP 13F d +HTHd, (7.19)

and

Kr = −(GTP 11G+ λI)−1GTP 12F r, (7.20)

Kd = −(GTP 11G+ λI)−1GTP 13F d. (7.21)

The LQ design component of the adaptive system thus consists of the
following steps:

1. Solve the LQ regulator ARE (7.16) for P 11 with Q11
c = HTH and

Rc = λI.

2. Compute the LQ regulator gain Kx via (7.17).

3. Solve the Lyapunov equations (7.18) and (7.19) for P 12 and P 13.

4. Compute the gains Kr and Kd via (7.20) and (7.21).

7.2.4 The LQG Controller

The LQG controller is now specified by the plant matrices [F,G,H], the
reference and disturbance model matrices [F r, Gr,Hr] and [F d, Gd,Hd], and
the various gain matrices MF , Kx, Kr, Kd. Denote

Km △
= (Kx Kd )

F̃
△
= (I −MFHm) (Fm +GmKm)

=

(

I −MxH −MxHd

−MdH I −MdHd

)(

F +GKx GKd

0 F d

)

.

We now take the estimator state equation (7.10) and substitute

ut = Kmx̂m
t +Krxr

t , (7.22)

to yield
x̂m

t+1 = F̃ x̂m
t + (I −MFHm)GmKrxr

t +MF yt+1.

Therefore,

x̂m
t = (zI − F̃ )−1(I −MFHm)GmKrxr

t + (zI − F̃ )−1MF yt+1.
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Substituting this last expression into (7.22) produces the transfer function
of the LQG feedback controller,

ut =
[

I +Km(zI − F̃ )−1(I −MFHm)Gm
]

Kr(zI − F r)−1Grrt+N

+KmMF yt +KmF̃ (zI − F̃ )−1MF yt. (7.23)

It is important to observe that the controller gain matrices Kx and Kd and
the observer gain matrices Mx and Md all have an effect on the reference rt
to input ut transfer function.

This controller may equally well be written in state-variable form as
follows:
(

xr
t+1

xc
t+1

)

=

(

F r 0
(I −MFHm)GmKr F̃

)(

xr
t

xc
t

)

+

(

Gr 0
0 F̃MF

)(

nt

yt

)

ut = (Kr Km )

(

xr
t

xc
t

)

+KmMF yt. (7.24)

In this latter form one sees how the adaptive control law may be carried along
in a recursive manner. As the identifier produces new parameter values for
the system matrices F , G, H, one computes associated gains MF , Kx, Kr,
Kd and the new controller matrix F̃ . These matrices are updated at each
step by re-solving the ARE but the state xc

t is carried over from time instant
to time instant, providing the storage between parameter changes.

7.3 The System Parameter Identifier

The aspect of our candidate adaptive controller complementary to the con-
trol law statement is the presentation of the identification module which
operates in closed loop and provides, to the control design section, estimates
of the system model, as well as perhaps a noise model if this is desired. It is
now our task to make precise the design-variable choices for the RLS scheme.

Recall the recursive estimate update from (6.15),

θ̂t = θ̂t−1 + γR−1
t ψf

t (θ̂t−1, η)ǫ
f
t (θ̂t−1, η), (7.25)

where ψf
t (θ̂t−1, η) is the filtered regressor for the algorithm, η are the pa-

rameters of the filter, γ is the step size of the adaptation (here chosen to be
constant), and Rt can be chosen Rt = I for a gradient algorithm or iterated
as

Rt = Rt−1 + γ[ψf
t (θ̂t−1, η)ψ

fT

t (θ̂t−1, η) −Rt−1], (7.26)
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for the recursive Gauss-Newton algorithm. This algorithm stems from the
writing of a plant output predictor in pseudolinear regression form

ŷt|t−1(θ) = φT
t (θ)θ, (7.27)

and computing the θ value, which minimizes the filtered prediction error
squared criterion (6.10),

VN (θ, η) =
1

N

N
∑

t=1

(

D(z, η)
(

yt − ŷt|t−1(θ)
))2

. (7.28)

The (pseudo-)regressor for the algorithm is then specified by

ψf
t (θ̂t−1, η) = φf

t (η) = D(z, η)φt. (7.29)

What are the available design choices for such an identifier?

1. The class of plant models specifies the range of potential P̂ (z, θ) de-
riving from the estimator.

2. The class of noise models, Ĥ(z, θ), affects the information produced
by the identifier and, via the formula (6.33), the frequency weighting
associated with the plant fit.

3. The filtering, D(z, η), introduced into the selection criterion (7.28),
alters the frequency weighting again as shown in (6.33). We remark
that D(z, η) and Ĥ(z, θ) affect the plant-model mismatch ∆P only
through the ratio D/Ĥ.

4. The spectral properties of the reference signal, rt, if they are avail-
able to the designer, allow him or her to distribute the identification
weighting in (6.33).

5. The algorithm step size, γ, determines the convergence and tracking
speed and affects the ability to appeal to averaging and convergence
theories of Chapter 6.

6. The algorithm structure, e.g. gradient or Gauss-Newton, affects the
convergence speed and numerical complexity of the identifier.

7. Other features specific to adaptive control identifiers discussed briefly
in Chapter 6, such as normalization, relative deadzones, leakage and
projection, operate in such a fashion as to constrain the algorithm be-
havior in times of manifestly incorrect estimates, closed loop instability
or quiescense of the signal excitation in the loop.



Sec. 7.3 The System Parameter Identifier 185

For our adaptive controller we have the following selections:

1. We take the plant model structure as having been specified by the users
in the light of their system knowledge. This is not a feature which will
be universally available for all plants.

2. We presume that the noise model is fixed a priori by the designer to
reflect known disturbance features or else is selected to be unity. If
H(z) = 1, then we have an Output Error style of model, although we
do not advocate the use of Output Error identifiers over Equation Error
methods because of convergence issues to be mentioned in Chapter 8.

3. The filter, D(z), which filters the signals before they are passed to the
identifier, is chosen according to the following guidelines, which are
treated in a more general context in Chapter 8:

• the rolloff in the frequency response of D should roughly corre-
spond to the rolloff of the reference trajectory, Φr, in order that
the closed loop performance be enhanced by adaptation.

• if a priori knowledge is available about the value G(z) of the cas-
cade of the actual plant and the nominal controller, then D(z)
should be chosen to allow some measure of identification up to
the gain crossover, if this is known approximately beforehand.
This allows the adaptation to enhance the stability robustness.

• Otherwise we choose D(z) ≈ H(z) for frequencies below these
cutoffs. This reduces the noise perturbation (bias, essentially) of
the equation error identifier.

4. The reference spectrum applied during periods of adaptation is chosen
to consist of the desired tracking trajectory suitably modified to ensure
persistence of excitation over a bandwidth extending to a reasonable
estimate of the desired closed loop bandwidth and at a level which
causes Φr to dominate Φv over this interval. D(z) may then be chosen
to predistort these low frequency signals before the identifier to remove
excessive coloring.

5. The step size, γ, is chosen to be sufficiently small so that the adaptation
after large initial transients proceeds at a time scale considerably slower
than the closed loop dynamics. For tracking time variations, γ must
be chosen sufficiently large that plant parameter variations occur at a
time scale considerably slower than that of adaptation.
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6. A Gauss-Newton algorithm is chosen; that is, RLS is chosen rather
than a gradient algorithm.

7. Such other features as are deemed desirable and/or necessary to safety-
jacket the algorithm in its transient or quiescent phases are specified
by the user. We refer to Section 6.5 for a brief description of the most
commonly used tools.

Here then is our candidate robust adaptive predictive controller. The
astute reader will already have divined the reasoning behind many of the
choices made above based both on the earlier theory and on our poorly
disguised prejudices revealed along the way. We now attempt to justify
this candidate by presenting less of its ideology and more of its pragmatic
policies.

7.4 The Candidate — A Summary

The complete candidate adaptive controller consists of the interconnection
of the following components:

• An RLS parameter identifier, with

– slow adaptation, i.e. small but not infinitesimal step size γ,

– fixed noise model H(z) based on prior knowledge, if any,

– filtersD(z) rolling off outside the reference bandwidth and around
the desired closed loop bandwidth, which predistort to account for
the noise model and reference over this band,

– a reference signal, rt, consisting of the desired trajectory plus
(if necessary) a perturbation which contains sufficient spectral
support to dominate the output disturbance over the closed loop
bandwidth,

– additional features such as normalization, deadzones and leakage
as necessary.

• An LQG controller, with

– a Kalman filter design based on a coupled plant and noise model,
with measurement noise power determined by ρ and plant process
noise covariance GGT , yielding KF gain MF ,

– an LQ tracking control law design based on coupled plant, noise
and reference models with state weighting beingHTH and control
weighting λ, yielding feedback gain K,
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– a state-variable formulation (7.24) amenable to adaptive control
generation of the control input signal even as the parameter esti-
mates change.

7.5 The Platform

Now we cast back to the overall requirements of our adaptive control scheme
of providing closed loop stability and good performance as measured by
a minimum variance (LQ) objective function. The subsequent objectives
were then to keep the control signal reasonably well bounded and to make
the closed loop system robust to slight model imperfections so that slow
variations and small nonlinearities do not upset the control performance too
greatly. It is in the light of these objectives that we must assess the candidate
controller.

