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Abstract. The problem addressed is one of model reference adaptive control 

(MRAC) of asymptotically stable plants of unknown order with zeros located 

anywhere in the s-plane except at the origin. The reference model is also asymp- 

totically stable and lacking zero(s) at s = 0. The control law is to be specified 

only in terms of the inputs to and outputs of the plant and the reference model  

For inputs from a class of functions that approach a non-zero constant, the 

problem is formulated in an optimal control framework. By successive refine- 

ments of the sub-optimal laws proposed here, two schemes are finally designed. 

These schemes are characterized by boundedness, convergence and optimality. 

Simplicity and total time-domain implementation are the additional striking 

features. Simulations to demonstrate the efficacy of the control schemes are 

presented. 

Keywords. Model reference adaptive control; nonminimum phase; unknown 

order; optimal control. 

1. Introduction 

By 'control' of a system is meant the process of achieving the desired or close-to-desired 

performance from the system by manipulating it in some fashion. Often, some simplifying 

assumptions - linearity, time-invariance, etc. - of the system are made to make the problem 

more tractable. When the assumptions are too naive or when enhanced performance under 

varying conditions is required, relatively refined strategies are sought. The built-in capa- 

bility of a system for such refinement is variously termed adaptation, self-organization, 
learning and intelligence. An adaptive controller is one which is capable of reconfiguring 

itself for the 'better', based on its observation of the process as it unfolds. 

Two approaches - direct and indirect - have been reported in the literature on adaptive 

controllers (Astrom 1987). In the indirect approach, the plant is represented by an explicit 
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model, the unknown parameters of which are estimated by on-line system identification 
techniques (Ljung 1987). This requires the knowledge of the plant order or, at any rate, 
of an upper bound on the plant order. In the absence of knowledge of even a reason- 
able upper bound on the order, order estimation techniques are resorted to (Sliwa 1984). 
They are commonly built upon some heuristics, and hence are feasible only in situations 
where, inter alia, speed of adaptation and plant stability are not critical. In self-tuning reg- 
ulators, on-line tuning of the controller is achieved through certainty-equivalence. Alterna- 
tively, when no explicit effort is made to identify the plant parameters but the controller is 
directly adjusted to minimize the error between the plant and the reference model outputs, 
the approach is termed direct model reference adaptive control (MRAC). 

Stability of the direct MRAC algorithms is guaranteed in general under the following 
assumptions (Narendra & Armaswamy 1989; Sastry & Bodson 1993) 

(i) The plant is minimum phase (zeros restricted to the left half of the s-plane); 

(ii) the order or an upper bound on the order of the plant is known; 

(iii) the reference model is stable and is minimum phase; 

(iv) the sign of the high-frequency gain of the plant is known; 

(v) the input is persistently exciting. 

Assumption (iv) above has been relaxed for a minimum phase plant (Morse 1987). In a 
recent piece of work (Tao & Ioannou 1993), one of the basic assumptions in stable MRAC 
- that the relative degree of the modelled part of the plant is known exactly and is no 
greater than that of the reference model - is relaxed; the scheme there requires only an 

upper bound for the relative degree of the plant. 
An independent direction recently explored (Bar-Kana et al 1983; Sobel & Kaufman 

1987) for the direct adaptive control problem is the Command Generator Tracker (CGT) 
method. In this approach (Sobel & Kaufman 1987), the output error is used to compute 
the adaptive gains obtained as a combination of 'proportional' and 'integral' terms. The 
plant command is generated in terms of these adaptive gains. The reference trajectories 
which the plant output has to follow are limited to the class of outputs of a free-nmning 

