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ABSTRACT

We consider the problem of image interpolation using

adaptive optimal recovery. We adaptively estimate the local

quadratic signal class of our image pixels. We then use op-

timal recovery to estimate the missing local samples based

on this quadratic signal class. This approach tends preserve

edges, interpolating along edges and not across them.

1. INTRODUCTION

Image interpolation is becoming an increasingly important

topic in digital image processing, especially as consumer

digital photography is becoming ever more popular. From

enlarging consumer images to creating large artistic prints,

interpolation is at the heart of it all. It has been known for

some time that classical interpolation techniques such as lin-

ear and bi-cubic interpolation are not good performers since

these methods tend to blur and smooth edges.

Wavelets have been successfully used in interpolation

[1, 4, 6]. These methods assume the image has been passed

through a low pass filter before decimation and then try to

estimate the missing details, or wavelet coefficients from the

low resolution scaling coefficients. One drawback to these

approaches is that they assume the knowledge of the low

pass filter.

Directional interpolation algorithms try to first detect

edges and then interpolate along edges, avoiding interpola-

tion across edges [5]. In this class, there are algorithms that

do not require the explicit detection of edges. Rather, the

edge information is built into the algorithm itself. For ex-

ample, [3] uses directional derivatives to generate weights

used in estimating the missing pixels from the neighboring

pixels. In [2], the local covariance matrix is used for esti-

mating the missing pixels. This interpolation tends to adjust

to an arbitrarily oriented edge.

In this paper we present a new directional interpolation

technique based on optimal recovery. The results of our in-

terpolation approach can be thought of as an extension to

[2]. In regions of high frequency our approach provides
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Fig. 1. Geometric Diagram of Ellipsoid Class

slightly better results than [2] and in some cases outper-

forms [9].

2. OPTIMAL-RECOVERY

In this section we briefly review the theory of optimal re-

covery as applied to the interpolation problem [8]. We then

apply this theory to develop a new adaptive approach to im-

age interpolation. The interpolation problem may be viewed

as a problem of estimating missing samples of an image.

This latter problem can be examined using the theory of op-

timal recovery. The theory of optimal recovery provides a

broader setting, which illuminates the process of interpola-

tion, by providing error bounds and allowing calculation of

worst-case images which achieve these bounds.

Locally, at location ✁ (Fig. 2), we model the image as

belonging to a certain ellipsoidal signal class ✂✂☎✄✝✆✟✞✡✠☞☛✍✌✏✎✑✞✓✒✕✔✖✞✡✗✙✘✟✚ (1)

where ✔ is derived from the local image pixels as shown in

section 3. Vector ✞ is any subset of the image containing the

missing pixel ✁ . Vector ✞ is chosen such that any ✛ linear

functionals ( ✜✣✢✥✤✧✦★✄✪✩✫✤✟✬✭✬✟✬✮✤✥✛ ) of ✞ are assumed known. If

we note the actual values of the functionals by ✯✰✢ we have✜ ✢✥✱ ✞✓✲✳✄✴✯ ✢ . In this paper we assume that the functionals

are based on derivatives and/or actual pixel values of the

decimated image. The known functionals ✜ ✢ , in the local

image, determine a hyper-plane ✵ (Fig. 1).

The intersection of the hyper-plane and ellipsoid is a

hyper-circle in ✵ . The intersection depends upon the known



functionals of the local image and we call it ✶✸✷ . Formally,✶✹✷✺✄✻✆✟✞✡✠✼✵✪✎✫✜ ✢✥✱ ✞✓✲✽✄✾✯ ✢ ✤❀✿❁✞✕✿✮❂✙✗✾✩✫✚❃✤ (2)

For a linear mapping ❄ , the image of ✶ ✷ under ❄ is the

range of values that ❄☞✯ can take. The optimal recovery

problem is to select the value in ✵ which is a best approxi-

mation over all ❄☞✯ in ❄❅✶ ✷ . We want to minimize❆ ✄❈❇✖❉✰❊✷●❋❍❂■✷ ❏▲❑✁✺▼◆✁ ❏
The Chebyshev center achieves this minimization. The Cheby-

shev center has been shown to be the minimum ❖ -norm sig-

nal on the hyper-plane determined by the known samples.

The solution to this problem is well-known: see [8, 7].