7.5.1 LQG Controller Properties

Since the global aim of the controller is to achieve minimum variance output
tracking, the choice of LQ control gain as λI, with λ small compared to
the state weighting HTH, is well consistent with this goal. Since LQG
control is chosen, stability of the nominal system is assured. Also, through
manipulation of the design variable λ, one may balance the achievement of
the control objective against control signal magnitudes, thereby effecting the
design compromise between these issues. But further, this particular choice
of LQ criterion weightings is precisely that advocated by the Loop Transfer
Recovery Theory of LQG in Chapter 5 in order that the closed loop stability
robustness be assured of being as close as possible to that of the Kalman
predictor without a control input. Thus this controller design attempts to
produce a plant model/controller cascade Ĝ(z) which, ipso facto, satisfies

σ
¯
[1 + Ĝ(z)] > δ̄,

where δ̄ is related to the open loop plant and to ρ (see Theorem 5.6). The
controller, operating in the neighborhood of the actual plant, exhibits some
of the desirable features required of our adaptive solution. We reiterate
not only our caveat of Chapter 5, that LTR is only guaranteed to work for
minimum phase plants, but also the experience that often LTR can help in
achieving reasonable robustness for many other plants. Certainly, it provides
a logical manner in which to search a range of potentially robust controllers.

As a further benefit of a robust control design, as opposed to, say, an
algebraic design such as pole-positioning, the closed loop system in the neigh-
borhood of its θ̂-parametrized operating point should have not only stability
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but also a smoothness of variability of loop signals. That is, the sensitivity of
the closed loop to small parameter changes in the locality of θ̂ will be small.
This feature will be of importance in appealing to the estimator properties
developed in the previous chapter, and to be reassessed next.

7.5.2 RLS Identifier Properties

Next we study whether the other half of the adaptive controller supports
these features. The robustness study of Chapter 5 required that for closed
loop stability we have

σ̄[L−1(z) − I] < min
(

σ
¯
[I + Ĝ(z)], 1

)

, ∀|z| ∈ Ω, (7.30)

where L(z) is the multiplicative deviation of the nominal or model system,
P (z, θ̂), from the actual or true plant system, P (z), and Ĝ(z) is the cascade
mentioned above. Thus L(z) is a function of the θ choice and, in fact, may
be written as (5.17),

L−1(z) − I = G−1(z)[Ĝ(z) − G(z)]

= P−1(z)[P̂ (z, θ̂) − P (z)]. (7.31)

Therefore, in order to achieve closed loop robustness under this formulation,
we need to ensure that the relative plant model error is kept small by the
identifier.

To examine the issue of the size of the error in (7.31) we appeal to the
examination of Chapter 6, which expressed the prediction error minimization
criterion in frequency response terms (see (6.32), (6.33)). Specifically, under
the assumption of a fixed noise model H(z) as advocated above, we have the
following closed loop prediction error criterion for the plant model parameter,
θ⋆, about which the identifier parameter θ̂ remains,

θ⋆ = arg min
θ∈Dθ

∫ π

−π

[

|∆P (ejω, θ)|2
|F1(e

jω, ρ)|2

|1 + F2(ejω, ρ)P (ejω)|2
Φr(ω)

+(|∆P (ejω, θ)|2
|F2(e

jω, ρ)|2

|1 + F2(ejω, ρ)P (ejω)|2
+ 1)Φv(ω)

]

|D(ejω, η)|2

|Ĥ(ejω, θ)|2
dω.

= arg min
θ∈Dθ

∫ π

−π

[

|∆P |2
(

|Ŵ1|
2Φr + |Ŵ2|

2Φv

)

|ŴA|
2 + Φv

] |D|2

|H|2
dω,

(7.32)

where

Ŵ1(z) =
F1(z, ρ)

1 + F2(z, ρ)P̂ (z)
(7.33)
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Ŵ2(z) = −
F2(z, ρ)

1 + F2(z, ρ)P̂ (z)
(7.34)

ŴA(z) =
1 + F2(z, ρ)P̂ (z)

1 + F2(z, ρ)P (z)
. (7.35)

From (7.32) we see that the transfer function Ŵ1(z)ŴA(z) frequency
weights the reference signal spectrum in the model fitting criterion, while
the noise spectrum is weighted through Ŵ2(z)ŴA(z) but also appears on
its own as a disturbing influence upon the model fitting criterion, since it
does not always multiply the plant model error. This equation indicates
how the noise signal, vt, may be beneficial in helping to excite the plant
via the feedback control, thereby improving the model fit, even though it
compromises this fit through the presence of its unpredictable part in the
system output. Analysis of the structure of Ŵ2(z)ŴA(z) shows the rôle
of both the Kalman filter design and the LQ control in determining the
influence of vt.

From our point of view, however, the use solely of the noise to power
the model fit is both difficult to analyse (although this can be done) and
somewhat perverse, because we believe that the adaptive control paradigm
is best enunciated when sufficient information levels are present in the plant
signals. We therefore assume from this point that, during periods of adap-
tation, the reference signal dominates the plant measurement noise within
the bandwidth of the closed loop plant,

Φr(ω) ≫ Φv(ω).

After all, this is just what the suggested selection of reference is for adapta-
tion. Thus the model fitting criterion will be altered to be approximately

θ⋆ ≈ arg min
θ∈Dθ

∫ π

−π
|P (ejω) − P (ejω, θ)|2

|Ŵ1(e
jω)ŴA(ejω)D(ejω)|2

|H(ejω)|2
Φr(ω)dω,

at least over the reference/closed loop bandwidth. The selection of D rolling
off sharply after this permits us to extend the integral above to the full
(−π, π] range.

For an LQG controller, the expression of Ŵ1(z) has been computed in
(6.37) and we see that the parameter identification criterion incorporates an
overall frequency weighting determined by

Ŵ1(z)ŴA(z)D(z)

H(z)
= [1 −Kx(zI − F̂ )−1Ĝ]−1 ×Kr(zI − F r)−1GrzN+1
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×ŴA ×
D

H
(7.36)

△
= F1(z) × F2(z) × F3(z) × F4(z). (7.37)

We shall examine these four terms in turn, studying their particular forms
in the case of our particular candidate controller choices.

The Frequency Weighting F1(z)

In our case this transfer function is directly the inverse of the LQ control
law return difference,

F1(z) = [1 −Kx(zI − F )−1G]−1. (7.38)

To expose the nature of this transfer function in our application we return
with deference to the return difference equality (5.22), which stems directly
from the regulation ARE (7.16),

λ+GT (z−1I − F )−THTH(zI − F )−1G (7.39)

= [I −Kx(z−1I − F )−1G]T (GTP 11G+ λ)[I −Kx(zI − F )−1G],

where we have substituted the selections Rc = λI and Qc = HTH. Clearly,
this may be rewritten in more familiar terms:

λ+ P (z−1, θ̂)P (z, θ̂) = F−1
1 (z−1)ΛF−1

1 (z), (7.40)

with Λ being the positive definite matrix (GTP 11G+ λ).
Now recall that our operating conditions in this adaptive controller are

such that we desire minimum variance regulation. That is, we attempt as
much as is possible to take λ small in relation to the output weighting in the
LQ control criterion. This causes the return difference, F−1

1 , to have poles
identical to the plant poles and to have zeros at the stable plant zeros and
at the inverse of the unstable plant zeros (see Section 5.2). Thus, we have,
for small λ,

|F1(e
jω)| ≈ |P (ejω, θ̂)|−1 × β, ∀ω ∈ [−π, π], (7.41)

where β is a constant.

The Frequency Weighting F2(z)

Recall that F2(z) = Kr(zI −F r)−1GrzN+1, with Kr derived in the solution
of the LQ tracking criterion with a reference model, [F r, Gr,Hr], via (3.23)
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and (3.25). For the reference model matrices chosen in (3.14), one may
explicitly evaluate F2(z), which we briefly demonstrate. Clearly, the term
zN+1 plays no part in the effect of F2(z) as a frequency weighting on |z| = 1.

Equation (3.25) can be rewritten as

P 12 = (F +GKx)TP 12F r −HTHr,

which in turn possesses the obvious solution,

P 12 = −
N−1
∑

j=0

(F +GKx)jTHTHrF rj

.

Here we have used the nilpotence of F r to terminate the sum. Then,

Kr = (GTP 11G+ λ)−1GT
N−1
∑

j=0

(F +GKx)jTHTHrF rj+1

,

and, hence, ignoring the zN+1,

F2(z) = Kr(zI − F r)−1Gr

= const ×
N−1
∑

j=0

GT (F +GKx)jTHTHrF rj+1

(zI − F r)−1Gr

= const ×
N−1
∑

j=0

GT (F +GKx)jTHT z−N+j. (7.42)

One sees from (7.42) that F2(z) consists of the firstN−1 impulse response
terms of the closed loop plant written in reverse order. Thus for large values
ofN one has F2(z) approximately equal to the closed loop reference to output
transfer function, while for N = 1, i.e no lookahead, one has F2(z) = 1. Our
argument here is that, for LQ tracking problems requiring long lookahead,
one would normally expect the controller to achieve a greater closed loop
bandwidth than the open loop plant. Therefore the ability to identify the
open loop gain crossover point is unimpaired by allowing F2(z) 6= 1. We
admit that these statements are a little loose and woolly but our assertion
is that F2(z) does not upset the other identification weightings much.

The Frequency Weighting F3(z)

The weighting F3(z) is ŴA(z) which, in turn, is the ratio of the achieved
sensitivity function to the designed sensitivity function. We shall reconsider
this more fully in the next chapter but, for the moment, simply observe that,
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within the passband of the achieved or designed plant/controller cascade
(these should be close), this function has a value very close to 1. Therefore,
its effect on the model fitting should be minimal. Outside this band, the
rolloff from D should obviate the need to consider ŴA’s behavior further.

The Frequency Weighting F4(z)

The transfer function F4(z) is given simply as D(z)/H(z), and with our

choices for D(z) we have this function being close to one or Φ
− 1

2
r over the

closed loop bandwidth. Outside this bandwidth, F4 rolls off rapidly.

The Total RLS Frequency Weighting

Combining these four frequency weightings for the RLS based plant iden-
tifier, we see that the effective closed loop identification criterion asserted
by the candidate adaptation in league with the candidate controller is that
the identified parameter θ will approach and stay near the value θ⋆ which
satisfies, for representative choices of variables above,

θ⋆ = arg min
θ∈Dθ

∫ π

−π

|P (ejω) − P (ejω, θ)|2

|P (ejω, θ)|2
Φr(ω)|D′(ejω)|2dω, (7.43)

where D′ is the remaining weighting in D after removal of H effects, which
effectively limits the regime of modeling to focus on the reference bandwidth,
Wr.