LTI dynamical system. 
Strict positive real (SPR) property is pivotal in several adaptive control schemes. In 

the CGT appro~ich, for instance, the closed-loop plant being SPR implies asymptotic sta- 
bility of the system, boundedness of the controller gains and asymptotic tracking. Being 
highly restrictive, the SPR condition is often relaxed. The plant must then be almost 
SPR (ASPR) (Narendra & Annaswamy 1989). If the plant, or an augmented version of 
it, is ASPR, then a suitable Lyapunov function can be constructed and stability ensured. 
Else, finding a suitable Lyapunov function cannot, in general, be taken for granted. It 
is seen that both direct MRAC and CGT approaches call for certain precise a priori 

structural information about the plant, the order information being one such. In prac- 
tice, systems frequently have orders much in excess of those assumed for identification. 
Even if identification were to be the 'best' with respect to the chosen model, the ef- 
fect of unmodelled dynamics of a linear plant cannot always be totally neglected for 
persistently exciting inputs. Indeed, all order estimation techniques are prone to be inex- 
act, based as they invariably are, on some heuristic. Despite the existence of rigorous 
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stability proofs it has been demonstrated (Rohrs et al 1982, 1985) that several algo- 

rithms are non-robust in the presence of 'small' unmodelled dynamics. Hence there is 
a strong case to develop algorithms which are independent of information of the plant 

order. 
Persistency of excitation, a condition which can be met in practice only by artificial 

injection of probing signals, is attended with many problems. In several situations, it is 

simply infeasible to continually inject probing signals. Questions that naturally arise in 

this context are: Can persistency of excitation be done away with? If yes, what are the 

issues that need to be addressed as a consequence? What are the associated advantages 

and disadvantages? 

The plant being minimum phase is a rather restrictive, yet vital factor, for stability of 

adaptive systems as established. Interest in plants which are not necessarily minimum 

phase has also motivated research. Some of these studies are mentioned below. 

• A conceptual approach involving a bilinear parameter estimation problem has been pro- 

posed (Astrom 1980; Praly 1984). The procedure (Astrom 1980) is based on identifica- 

tion of an implicit plant model and pole-zero placement design. The estimation requires 

that at each t, a quadratic criterion be minimized (Praly 1984). The assumptions are 

stabilizability, knowledge of an upper bound on the system order and knowledge of an 

upper bound on the system parameters. 

• A class of discrete time systems inclusive of all minimum phase, all stable nonminimum 

phase and some unstable nonminimum phase systems has been considered (Goodwin 

et al 1981). Global stability is assured under the 'key substantive' assumption that the 

one-step-ahead optimal controller designed using the true (but unknown) system pa- 

rameters leads to a stable closed-loop system. Closed-loop stability is hypothesized. A 
modification of the one-step-ahead law to accommodate nonminimum phase zeros has 

been suggested (Hartley & Sarantopoulos 1991). Since the procedures involve the esti- 
mation of plant parameters, they assume an explicit form for the plant transfer function. 

• Loop Transfer Recovery (LTR) as applied to minimum phase plants (Doyle & Stein 

1979, 1981) has been generalized to nonminimum phase plants (Zhang & Freudenberg 

1990). Necessary and sufficient conditions for a nonminimum phase plant to have a 
recoverable target loop are arrived at (Chen et a11992). These procedures involve, inter 

alia, state observers and a state feedback loop. 

Thus the knowledge of the plant order (or an upper bound on the order) is inherent in these 
approaches. 

It is more often a rule than an exception that plants that are minimum phase in continuous 

time are nonminimum phase in their discrete time approximate representations. If an 

upper bound on the plant order is unknown, reported studies of plants with nonminimum 

phase zeros are inapplicable. Moreover, when the plant is nonminimum phase, matching 

of the closed-loop transfer function with the transfer function of the reference model is 

impossible for persistently exciting inputs (except possibly in the trivial case when all 

nonminimum phase zeros of the unknown plant and the reference model have exactly 

matching locations and corresponding orders). This is because a nonminimum phase plant 

does not have a stable inverse. Consequently, adaptive tuning of systems which are allowed 
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to be nonminimum phase must be over some constrained class of inputs if asymptotic exact 

model following is demanded. 
There is a good practical reason (Benes 1965) to restrict the inputs to the Marcinkiewicz 

Space, .M2 (Benes 1965), the space of bounded functions of bounded power. 