If the collection of known functionals is ✯ ✢ , the mini-

mum norm signal is P◗ . Signal P◗ is the unique signal in ✵
with the property, ✿❘P◗ ✿ ❂ ✄ ❙❯❚❘❱❲✫❳❩❨ ✷✟❬❪❭■❫ ❳ ✿✮✞✣✿ ❂ (3)

Our estimates signal P◗ must satisfy ✜ ✢✥✱ P◗ ✲❴✄❵✯ ✢ and we are

estimating ✜ ✱ P◗ ✲❛✄❜✯ . As shown in [8] there exist vectors❝ ✤ ❝❡❞ ✤✟✬✭✬✟✬✭✤ ❝✓❢ such that ✜ ✱ ❑◗ ✲✽✄ ✱ ❝ ✤✫P◗ ✲ ❂ and✜✣✢ ✱ ❑◗ ✲❣✄ ✱ ❝ ✢✥✤✑P◗ ✲ ❂ (4)

where the parentheses denote a Q dot product. Vectors
❝ ✢

are known as the representors. From [8] the solution is given

by P◗ ✄ ❢❤ ✢ ❭ ❞❥✐ ✢ ❝ ✢ (5)

where the constants ✐ ✢ are determined from the constraint

of equation (4).

An advantage of this approach is not only that we can

minimize the distance
❆ ✄❜❇✖❉✑❊ ✷❀❋❦❂■✷ ❏❧❑✁♠▼♥✁ ❏

, but we also

obtain bounds on the maximum error
❆

and we can find the

image which achieves this maximum error.

We now deal with the problem of determining ❖ adap-

tively from the image data. To make this explanation as

simple and as straight forward as possible, we demonstrate

our method with a simple toy example.

3. ADAPTIVE, OPTIMAL-RECOVERY
INTERPOLATION

Our adaptively determined quadratic signal class, or ❖ , will

be a measure of how well the local data matches the already

known functionals ✜ ✢ . We want to find an adaptive signal

class ✂ of the form:✂☎✄♦✆●✞✡✠✡☛ ✌ ✎✑✞ ✒ ✔♣✞q✗♥✘✟✚ (6)

To best understand this process, let’s look at Fig. (2). In
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Fig. 2. Interpolate pixel ✁ . The only known pixels are the

gray pixels.

this small example, the problem is that of estimating pixel✁ . Our first step is to choose a signal ✞ that contains the

missing pixel ✁ . For reasons that will be clear in a moment,

let ✞❅✄⑦⑥ ✁ ❞ ✁✫⑧✹✁✫⑨✸⑩❦⑨✸❶❸❷✹✁✑❷✸✁❹✁❃❺✹❻❼⑧✹❽ ❞ ✁✫❾✹✁✫❿✹✁✫➀❁➁ ✒
Next, we assume that there exists weight ➂ ❞ ✤✭✬✭✬✟✬✮✤✧➂➃❷ such

that locally, each pixel can be estimated by the weighted

sum of the four closest diagonal pixels. With✿ ❑➄ ✿ ⑧ ✄➅❇♣❙➆❚➇ ✿ ➄ ✿ ⑧
our measure of how well the data matches the nearby points

is

❑➈ ✄
➉➊➊➊➊➊➊➊➊➊➊
➋

✁ ❞✁ ⑧✁ ⑨⑩❼⑨❶❁❷✁✑❷✁
...

➌✭➍➍➍➍➍➍➍➍➍➍
➎

▼
➉➊➊➊➊➊➊➊➊➊➊
➋

⑩ ❞ ⑩❦⑧➏⑩❦⑨➐⑩❼❷⑩❼⑧➑❶ ❞ ❶❸❷➑⑩❦⑨❶ ❞ ❶❁⑧ ❶❁⑨ ❶❸❷⑩ ❞ ❶ ❞ ❽ ❞ ❻ ❞⑩ ⑧ ❶ ⑧ ❽ ⑧ ❻ ⑧⑩ ❷ ⑩ ⑨ ❻ ⑧ ❻ ❞⑩ ⑨ ❶ ❷ ❽ ❞ ❻ ⑧
...

...
...

...