Now making the connection to our robustness requirement (7.1) via the
identity (7.31) that

L−1(z, θ̂) − 1 =
(

P (z) − P (z, θ̂)
)

P−1(z),

we see that

θ⋆ ≈ arg min
θ∈Dθ

∫ Wr

−Wr

[

L−1(ejω, θ) − 1
]2 |P (ejω)|2

|P (ejω, θ)|2
Φr(ω)dω. (7.44)

That is to say, the closed loop identification of the plant operating under
the LQG control law will automatically find that value of θ which provides
a model close to the plant but which minimizes the ℓ2 norm of (L−1 − 1) on
the unit circle over the closed loop bandwidth.



Sec. 7.5 The Platform 193

7.5.3 Manipulation of the Candidate Controller

Our thesis has been that the candidate adaptive controller yields a closed
loop control law which attempts to meet the requirement that |1 + G| >
α on the unit circle for some α > 0. Simultaneously, the identifier, via
the implicit frequency weighting induced by the control law, produces a
model that satisfies the requirement that |L−1 − 1| is maintained small on
the unit circle in a suitable frequency region. It is by these methods that
the overall controller achieves its robust stability, while attempting to meet
the minimum variance objective. This is the synergism of control law and
identifier of which we spoke earlier. In this section we shall next move on to
consider how this robustness goal may be further enhanced.

The robustness of the control law stage is achieved by two features.
Firstly, the Kalman filter is designed to have a degree of robustness, and
secondly, the LQG/LTR methodology is used to strive to achieve a closed
loop having the equivalent KP robustness.

One procedure to influence the robustness at this point would be to
attempt to select the design variable ρ to maximize the KF robustness.
A cursory analysis of the KP EDR (5.27) shows that, at least for stable
plants, a more robust KP is obtained by choosing a bigger Ro than necessary.
This causes a more cautious predictor and therefore yields a KF having
slower response and better robustness. Clearly, one is sacrificing the closed
loop performance for the sake of ameliorating the robustness. Nevertheless,
increasing ρ remains as the primary tool in the hands of the designer to
manipulate the closed loop performance.

The design variable complementary to ρ is the LQ control weighting λ.
The LQG/LTR theory dictates that the selection of λ should be made after
the selection of ρ and should, indeed, be to take λ as small as is feasible
before the control signal in the closed loop begins to fail to comply with its
design limits. Thus ρ is chosen first and then a suitably small value for λ is
sought.

The remaining method for the manipulation of the closed loop robustness
is the incorporation of a priori knowledge about the plant. Here we see
how the specification of the filter D(z) can achieve this. Recall that the
robustness criterion (7.1) does not require that maximum over all z of the
left hand side be dominated by the minimum of the right hand side. (This
is effectively what is achieved by the candidate controller.) Rather, the
inequality need only be satisfied at each value of z. Thus the need is not
for L−1 − 1 to be small everywhere on the unit circle, but to be small when
1 + G is small. To encourage this preferential fitting, we suggest that, if an
estimate of 1 + G is known a priori, then filtering by D possessing a factor
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(1 + G)−1 is appropriate.

7.6 Computer Studies and Examples

We now present something which is inevitable in the course of a work such as
this — computer studies (more or less) verifying the properties claimed for
our adaptive controller. This section is divided into two subsections, similar
to the presentation of examples in Chapter 3, where we consider a simple,
relatively easily controlled non-minimum phase plant (the Gedankenexam-
ple of Chapter 1 actually) and then treat the more intransigent Working
Example, which is a much more difficult proposition.

7.6.1 The Gedankenexample Revisited

Recall that the system of the Gedankenexample is

P (z) =
z−1 + 1.2z−2

1 − 1.6z−1 + 0.68z−2
, (7.45)

which is a low-pass, stable, but non-minimum phase system of second order.
The model set, {P̂ (z, θ)}, consists of first order plants parametrized by two
parameters,

P̂ (z) =
bz−1

1 + az−1
. (7.46)

In Section 1.4 the reader was asked to trace through a Gedankenexper-
iment in which a sequence of closed loop identifications and control designs
was made that demonstrated a tendency for the controller to excite unduly
the high frequency modes of the undermodeled plant. This caused a drift
in the identified parameters to fit models at higher and higher frequencies,
eventually leading to instability because of the unsuitability of the high fre-
quency fit for controller design. This Gedankenexperiment might realistically
be called a preadaptive controller since the identifier never really runs in an
adaptive closed loop. We shall now show that the truly adaptive controller
performs in essentially the same fashion.

We took the above plant, P (z), and model set of first order systems.
Coupled to this we chose a control law design which was LQG with

λ = 0.1, ρ = 0.01.

A tapped delay line reference model was taken with Nr = 3. There was
no measurement noise, and a reference signal was selected consisting of one
cycle of a square wave of width 30 followed by one cycle of a square wave of
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Figure 7.1: System output, Gedankenexample with D(z) = 1

width 10, repeated. The identifier was an equation error scheme with step
size γ = 5 × 10−2. This identifier was run with the plant in open loop for
the first 50 time steps, after which the loop was closed.

The first experiment was performed without the inclusion of the filter
D, i.e. D = 1. The resulting system output is shown in Figure 7.1. The
parameters are displayed in Figure 7.2. The key feature of these plots is
precisely that phenomenon presaged in Section 1.4. That is, the controller
has the effect of increasing the system bandwidth in closed loop, thereby
forcing the parameters to begin an inexorable drift towards high frequency
fits which produce unstable controllers. This drift may be seen in Figure 7.2.
Recall that the identifier operates in open loop up to time 50, so the drift
is evident from this time until the explosion of the signals. What really is
surprising about this experiment is that the adaptive controller misbehaves
so rapidly.

If the root cause of plant misbehavior is the induced drift towards higher
frequencies, then our analyses (especially of Chapter 6) suggest that the
insertion of D(z) nonunity should provide a means to alleviate the problem.
Consequently, demonstrating great bravado and faith in our own methods we
chose D(z) to be a second order Butterworth filter with a cutoff frequency at
0.1 radians. The resultant signals are displayed in Figure 7.3 (system output
plus reference), Figure 7.4 (identified parameters), and Figure 7.5 (system
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Figure 7.2: Identified parameters for Gedankenexample with D(z) = 1

Figure 7.3: System output, Gedankenexample with D(z) second order But-
terworth filter with cutoff at 0.1 radians
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Figure 7.4: Identified parameters, Gedankenexample with D(z) second order
Butterworth filter with cutoff at 0.1 radians

control input).
There are several conclusions to be drawn from these simulations. Firstly,

as is clear, stability and reasonable performance are achieved in fairly short
time. The system signals show the strong ringing typical of second order
systems driven by rather high control gains — this is the source of the poor
modeling with D = 1. Nevertheless, with a low-pass D(z) it is possible to
ensure that the modeling only takes place at lower frequencies, which ame-
liorates the parameter drift problems. Other experiments were performed,
such as moving the cutoff of D from 0.1 radians to 0.3 radians. This had the
predictable effect of destabilizing the adaptive loop, albeit somewhat more
slowly than with D = 1. Similarly, a very small value (10−10) was tried for
λ and D with cutoff at 0.1 radians. The result was again instability.

From this simple example we see that much of our intuition has been
supported and, indeed, one is able to predict what measures will assist sta-
bility of the adaptive loop and what actions will jeopardize stability. We
shall next treat the recidivistic Working Example.
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Figure 7.5: System input, Gedankenexample with D(z) second order But-
terworth filter with cutoff at 0.1 radians

7.6.2 The Working Example Revisited

Recall the plant for the Working Example of Sections 3.7 and 5.5

P (z) =
−0.05359 z−1 + 0.5775 z−2 + 0.5188 z−3

1 − 0.6543 z−1 + 0.5013 z−2 − 0.2865 z−3
. (7.47)

This plant, being non-minimum phase, presents difficulties for LQG control
and for the LTR path to robustness. These have been demonstrated earlier.
Our task now is to endeavor to produce an adaptive controller which can be
tuned sensibly to perform well with this plant.

We begin by showing the best achievable LQG performance for this plant
under our experimental conditions. Thus, we designed an LQG controller
for the Working Example plant using the exact knowledge of its transfer
function. This controller was designed with λ = 0.01, ρ = 0.01, Nr = 10
(the reference model lookahead), γ = 5 × 10−2, neither process nor output
noise, and the same reference as above.

The resulting adaptive controller’s response is shown in Figure 7.6. Since
P is modeled exactly by a P̂ , the parameters converge precisely to their
correct values rather quickly. Therefore the system response after time 170
approximately represents the best performance of the LQG design with these
design-variable values. Subsequent behavior should be compared to this.
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Figure 7.6: System output, Working Example with exact model

Also note the anticipatory nature of the controller which is built into our
reference model.

Our next experiment was to restrict the class of models {P̂} to the set
of second order plants,

P̂ (z) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
.

We then performed trials with the above experimental conditions and design
variables.

With the choice of the identifier filter D(z) = 1, the system perfor-
mance was, surprisingly, not unstable, but did demonstrate significantly
worse tracking and overshoot than the ideal case above. The output is
shown in Figure 7.7, where several high frequency artefacts appear in the
system response. These are presumably due to two main factors: the at-
tempt for the second order model to fit the high frequency behavior of a
third order (nasty) plant, and the appearance of adaptation dynamics in the
loop response which indicates the sensitivity of this achieved closed loop to
the parameter values. These parameters are shown in Figure 7.8. While
the variations in the parameters are not particularly great, their effect upon
the system response is large. This variability of the system is further ev-
idenced by Figure 7.9, which depicts the estimated plant step response as
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Figure 7.7: System output, Working Example with D(z) = 1, second order
model

Figure 7.8: Identified parameters, Working Example with D(z) = 1
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Figure 7.9: Evolution of the identified plant step response for the Working
Example with D = 1

it evolves under adaptation. The non-minimum phase feature is captured
by the negative going step response but the variation with input signal is
marked.

To round out our presentation our final example is the Working Exam-
ple with a choice of filter D(z), which is in tune with the suggested modus
operandi of this chapter. The D selected is again a Butterworth low-pass fil-
ter of second order but with cutoff at 0.3 radians. With the insertion of such
a filter into the identifier we produce the response illustrated in Figure 7.10.
Figure 7.10 shows the achievement of a control performance very close to the
ideal circumstance of exact modeling. This is essentially because the model
fit of P̂ to P is best in the region of reference power. The parameters are
displayed in Figure 7.11, indicating about as much variability as earlier with
D(z) = 1, but now the closed loop system is more robust to these parame-
ter changes, as is further demonstrated by plotting the identified plant step
response in this case (see Figure 7.12).

As a final display we show a plot of the closed loop controller/plant
transfer function versus the identifier filter D in Figure 7.13.

Further trials were carried out under various other conditions. The re-
markable thing about these trials, from our point of view, was that the
Working Example worked.
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Figure 7.10: System output, Working Example with D(z) second order But-
terworth filter with cutoff at 0.3 radians

Figure 7.11: Identified parameters, Working Example with D(z) second or-
der Butterworth filter with cutoff at 0.3 radians
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Figure 7.12: Evolution of the identified plant step response for the Working
Example with D second order Butterworth low-pass filter

Figure 7.13: Frequency response magnitude plots of G = CP and D
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7.7 Conclusion

The Candidate Robust Adaptive Predictive controller consists of control
law design selections which coincide with those recommended by the theory
of LQG/LTR robust linear control. Further, these choices are consistent
with the objective of minimum variance control design. Coupled with this
choice of certainty equivalence control law design is a choice of identifier filter
and structure. With this choice one observes how the closed loop identifier
operating with this control law yields a model which automatically fulfils
its half of the robustness bargain by keeping the appropriate relative model
error small. This is the specific model error whose smallness dovetails with
the LQG/LTR controller properties to produce a robust closed loop.

The central features of the design are summarized in Section 7.4 and the
manipulation of the design variables λ and ρ is discussed in Section 7.5. The
major consequence of this study is that we have investigated how one may
proceed from control law design, closed loop robustness studies, and closed
loop parameter estimation to construct a unified adaptive control procedure
which uses the mutually supportive features of the control design and the
identifier. By coupling these distinct components of the design, we believe
that we have demonstrated how sophisticated robust control procedures can
be intelligently incorporated into the adaptive milieu. Further, with the
explicit connections between our approach and GPC methods, developed in
practice, we have strong circumstantial evidence for the veracity of many of
our propositions.

At this stage in proceedings we have effectively explored in detail the
intricacies of adaptive LQG optimal control design methodology. But in
charting this course we have touched upon elements from broader areas of
control. Our next avenue for progress is to investigate methods for placing
this (we hope) appealing theory onto a less specific pedestal. In other words,
‘Let’s generalize’.



Chapter 8

Le Jugement Dernier1

8.1 Introduction — The Final Analysis

In the final analysis, it is the closed loop performance of any control system
design, be it adaptive or otherwise, which determines the success or failure of
the method. Consequently, it is a serious aspect of an analysis or synthesis
theory to be able to comment on the performance properties of the resultant
controller. It is this subject which we address chiefly in this chapter with
regard to adaptive controllers.

It is necessary to differentiate between three kinds of criteria of a closed
loop control system:

• Desired properties are those associated with a specification of fea-
tures which would be advantageous if achievable. They might include
perfect tracking and disturbance rejection, for example. These reflect
the desires of the designer and so are available, even if perhaps only
being subjectively or qualitatively specified.

• Designed properties are those determined by the explicit controller
design as performed using a model, P̂ , of the plant. Since this is a
computed property it is nominally known to the designer through her
choice of particular methods and quantitative specifications.

• Achieved properties of the closed loop deal with the resultant effects
measured when the designed controller is connected into the feedback

1We reiterate here for our francophone readers that our chapter title is not meant to
indicate an arrogant self-assessment of the contents of this book but rather is a reference
to the site of some of the formative philosophizing for (and escape from) this very ma-
terial. The address: 165 Chaussée de Haecht, Schaerbeek, Bruxelles B-1030, Belgium. The
telephone number: int + 32 2 217 9597.
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loop with the actual plant, P . Assessment of these properties can only
be performed by physical experiment but it is these quantities that are
the object of the earlier desires.

In adaptive control of the indirect certainty equivalence style that we
treat, it is the rôle of the control law schema to embody the desired ob-
jectives and to attempt to achieve the designed properties of the system,
while accounting for model inaccuracies in the achieved closed loop by dint
of robustness conditions encapsulated in the desired properties. The con-
trol law half of the adaptive controller is, in our view, focused primarily on
the desired and designed properties and, further, one may view the incor-
poration of a robustness objective as a detuning or relaxation of these goals
to admit ahead of time the likely deviation between designed and achieved
features. The identification component, however, may be seen as operating
more at the interface between designed and achieved properties, since the
aim of this half of the adaptive controller is to adjust the parametric model
in response to measured (i.e. experimental) actual system responses. The
underlying motivation for adaptation should therefore be to avoid some of
the performance degradation associated with robust design by allowing the
on-line monitoring of achieved performance. It is this performance-based
adaptation which we seek ultimately to characterize in this chapter.

A brief tour of the chapter discloses the following itinerary. We begin
by reassessing the connections between robust stability and adaptation for
control laws more general than those LQG/LTR laws of Section 5.4. This
serves to clarify the rôle of closed loop identification design in achieving sta-
bility. Then we carry on to study the interaction of closed loop identification
and achieved performance, again for general control laws. This exposes both
the behavior of the adaptation in affecting the performance and the part
played in influencing this behavior through judicious selection of the filters
and reference signal. From this juncture our developmental task is almost
complete and so we turn, albeit rather briefly, to propose some extensions
to and refinements of the earlier work to indicate potential areas for appli-
cation. We then gracefully bow out with a comment or two on the insights
(hopefully) gained en route to the close. This represents the denouement of
the treatise.

8.2 Adaptation and Stability Robustness

Recall that the advantage of LQG/LTR control laws in adaptive control
rested with the following properties:
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Figure 8.1: Two degree of freedom control system

• The control law, as a linear time-invariant controller, possesses a guar-
anteed degree of robustness to linear plant model errors.

• The class of plant model errors, to which robustness is achieved, is able
to be characterized in a useful fashion. Specifically, LQG/LTR control
laws provide robustness to multiplicative plant errors, at least when
the plant is minimum phase.

• The control law’s effect upon the closed loop plant input spectrum is
also characterized simply, so that the interplay between the identifier
and the controller is assessable.

In searching for alternative control law schema, each of the above aspects
needs to be addressed. Specifically, we shall endeavor to study general lin-
ear controller designs from the standpoint of their desired and designed (i.e.
determined with P̂ (z, θ)) closed loop performance somewhat irrespective of
their detailed computational approach. We shall treat separately the issues
of robustness of closed loop stability and robustness of closed loop perfor-
mance. Although, obviously, the latter is contingent upon the former, perfor-
mance enhancement is the ultimate goal of adaptation and so we investigate
mechanisms for achieving this. We shall roughly follow [BA90] in recasting
these adaptive control issues in the broader context. The closed loop system
under consideration includes the general two degree of freedom controller of
Chapter 6, (6.24), depicted in Figure 8.1 with a minor notational alteration
(F1 = C2 C1, F2 = C2), and with the explicit addition of sensor noise, nt,
distinct from the output disturbance, vt.
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Figure 8.2: Unity feedback system for stability analysis

8.2.1 Linear Stability Robustness

Our aim here is to present as briefly and rapidly as possible a range of alter-
nates and extensions to the linear stability robustness theory of Section 5.2
based upon the early work of Lehtomaki et al. Recall that we still have the
unity feedback structure of that section and that the closed loop stability
only depends upon the controller element C2(z) in Figure 8.1. Therefore, for
the moment we consider just the unity feedback loop of Figure 8.2 and con-
centrate on embellishments of the earlier theory, drawing more or less freely
on the formulations of Lunze [Lun89] and Morari and Zafiriou [MZ89].

Plant Perturbations

The treatment of Chapter 5 centered upon robustness to multiplicative plant
perturbations, where the actual plant, P (z), and the model of the plant,
P̂ (z), were related via

P (z) = P̂ (z) (I + LM (z)) (8.1)

LM (z) = P̂−1(z)
(

P (z) − P̂ (z)
)

. (8.2)

(That is, I +LM (z) here equals the L(z) of (5.5) of Chapter 5.) Alternative
descriptions of plant-model mismatch are also possible based upon additive
perturbations,

P (z) = P̂ (z) + LA(z) (8.3)

LA(z) = P (z) − P̂ (z), (8.4)
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Figure 8.3: Actual plant as a perturbed model structure

or upon feedback perturbations,

P (z) = P̂ (z)
(

I + LF (z) P̂ (z)
)−1

(8.5)

LF (z) = P−1(z) − P̂−1(z). (8.6)

Diagrammatic representations of the actual plant in terms of the model,
P̂ (z), and the perturbation, Li(z), i = M,A,F , are given in Figure 8.3.
We shall focus upon the multiplicative and additive perturbations mostly
but we do remark that still further descriptions are possible (see [Lun89]),
of which the feedback description is taken as an example. The aim is to
select that perturbation which best reflects plant knowledge and/or modeling
uncertainty. We make the following assumption which was not invoked in
the derivations of Chapter 5:

Assumption 8.1

The plant perturbation, Li(z), is asymptotically stable.