➌✭➍➍➍➍➍➍➍➍➍➍
➎

➉➊
➋ ➂ ❞➂➃⑧➂➃⑨➂✸❷

➌✭➍
➎ (7)

or equivalently ❑➈ ✄➅➒❅▼➔➓★→
The norm squared of

❑➈ is given by❑➈ ✒ ❑➈ ✄➣➒ ✒♥↔➙↕ ▼➔➓✾➛❩➓ ✒ ➓✍➜✰➝ ❞ ➓ ✒❥➞ ➒
Thus, ✔❈✄ ↔➙↕ ▼➔➓✾➛❩➓ ✒ ➓✍➜ ➝ ❞ ➓ ✒ ➞ (8)

The problem of finding estimate
❑✁ which minimizes

❆ ✄❇✖❉✰❊ ✷❀❋❦❂■✷ ❏▲❑✁➟▼❛✁ ❏
is equivalent to finding ➒ which minimizes➒ ✒ ✔♣➒ given the known functionals ✜ ✢ .

Assuming ➓ is full rank, matrix Q has four zero eigen-

values with the rest of them being all one. The null space of

Q is spanned by the column vectors of ➓ . At first glance, it



seems that the solution to this problem might be any vector

in the null space, since that will give zero error. That how-

ever, is not true since the solution must also satisfy the given

functionals. Unless there are only four known functionals,

our solution will not be in the null space of Q .

Known functionals can be pixel values of the decimated

image, derivative assumptions or any other linear function-

als of the high resolution image. In our toy example, the

linear functionals are the given pixels ⑩❦⑨✫✤➠❶❸❷❃✤✥❽ ❞ ✤✥❻❼⑧ and as-

sumptions about the derivatives. In particular, we look at the

derivatives in the directions ❻❃⑧➡▼➔❶❸❷ and ⑩❦⑨➡▼➢❽ ❞ . We chose

the direction with the smallest change and assume that the

derivatives of the unknown pixels in that direction are equal

with the derivatives of the known pixels in the same direc-

tion. For example, if ❶❸❷✣▼✏❻❼⑧ has the smallest difference, the

derivative based functionals would be✁✫⑨➃▼◆✁♣✄✾❶❁⑧➃▼➔❶❸❷ and ✁✫❾➡▼◆✁♣✄➅❻❃❷❴▼➢❻❃⑧
When the known functionals are only the decimated pixel

values, this method simplifies to the method presented in

[2].

The formulation of our problem and the adaptive Q ma-

trix is also quite useful when we assume that the image went

through a low pass filter, before decimation. In this case, our

assumption is that the pixel values of Fig. 2 are samples of

the filtered image. If we let ➤ be a filtering matrix and we

assume that the image before filtering is ➥✞☞✄➅➤✼➥ (9)

then Q of (8) becomes ✔➦✄➧➤ ✒ ❖❛➤ . The new Q will still

have four zero eigenvalues, but the other eigenvalues will

no longer be one.

The approximation of the signal class, and therefore the

interpolation results, can be further improved by an iterative

process as follows:

1. Interpolate the missing pixels with the method de-

scribed above.

2. Using the interpolated pixels, return to equation (2)

and add the calculated pixels at the higher resolution

as extra functionals.

We haven’t proved convergence here, but from our experi-

mental results, repeating this process three times seems to

be enough.

4. RESULTS

In obtaining our results we first started with a high resolu-

tion image. We then filtered the higher resolution image by

a low pass filter (Daubechies 1), to simulate camera lenses,

and decimated by two. We then reconstructed the image

using different interpolation approaches.

For our results section we have compared the adaptive,

optimal recovery image interpolation algorithm against the

algorithm presented in [2], against bi-cubic interpolation

and against a commercially available algorithm [9]. When

compared against [2] the algorithm outperformed slightly,

especially around sharp and/or thin edges. The algorithm al-

ways outperformed bi-cubic interpolation. When compared

against [9] there were places where the adaptive, optimal-

recovery interpolation outperformed [9], but there were also

places where it under-performed. Some sample images are

included at the end of this section, but the reader is encour-

aged to view TIF images at

ww.ee.cornell.edu/ ➨ splab.

Finally, we would like to thank Xin Li for providing us

with his interpolation algorithm [2].
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Fig. 3. Altamira (top), Cubic (center), Optimal-Recovery

(bottom).

Fig. 4. Altamira (top), Cubic (center), Optimal-Recovery

(bottom).