Note that if P (z) and P̂ (z) have the same unstable parts, then LM (z), L−1
M (z)

and LA(z) are all stable.
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Figure 8.4: Feedback interconnection of the perturbation

Feedback Reformulation

Taking the lead from the redrawings of Figure 8.3, it is possible to replace
the plant, P (z), in the unity feedback system Figure 8.2 by its equivalent
model and perturbation. The closed loop then, itself, may be redrawn as
the feedback interconnection of the perturbation, Li(z), in isolation with a
feedback transfer function, Mi(z), composed solely of a rearrangement of the
plant model, P̂ (z), and the controller, C2(z). For example, for an additive
perturbation, LA(z), one has, referring to Figure 8.4,

ut = −C2(z)
(

P̂ (z)ut + zt
)

= −
(

I + C2(z)P̂ (z)
)−1

C2(z)zt,

yielding Figure 8.5 with

MA(z) =
(

I + C2(z)P̂ (z)
)−1

C2(z). (8.7)

Similarly, one arrives at equivalent forms for multiplicative and feedback
uncertainties,

MM (z) =
(

I +C2(z)P̂ (z)
)−1

C2(z)P̂ (z) (8.8)

MF (z) =
(

I +C2(z)P̂ (z)
)−1

P̂ (z). (8.9)
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Figure 8.5: Perturbation feedback system

Closed Loop Stability

We reiterate that for each of the above perturbation descriptions, the equiv-
alent feedback, Mi(z), to the Li(z) is determined completely by the designed
closed loop, via P̂ (z) and C2(z). We make the following assumption:

Assumption 8.2

The closed loop system designed on the basis of the model P̂ (z), i.e. with
zero plant perturbation, is internally stable so that no uncontrollable nor
unobservable unstable modes are present in the designed closed loop. Thus
the following transfer functions are asymptotically stable:

(

I + C2(z)P̂ (z)
)−1

,
(

I + C2(z)P̂ (z)
)−1

C2(z),
(

I + C2(z)P̂ (z)
)−1

P̂ (z),
(

I + C2(z)P̂ (z)
)−1

C2(z)P̂ (z).

This is a standard reasonable assumption describing the well posedness of
the ideal design [Fra87].

We have then, directly from the Nyquist stability theorem:

Theorem 8.1

Suppose that Assumptions 8.1 and 8.2 hold, then the closed loop unity feed-
back system of Figure 8.2 is asymptotically stable, provided

σ̄
(

Li(e
jω)Mi(e

jω)
)

< 1 for all ω ∈ (−π, π]. (8.10)

The presentation in Theorem 8.1 invites comparison with the earlier
Theorem 5.3. For multiplicative perturbations both theorems purport to
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give sufficient conditions for robust stability. The correspondence between
the two conditions may be seen by noting the following identities, with L
defined as in Chapter 5 and G = C2P̂ ,

I + GL =
[

(L−1 − I)(I + G)−1 + I
]

(I + G)L

LM ×MM = (L− I) × (I + G)−1G.

Whence
LMMM + I =

[

(L−1 − I)(I + G)−1 + I
]

L.

The stability Assumption 8.1, that P and P̂ have the same unstable parts,
implies that the multiplicative perturbation, LM , and its inverse, L−1

M , both

be stable because P = P̂ (I+LM ). In light of this it follows that the two ro-
bustness conditions are equivalent. Indeed, under the previous assumption,
the additional 1 in the inequality of Theorem 5.3 may be removed.

We next turn to the assessment of the interplay between these general
linear stability robustness conditions and closed loop RLS identification.

8.2.2 Closed Loop Identification and Stability Robustness

Recall our earlier analysis of Chapter 7, where the closed loop identification
studies of Chapter 6 were applied specifically to LQG/LTR by making the
connections:

• the controllers possess inherent robustness to multiplicative modeling
errors made evident via the EDR,

• the closed loop input spectrum, Φu(ω), is effectively given by the ref-
erence spectrum filtered through the inverse of the plant,

• the structure of the RLS identification criterion, V (θ), when inter-
preted in the frequency domain and with this class of input, was such
as to minimize the multiplicative modeling error in line with the re-
quirements of the robust stability theory.

Now we reinterpret the frequency domain formulation of V (θ) simply in
terms of specific {Li(z),Mi(z)} pairs for the various plant perturbation
classes.

We refer to the earlier relation (6.32), which we repeat here for clarity
with the notational alteration (F1 = C2C1, F2 = C2):

V (θ) =
1

4π

∫ π

−π

{

|∆P (ejω, θ)
C2(e

jω)C1(e
jω)

1 + C2(ejω)P (ejω)
|2Φr(ω) (8.11)
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+(|∆P (ejω, θ)
C2(e

jω)

1 + C2(ejω)P (ejω)
|2 + 1)Φv(ω)

}

|D(ejω)|2

|Ĥ(ejω, θ)|2
dω.

Here ∆P (z, θ) = P (z)− P̂ (z, θ) and, while still using the scalar form for legi-
bility, we have grouped the respective transfer functions slightly differently.

We now draw the reader’s attention to the integrand of (8.11), which we
rewrite in terms of the LiMi as follows. We observe that

[P − P̂ ]
C1C2

1 + C2P
=



























LAMA
1 +C2P̂
1 +C2P

C1

LMMM
1 +C2P̂
1 +C2P

C1

LFMF
1 + C2P̂
1 + C2P

PC1C2

. (8.12)

Next define transfer functions,

WA = WM =
1 + C2P̂

1 + C2P
(8.13)

WF =
1 + C2P̂

1 + C2P
PC2, (8.14)

to yield the reconstrued closed loop identification criterion in terms of the
linear robustness elements,

V (θ) =
1

4π

∫ π

−π

{

|Li(e
jω, θ)Mi(e

jω)|2|Wi(e
jω)|2

(

|C1(e
jω)|2Φr(ω) + Φv(ω)

)

+Φv(ω)}
|D(ejω)|2

|Ĥ(ejω, θ)|2
dω. (8.15)

The import of (8.15) is that it reinterprets the closed loop identification
criterion directly in terms of quantities of interest for closed loop stability
robustness. Thus, the selection of reference excitation signal, rt, and iden-
tification filter, D(z), are immediately addressable in terms of the strictions
of Theorem 8.1 that |Li(e

jω)Mi(e
jω)| < 1. The novelties here are:

• The identification criterion in terms of additive uncertainty is identical
to that for multiplicative uncertainty. Therefore the extension of the
results of Section 5.2 is relatively easily made. (The robustness of LQG
to additive perturbations, though, is not easily established.) With a
feedback description of uncertainty, however, matters are less clear and
this really explains why the case was introduced only for comparison.
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• The weighting terms, WA(z) and WM (z), of (8.13) are composed of
the ratio of modeled and actual return differences, which is nominally
unity over the bandwidth of interest.

• The signal weighting for the plant identification, |C1|
2Φr +Φv, is nom-

inally a known spectrum. That is, |C1|
2Φr is the spectrum of the

known reference signal passing through the feedforward controller and
Φv is an approximately modeled additive factor which frustrates the
minimization of |LiMi| when Φr(ω) < Φv(ω). This occurs because of
Φv’s appearance in two places in (8.15) — weighting |LiMi| and as an
additive positive term. Typically we have that Φr ≫ Φv over ω ≤ Wr.

• The identification filter, D(z), still remains available for the adjust-
ment of the bandwidth of the model fit through alleviating improper
distortions introduced by the reference, the controller and the noise
model. (See Figure 8.6.)

– In order to encourage the minimization of |LiMi|∞ in the adap-
tation, D(z) should be chosen roughly to flatten the weighting on
∆P in (8.15).

– Recall from the discussion of Chapter 5 that the requirement that
|LiMi| < 1 is frequently only an active constraint over a frequency
band ω < Ws, beyond which the smallness of this product is
assured by model and plant rolloff. D(z) should only weight the
model fit over this band and should, itself, roll off after this to
prevent noise effects due to Φv beyond this frequency.

– The reference signal spectrum, Φr, is typically low-pass and the
designed closed loop bandwidth would normally significantly ex-
ceed this value. Thus D(z) should compensate for a lack of ref-
erence excitation between the reference bandwidth, Wr, and Ws,
an interval which will include the closed loop gain crossover.

– While the underlying desired reference signal is low-pass, it is
necessary that rt possess some significant frequency components
throughout the band Ws for stability robustness to be achieved.
This is a persistence of excitation condition which is necessary to
ensure that adaptation remains robust.

Summary

We pause now to reflect briefly upon the nature of those results just estab-
lished in terms of their part in extending the adaptive LQG/LTR theory of
earlier chapters.
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We began by considering some different formulations of the robust stabil-
ity problem for linear systems, firstly by writing down sample descriptions
of plant uncertainty, viz additive, multiplicative and feedback. When the
uncertainty is described by a stable transfer function, one may then appeal
to the Nyquist stability theorem to provide a robust stability condition ex-
pressed solely in terms of the uncertainty, Li(z), and a designed transfer
function, Mi(z), evaluated on the unit circle. By rewriting the frequency
domain RLS identification criterion in terms of a weighted integral of LiMi,
it then becomes possible to display directly the influence of the closed loop
identification and its design variables upon the robust stability of the lin-
earized closed adaptive loop.

These conclusions are an extension of the earlier LQG results because the
specific origin of the controller is irrelevant. As we shall see, they are very
general and apply to H∞ or other control strategies as much as to LQG.
The point worth making here is that the LQG/LTR study motivated by
GPC comparisons fits within this framework but lends itself mostly to the
robustness approach using multiplicative descriptions of plant uncertainty.
Mechanisms for extension to, say, H∞ designs for additive uncertainty are
immediately apparent. Tied to the robust stability problem is the problem
of ensuring robust performance. This is the next issue to be broached.

8.3 Adaptation and Performance

The first requirement of system performance is that the closed loop be stable.
But this is clearly not the full story, and the greater part of control system
design is associated with efforts to achieve this with intransigent plants.
Indeed, the raison d’être for Adaptive Control is its potential enormous
performance enhancement features. Our task now is to study the robustness
of closed loop performance for adaptively controlled systems very much in
line with the immediately above treatment of stability robustness before
combining the guidelines of both.

We refer again to Figure 8.1 and the signals described therein. There are
many performance measures for the closed loop system, so that in practice
a control design often ends up as an implicit multicriterion optimization
problem. For example, if one’s goal is to have the plant output, yt, track the
reference signal, rt, and/or to reject the effects of the output disturbance,
vt, then the natural objective function to consider is related to the plant
sensitivity function,

S(z) = [I + P (z)C2(z)]
−1, (8.16)

since this is the transfer function from the filtered reference, r′t, to the error
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signal, et, or the transfer function from the disturbance, vt, to output, yt.
Alternatively, if the feedback of sensor noise, nt, is a problem, then the
complementary sensitivity function,

T (z) = I − S(z) = P (z)C2(z)[I + P (z)C2(z)]
−1, (8.17)

is more appropriate, being the transfer function from sensor noise, nt, to
the output, yt, and from r′t to yt. More usually, a combination of both
behaviors is desired along with, say, limits upon control signal gains and
other performance measures.

Our LQG designs of Chapter 3 are examples of design methods aimed at
common objectives of reference tracking and disturbance rejection, using the
knowledge of the signal spectra to effect the design. The figure of merit in
such a case would typically be associated then with properties of the closed
loop sensitivity. As we are posing questions of robust performance with
adaptation, one is interested in issues of the ability to keep the sensitivity
function close to a nominal design value (usually zero) over a frequency range
of interest, typically the bandwidth of the reference signal.

We define the following two sensitivity functions. (We limit ourselves to
the scalar transfer function case for brevity again.)

S(z) = (1 +C2(z)P (z))−1 , Ŝ(z) = (1 + C2(z)P̂ (z))−1. (8.18)

These are the achieved sensitivity and the designed sensitivity function. Our
next observation is that the integrand of the RLS criterion (8.11) may be
reorganized in terms of these sensitivities:

[P − P̂ ]
C2

1 + C2P
=

PC2

1 + C2P
−

P̂C2

1 + C2P̂
+

P̂C2

1 + C2P̂
−

P̂C2

1 + C2P

= T − T̂ + P̂C2(Ŝ − S)

= (1 + P̂C2)(Ŝ − S). (8.19)

From (8.19) we may substitute into the RLS criterion (8.11) yielding an
alternate to (8.15),

V (θ) =
1

4π

∫ π

−π

{

|(1 + P̂C2)(Ŝ − S)|2
(

|C1|
2Φr + Φv

)

+ Φv

} |D|2

|Ĥ|2
dω.

(8.20)
As with the formulation of (8.15), the consequences of (8.20) are direct:

• The (desired) tracking and disturbance rejection performance objec-
tives are achieved by keeping |S(ejω)| ≪ 1 for ω ≤ Wr, where Wr is
the bandwidth of the reference signal, rt.
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• The design objective is to keep |Ŝ(ejω)| ≪ 1 for ω ≤ Wr. That is,

|P̂ (ejω)C2(e
jω)| ≫ 1, for ω ≤ Wr, (8.21)

and to keep |1 + P̂C2| smaller at high frequencies. This objective is to
be achieved by proper designed controller selection, C2.

• The high frequency aspects of the selection of the identification filter,
D(z), are basically determined by the requirements of the stability
robustness conditions. At low frequencies, however, it should be chosen
also to flatten distortions introduced by excessive weight in P̂C2.

• The stability robustness conditions would lean towards the selection of
a reference signal, rt or r′t, which is rather broadband to account for
the need to have |LiMi| small over the entire modeling bandwidth, Ws.
This conflicts with the performance requirement of tracking rt over a
lesser bandwidth, Wr. Indeed, the stability requirement, which must
take precedence, dictates that the reference be artificially extended
in bandwidth, thereby penalizing the achieved performance. It is our
view that this is the price to pay for adaptation.

The totality of recommendations for the design of D(z) and Φr from both a
stability robustness and performance robustness point of view are encapsu-
lated in Figure 8.6.

8.4 Forethoughts on a Postscript

With Chapter 7 we (finally) broached the subject of synthesis of adaptive
control schemes on the basis of our joint local analysis of the identifier and
the control law schema. Our message that this design has the potential
for the mutual support and synergism of these two components has been
established by the construction of just such an adaptive controller exam-
ple using an LQG/LTR controller coupled with an RLS identifier. This
example demonstrated the amusing feature of the subsumption of several
features of the adaptive GPC methodology within its scope, thereby lending
weight to the theoretical pursuit of more coherent adaptive control design
methodologies and giving technical support and direction to the algorith-
mic development of practical adaptive controllers. It is our feeling that
the strong family ties between the CRAP controller and the GPC vindicate
our whole development. These LQG/LTR results have been carried over
to more general control laws in the preceding sections and the notion of
achieved performance-based adaptation has been introduced. We have now
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Figure 8.6: Example frequency regimes for definition of D(z)
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reached the climax of our work — the main course is finished — and we
should delicately wind up proceedings with a tasty but light dessert. This
we do by raising some perennial questions of research,

‘So What?’ 2 and ‘Where do we go from here?’.

There are several directions for the pursuit of answers to these questions
which will be explored, with the intention of evaluating briefly what impact
the insights gained earlier might have in the broader discipline of Adaptive
Control. These fall into two categories —

Extensions and Generalizations

• What other (more) modern robust control design techniques might
be directly amenable to reassessment in the light of our new view-
point? In particular, can recent advances in, say, H∞ control
design be of direct applicability in adaptive control?

• Conversely to the preceding question, can modifications to the
identification procedure be of possible benefit with LQG or some
other feedback law? Especially of interest here is an exploration of
the use of multiple-step-ahead prediction error criteria in the iden-
tification stage, which would really make these Predictive Adap-
tive Controllers.

• Do there exist numerically advantageous paths to achieve these
adaptive controllers? These methods could exhibit either reduced
computational complexity or reduced computational sensitivity.

Refinements and Theoretical Supports

• Can one delineate more usefully the class of plants for which
Adaptive Control is suitable from a robustness and performance
perspective?

• What modifications are necessary to the theory to be able to
accommodate truly time-varying plants, since this is the raison
d’être of Adaptive Control? Further, how does one resolve the
L2 frequency domain reformulation of the RLS criterion with the
L∞ robust stability requirements?

2The answer is not 42.
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• How do these methods avoid the pitfalls, if indeed they do, of
other adaptive controllers as exemplified in, say, the work of
Egardt [Ega79] and Rohrs et al. [RVAS85]?

• Do the methods proposed give any insight into the outcome of the
World Heavyweight Title Fight, Robust Control versus Adaptive
Control?

The extension questions will be addressed first to indicate some directions
available for natural development from the earlier theory. Specifically here
we treat the first two questions but, unfortunately, leave in abeyance the
issue of numerically sophisticated algorithm description. (Because this is
not our expertise, we leave the generation of fast and numerically stable
adaptive control algorithms as an exercise for the reader.) Following this
we shall turn inwards again to approach the questions of refinement and
interpretation of the theoretical statements.

8.5 Extensions and Generalizations

8.5.1 Candidate Alternative Optimal Control Laws

We discuss two prospective Adaptive Optimal Control Techniques. We de-
liberately steer away from strictly algebraic control techniques such as pole
placement, certain model reference strategies and geometric disturbance de-
coupling controllers because of their propensity for non-robustness and dis-
continuity. This is exemplified by issues of near non-coprimeness of factors
in the solution of the Diophantine equations of pole placement via Sylvester
matrix techniques. As a broad value judgment, functional analytic control
design methods tend to admit easier connection to (nonlinear) robustness
than purely algebraic methods. This, in part, explains our restriction of
subject matter to Adaptive Optimal Control.

Frequency Weighted Adaptive LQ Optimal Control

The LQ control objective is stated in terms of the plant and control signal
weightings, Qc and Rc,

J(u) =
∞
∑

t=1

xT
t Qcxt + uT

t Rcut. (8.22)

Desired properties of the closed loop performance, such as disturbance rejec-
tion, reference tracking and decoupling must be massaged so as to fit into the
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LQ criterion formalism. A recent advance in cajoling differing goals into the
LQ framework has been to incorporate explicit frequency shaping properties
into the LQ cost function. Thus (8.22) is replaced by

J(u, ω) =
∞
∑

t=1

xT
t Qc(e

jω)xt + uT
t Rc(e

jω)ut, (8.23)

where now the weighting matrices Qc and Rc have been replaced by fre-
quency dependent weighting functions Qc(e

jω) and Rc(e
jω) which reflect

the designer’s desires for frequency bands in which control action should be
concentrated.

Being non-negative definite frequency dependent functions, Qc(e
jω) and

Rc(e
jω) are actually spectra. Thus, we take

Qc(z) = W T
1 (z−1)Q0

cW1(z) and Rc(z) = W T
2 (z−1)R0

cW2(z),

for given finite dimensional frequency weighting transfer functions, i.e. fil-
ters, W1(z) and W2(z). The solution to the frequency weighted LQ problem
then follows from the EDR. Write the left side of the EDR as

Rc(z) +GT (z−1 − F T )−1Qc(z)(zI − F )−1G (8.24)

= W T
2 (z−1){R0

c +W−T
2 (z−1)GT (z−1I − F T )−1W T

1 (z−1)Q0
c

×W1(z)(zI − F )−1GW−1
2 (z)}W2(z),

which admits the interpretation of the frequency weighted LQ problem as
a modified higher order LQ problem, which may be solved via spectral fac-
torization/ARE techniques to find the frequency dependent gain K(z) that
solves the problem. Similar treatments of frequency weighted Kalman fil-
ters also are directly possible. The reader is referred to [MM87], [AM90] for
details.

What is of interest here in adaptive control is that these frequency
weighted LQ controllers are derived via EDRs and, being but glorified higher
order LQ problems plus filters, possess guaranteed robustness margins for
(frequency weighted) relative model errors as well as an easily ascertained
effect on the closed loop signal spectra. Thus, provided W1(z) and W2(z)
are full rank on the unit circle and unity at infinity, this design process
has the capacity to fall easily into our theory and engender a whole bevy
of frequency weighted CRAP controllers. The quid pro quo for this enor-
mous added flexibility is, of course, increased computational complexity. As
remarked earlier, we ride roughshod over all issues of a numerical nature
because these are frequently resolved by inexorably marching technology.
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Figure 8.7: General 2-input–2-output H∞ problem formulation

H∞ Optimal Adaptive Control

Probably the most popular, or at least most exciting, recent robust linear
control law design method is H∞ Optimal Control [Fra87]. Here the design
criterion is deliberately specified with a closed loop stability robustness issue
in mind. We present a précis of the features of H∞ control which best
display its dovetailing with our theory so far. We apologize to ‘person in the
street’ who has lasted this far for our elevated tone in preaching really to
the cognoscenti here, but our desire is (like Polonius) to be brief, or at least
witty.

Although a large number of linear system problem types may be recast or
coerced into the H∞ framework, the standard ones concentrate on achieving
guaranteed robust stability in spite of plant perturbations (or unstructured
uncertainties in the vernacular) which are classified only in terms of their H∞

norm. Thus no further structural information is given about these pertur-
bations and the H∞ problems are regarded as minimax problems. General
formulations of H∞ problems are possible and revolve around a 2(vector)
input–2(vector) output system, the connection between the second output
vector and the second input vector of which encapsulates the feedback con-
trol. The first vector input represents disturbances and references, and the
first vector output consists of errors and measured output signals. In this
general situation, the H∞ problem has a solution which is strikingly struc-
turally similar to LQG — at least in continuous time. The controller is
composed of state-variable feedback and state-variable estimation analogues
derived from the solution of AREs but with sign-indefinite Rc and Ro. The
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parallels are then drawn between H∞ Optimal Control and Linear Quadratic
Game Theory [DGKF89].

In addition to this remarkable similarity in form between the H∞ solution
and the LQG solution shown by Doyle et al., Fujii and Khargonekar [FK88]
have explored explicit (but not really dangerous) liaisons between H∞ con-
trollers and LQ controllers, including the occurrence of Return Difference
Equality analogues.

The full development of H∞ control in discrete time is, as yet, not com-
plete but its analysis so far is tantalizingly suggestive of great possibilities
[LGW89]. We make the following observations about H∞ control from an
adaptive viewpoint:

• H∞ possesses explicit characterization of the class of plant knowledge
required to ensure closed loop stability. Internal stability is guaranteed
by construction.

• Through the generalized (four block) problem specification, the H∞

formalism is amenable to application for a large variety of common
control problems including, inter alia, disturbance rejection, reference
tracking and control penalty. In this way, it has much in common with
LQG.

• Since H∞ problems are minimax or worst-case analyses, the emphasis is
placed on maximum transfer function magnitudes, or ℓ2 system gains,
rather than ℓ2 signal energies which arise in LQG control and RLS
identification. This is the essence of the distinction between H∞ and
LQG.

• By incorporating weighting transfer functions into the optimization
criterion, frequency weighted H∞ problems are readily posed and solved.
This overcomes the strict minimax property of H∞ at the expense of
system order.

• Algorithmic procedures for the solution of H∞ problems bear a great
structural similarity to the LQG solution methods. Both involve the
solution of an ARE and a dual ARE which differ between the methods
according to the sign-definiteness of Rc and Ro.

• The tools of discrete-time H∞ theory are at present underdeveloped.
The continuous-time return difference equality objects exist but it is
not yet clear how they should be applied to characterize closed loop
plant input spectra. It is also unclear to what Loop Transfer Recovery
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in H∞ controllers might correspond, or for what they might prove
useful.

• Numerically, by grace of the ARE connection above, H∞ problems
should be only about as difficult to compute as LQG. Existence ques-
tions for positive definite stabilizing solutions of the ARE arise. At
present these methods for controller design can yield a controller achiev-
ing a given H∞ bound, if such a controller exists, but cannot necessarily
provide the infimal control law.

It is apparent from our commentary above that Adaptive H∞ Optimal
Control is an enthralling prospect since its robustness is manifestly more
easily tunable than LQG, although perhaps at the price of increased dif-
ficulty in guaranteeing performance measures. At the time of writing the
analytic machinery for discrete H∞ was only in its infancy but, of the crite-
ria necessary for appeal to our interplay theory, H∞ clearly possesses strict
robustness margins linking the plant model accuracy to closed loop stability.
The missing link for the complete inclusion of H∞ is the need to be able
to relate fully the closed loop plant input spectrum to the control design
schema.

8.5.2 Alternative Identification Methods

While one would be tempted to draw a full analogy between the quadratic
performance indices of LQG and RLS to support that a universal balance
should exist between the control and identification components in Adap-
tive Control, there remains a fundamental distinction in that the control
law stability robustness depends upon system ℓ2 gains, i.e. L∞ bounds on
the frequency response, while the identification is concerned with data de-
pendent error signal energies, leading to L2 frequency response modeling
as in Chapter 6. Thus the controller robustness condition is expressed in
terms of a maximum frequency response magnitude value while the identi-
fication is expressed as an integral squared frequency response fit. Hence,
in looking for potential identification method choices there need not neces-
sarily be any counterparts to available control modifications. Nevertheless,
we do consider two alternative identification criteria with which to replace
the one-step-ahead prediction error RLS procedure. Many of the issues are
raised and dealt with rather well in [Lju87], to which we refer the reader for
supporting material.
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Equation Error versus Output Error

The distinction between Equation Error and Output Error linear system
modeling lies in the construction of the regressor vector. In Equation Error
one uses a regression vector composed of past plant inputs, ut, past plant
outputs, yt, and past noise estimates, êt|t−1, to compute the parameter esti-
mate, θ. In Output Error the regessor is comprised only of past inputs, ut,
and past estimated plant outputs, ŷt, arising from the parametrized model.
Thus Output Error corresponds to the Prediction Error methods earlier with
a fixed noise model, Ĥ(z, θ) = 1. Equation Error has a more general model.

The respective advantages of these schemes are as follows. Equation
Error permits the identification of both a plant input–output model and
a noise model for the corrupting measurement noise. On the other hand,
Output Error methods sacrifice the noise model for the sake of an estimated
plant model which suffers considerably less from bias problems. Thus, one
observes that the choice between the two methods might well be seen as
a trade-off between performance and robustness — a good noise model is
essential to achieve adequate disturbance rejection, while a close plant model
irrespective of the noise is needed for stability robustness. Alternatively, the
availability (or not) of prior information about the disturbance properties
might be a decisive criterion for the choice between these two methods.

In terms of the frequency domain interpretation of these two schemes,
the off-line behavior of Equation Error may be transformed to be identical
to that of Output Error by correct selection of the filtering D(z, η). For the
recursive, on-line schemes however, there are some significant differences.
Output Error is nonlinear in the parameters because it involves an explicit
filtering by a parameter dependent transfer function and it has more difficult
convergence properties. Equation Error is simpler to run but can need to
rely upon the selection of its filters to achieve adequate models from which
to perform control design. It is our view that the convergence difficulties
of Output Error methods would militate against their use in all but the
most reliably modeled (or modelable) processes. The absence of serious
nonlinearities in Equation Error estimation, coupled with the need to include
only linear filtering, indicates that it is probably best suited to circumstances
where frequency based thinking figures strongly in the design.

Multiple-step-ahead Predictors

From its formulation, one would expect that Predictive Control techniques
involving long range horizons would rely upon the quality of their plant
output predictions to achieve adequate control performance. The longer the
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horizon, the more critical this should become. Hence, people have proposed
several times that system models be fitted not on the standard one-step-
ahead LS criterion but on a LS criterion using many-steps-ahead prediction
errors. Additionally Mosca et al. [MZL89] and others have suggested that
predictors of all necessary scopes be fitted on-line to generate the f vector of
predictions in GPC.

From an off-line identification point of view, one can see that the effect
of altering the modeling criterion from one step ahead to more is manifested
in the frequency domain formulae of Chapter 6, through the alteration of
the noise model [Lju87]. Thus, from an off-line perspective, the same effect
could be achieved by filtering since Ĥ(z, θ) and D(z, η) play similar rôles. As
a general rule, the larger the prediction horizon becomes the more emphasis
is placed in the model fit at low frequencies. Further, in the limit that the
horizon tends to infinity, one recovers the noise model free Output Error
version of the criterion. This is discussed in detail by Ljung [Lju87].

These modifications to the identification law have some interpretation of
their effects given by this style of off-line analysis but naturally, in a practical
adaptive closed loop, the peculiarities of each approach would come to the
fore. A meaningful comparison between transient behaviors and the dynam-
ics of the recursive algorithms is beyond our capabilities here. However, the
techniques of Chapter 6 show that sensible guidelines for performance in the
neighborhood of stationary solutions can be gained.

8.6 Refinements and Theoretical Support

Apart from hypothesizing about where these Adaptive Optimal Control ideas
might be headed, we also recognize the need to clean up where we have been
to préciser the theory in order to improve its applicability. Central amongst
the objections leveled at local adaptive control theories are its conservatism
and focus upon a single fixed ‘nominal’ parameter value about which the lin-
earization is performed. We shall consider the question of how these methods
apply to the underlying problem of adaptation, the tracking of slowly time-
varying plants. In addition to these introspections we also deliver a few ideas
on some classical battles: the Rohrs examples, and Robust Control versus
Adaptive Control.
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8.6.1 Theoretical Refinements

Interpretation of Robustness Conditions

Critical to the analysis of our theory of robust interplay between identifier
and controller are the conditions of Assumption 6.1 where sufficient require-
ments for local estimator convergence to a neighborhood of a nominal value
are stated. These conditions consist of two components, sensitivity condi-
tions for the linearization to be valid and persistence of excitation conditions
connected with the uniform contractivity of the estimation algorithm.

The sensitivity conditions deal with the magnitudes of various partial
derivatives in the region around the nominal point. Thus the closed loop
control signal and the closed loop output performance need to be smooth
in this region. This is a realistic assumption because with adaptation one
expects the controller values to be changing smoothly. There is a natural
connection between this requirement and the robustness properties of the
time-invariant control law. The feature of the analysis which is distinct
from a standard linearization treatment is that an explicit upper bound ap-
pears on the unmodeled dynamics and therefore on the achieved closed loop
performance. Hence, this property delineates the class of feasible systems
for the application of this type of adaptive control. That is, the existence of
an adequately fitting model for the plant in the model set needs to hold —
simple linearizability is not sufficient.

The other class of conditions arising in the theorem are devoted to persis-
tence of excitation properties for the closed loop system. These conditions
are undesirable from a practical viewpoint, since they imply the deliber-
ate perturbation of the plant reference signal which will necessarily upset
potentially optimal performance. It is our view that such conditions are
fundamentally unavoidable during periods of adaptation in order to guar-
antee the integrity of the data in terms of its content of information about
the underlying plant system. The existence of an approximate underlying
positive real system, as is the basis for the development in [ABJ+86], is hid-
den in the description of the relatively bounded modeling error ζt. Thus the
combined interpretation here of these conditions is very much in accordance
with that advanced in [ABJ+86], where adequate modeling of the controlled
nominal system is presumed along with persistence of the reference at the
frequencies where the model is fitted best.

Time-varying Systems

As we have already alluded, the motive force behind adaptive control systems
is frequently the desire to control time-varying plants, where wear on parts,
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environmental effects, raw material changes and other operating conditions
can cause a significant change in plant dynamics but where good regulation
is still desired. The work of [ABJ+86] demonstrates that, with slowly adapt-
ing controllers as we have postulated here, the capacity to cope with time
variations depends upon these variations being on a time scale which is still
slower than that of adaptation. In such a circumstance, the earlier analysis
goes through without appreciable modification — the time-varying problem
is treated as a sequence of time-invariant ones with local (in time) behavior
being governed by the linearized methods presented here.

L∞ and L2 Connections

It should be clear to even the most casual reader that our statements about
closed loop stability robustness rely upon L∞ frequency response bounds
being satisfied, while the rewriting of the parameter estimation criterion in
terms of frequency response indicates only the minimization of an L2 error.
There therefore appears to be a leap of faith required to interpret closed loop
adaptation as providing a palliative to stability robustness and/or closed loop
performance. Thankfully, however, in a recent paper [CBG89] Caines and
Baykal-Gürsoy have studied conditions under which L∞ norm convergence is
implied by Least Squares (L2) consistency. The main point is that, subject to
smoothness or analyticity conditions, convergence takes place in either norm.
While our circumstances are both different and less formal than [CBG89],
the same general principle applies.

Our presentation so far has homed in upon the crucial effects of closed
loop insensitivities in the neighborhood of θ⋆. This may be seen in the var-
ious rôles played by the robustness requirements in the identification, per-
formance and convergence sections. Robustness or insensitivity conditions
may be directly linked to smoothness properties of the frequency responses
involved (see for example [Hil59]). This provides yet another link in the
chain that binds the control law selection to the identifier.

8.6.2 The Rohrs Examples

The examples of Rohrs et al. [RVAS85] were computer-based demonstra-
tions of the fragility of some of the global stability theorems associated with
adaptive control in the early 1980s. Although many of the instability mecha-
nisms had been described earlier in the book by Egardt [Ega79], the concrete
numerical examples which were easily repeatable helped to turn the adaptive
control community collectively towards the issue of robustness — without
this latter term ever being defined satisfactorily. Because of this historical
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importance, these examples (called ‘counterexamples’ by some) have become
a de facto benchmark for the consideration of adaptive controller robustness.
While these examples are continuous time and neither LQG nor GPC, the
paths to instability that they exemplify are all too real in our situation and
it behoves us to comment upon our approach to dealing with them.

The Rohrs examples are centrally of two types. Both deal with a third
order plant, with one low frequency dominant pole and two well damped
high frequency modes, being modeled by a first order system and operating
under adaptive model reference control.

In the first example, a single sinusoid is used as the input to the reference
model. The frequency of this sinusoid, however, is exactly at that frequency
where the phase of the third order system passes through π/2 radians and
the consequent model fit can only be achieved by the selection of infinite
parameter values. This is an extreme example of the effects demonstrated
by the Gedankenexample of Chapter 1 where alterations in the reference
frequency were shown to yield significantly different identified parameter
values, and hence significantly different controller gains.

In terms of our theory here, we note that this reference is persistently
exciting for the identification of a first order (two parameter) system but
that, for the true plant under consideration, the conditions of Assumption 6.1
fail to hold. Specifically, the constraint upon the unmodeled dynamics ζt
with respect to the modeled portion at a stabilizing value θ⋆⋆ fails to hold.
These notions of frequency dependent signal and modeling conditions have
been further explored in [ABJ+86] and in the heuristic analysis of Åström
[Åst83]. Specific measures that may be taken to reduce these effects, as
suggested by these theories, are either to select a control law capable of
stabilizing the third order plant when given the first order model fitting at
this reference frequency or to inject significant levels of low frequency signals
into the reference. A few moments’ thought will indicate that this particular
adaptive control problem has been deliberately ill-posed to highlight just
these failings.

The second Rohrs example deals with a similar system driven by a con-
stant reference trajectory, which is not persistently exciting for a two param-
eter model, but with the output measurement corrupted by a sinusoidal dis-
turbance of infinitesimal amplitude. The dynamics here are governed by the
feature that a linear manifold in the parameter space (R2 here) describes the
degenerate class of all parametrizations which permit exact model fit with
just the constant reference — such a property was demonstrated with the
Gedankenexample as well. The effect of the additive output disturbance,
with the model reference criterion, is to force the identified parameter to
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‘slide’ along this linear manifold in a vain attempt to zero the plant output
error. In this way, the parameters escape to infinity linearly with time.

Our response here is that the message of adaptation only under persis-
tent excitation has been ignored and this is a typical consequence. Indeed,
additive output disturbances may be replaced by numerical roundoff to yield
the same effect [And85] without violating the conditions of global conver-
gence. Other measures that can deal with this circumstance are adequate
leakage [IK83], [HC87], and deadzones.

At this point it is as well to reiterate the comment that not all systems
are amenable to adaptive control and, of those that are, their amenability
can very well be dependent upon experimental (i.e. signal) conditions. These
signal based conditions for the viability of adaptive control in the local sphere
have been explored in [ABJ+86].

8.6.3 Adaptive Control versus Robust Control

The Rohrs examples of the preceding subsection were, at the time, a source
of considerable debate about the future of adaptive control and its possible
contribution vis-à-vis the re-emergent field of robust linear controller design,
such as that of LQG/LTR as in Chapter 5. Therefore, this is probably a
sensible place to reopen the wound and consider a response in the light of
the interplay theory presented so far.

Certainly, the robustness of linearizable (i.e. slow) adaptive control does
not extend beyond that achievable via explicit robust linear design, since
the latter is concocted specifically with the point of maximizing robustness.
The penalty for robustness, however, is often felt in reduced performance.
Thus an adaptive controller might well outperform a fixed robust controller
through its ability to identify more suitable parameters for a less robust but
higher performance control law. This was at the heart of the performance
based interpretation of the adaptation. Similarly, the same effect can be
envisaged with slowly time-varying plants. The cost of adaptation, however,
is seen in the lengths to which one must go in order to ensure robust adap-
tation (in the nonlinear sense). Specifically, persistence of excitation needs
to be asserted in frequency bands of central interest, and this could have
an obvious detrimental consequence with, say, constant reference tracking
because the reference signal is artificially disturbed to maintain the plant
information in the measured signals.

The choice between Robust Linear Control and Adaptive Control there-
fore should be made on the basis of suitability of the circumstances for
each, together with the feasibility of performing the significant design exer-
cises. Incorporating explicitly the robust design methodology into the adap-
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tive framework, as has been done with LQG/LTR in this œuvre, opens the
prospect of the design of control laws adopting the best of each subdiscipline.

8.7 Coda

We have now run our course with the examination of Adaptive Optimal Con-
trol. We took our lead from the practically derived GPC adaptive control
and ran with this through a sequence of generalizations and expansions to
include LQG, linear system robustness, LTR, frequency response interpre-
tation of closed loop adaptive identification in terms of stability robustness
and of achieved performance. This led us to the realization of the two forces
majeures in adaptive control:

• the effect of the identification of parameters upon the achieved control
performance and robustness,

• the effect of the closed loop controller upon the parametric model iden-
tified through the influence on the plant input spectrum.

In Chapter 7 we drew these revelations and themes together to propose an
adaptive control law, based on LQG and RLS, which possessed a synergism
due to the interplay between the controller and identifier acting in concert
to support robustness. This was further extended in Chapter 8 to a more
general setting, in which the suite of available design variables for the control
law part and the identification rule part of an adaptive controller was made
apparent and discussed from a synthesis stance.

This is ultimately the message of the book, that the theories of robust
linear control system design and of closed loop parameter identification exist
and are continually being advanced, and a sensible approach to the design
of adaptive controllers must take into account an appreciation of both. We
have endeavored to provide a vehicle for the translation of linear systems
design tools and identification techniques into the adaptive control sphere.
This, we hope, should create a conduit for the rapid acquisition of improved
methodologies in adaptive control and for the encouragement of the devel-
opment of control design and system identification methods better reflecting
the needs of adaptive control.

We thank you for your attention.
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