[ f0 .A42 ---- X ( ' )  " [0 ,  OO) : .~ ~ : Ix(t)12dt < o o  VT ~ ~+, 

1/o  I limsup-~ Ix(t)12dt < oo .* 
T---~oo 

L2 C .M2. In particular, the step and the sinusoids belong to .M2. It is significant here 

to observe that in the CGT approach the reference trajectories which the plant output 

has to follow are restricted to the class of outputs of a free-running LTI dynamical sys- 

tem. 
The main features of this presentation constitute relaxing the three usual requirements 

as follows. 

(a) No a priori information is needed about the parameters or the order or relative degree 

of the plant; 

(b) the plant is allowed to be nonminimum phase; 

(c) the input is not necessarily persistently exciting. 

However, the demand is that the plant be asymptotically stable. An additional mild restric- 
tion is that the plant and the reference model shall have no zero(s) at s = 0. 

This paper is organized as follows. The problem is formulated in § 2. Section 3 addresses 

amplitude matching, in part, and sign matching of the outputs. Two optimal schemes are 

proposed in § 4. Simulations comprise § 5. 

2. Problem formulation 

In this section, we formally state the problem, state some preliminary results and cast the 

problem in an optimization framework. Alongside the process of choosing a criterion to be 

minimized, we show how it captures all aspects of the problem. Our approach to solving 

the problem will also be indicated. 

2.1 The statement of the problem 

The MRAC problem addressed here involves finite-dimensional, LTI, SISO systems. The 

given plant Gp(s) is such that 

• (A1) its order or even an upper bound on its order is unknown; 

• (A2) it may be nonminimum phase; 

*~t + = (0, ~). 
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• (A3) it is asymptotically stable; 

• (A4) it is strictly proper and 

• (A5) it has no zero(s) at s = 0. 

The reference model, fully specified by a transfer function Gin(s), satisfies (A2) - 

(A5). The nonminimum phase zero(s) of the plant and the model need not have matching 

location(s). 

It is often desired to match, or approximate as closely as possible, the step responses of  

the plant to be controlled and the reference model. We allow the reference model inputs to 

belong to a class of  functions that are 'step-like'; i.e., a class of functions that asymptotically 

approach a constant. We define this class of 'step-like' functions, to which the reference 

model inputs belong, t 

DEFINITION 1 

~u,f __A {u : [0, o<~) I > ~} such that u(t) 

(1) is bounded and is either continuous or has finitely many discontinuities of the first 

kind; 

(2) is differentiable as t -+ o<~ and the limit of the time derivative is zero; 

(3) has a non-zero limit (which is finite by virtue of 1 and 2) as t ~ cx~. t3 

It is required to specify an on-line adaptive scheme which ensures convergence of the 

controller so that the plant output matches or approximates the model output. Also, bound- 

edness of  the controller must be assured. 

2.2 Certain preparatory results 

PROPOSITION 1 

Let f l  : [0, c~) i > ~t be continuous or have utmost finitely many discontinuities of the 
first kind. 

(1) / f l i m t ~  fl(t) = c, then limT-_,~(1/T) fT f l ( r ) d r  = c. 

(2) f~ f l  ( r ) d r  is continuous for t ~ [0, ~ ) .  

PROPOSITION 2 

If f l ,  f2 : [0, oo) ,  > fit satisfy f ~  f 2 ( r ) d r  > 0 and f0 ~ f 2 ( r ) d r  > 0, then 

t f im[(1/ t)  f o t f 2 ( r ) d r ] / [ ( 1 / t )  fot f2(r)dr] exists(itmaybeinfinite). 

Proof Letting N(t) ~= f~ f2(z)dz and D(t) A= f~ f 2 ( z ) d r ,  the required limit is limt--,oo 

[ N (t) / D(t) ]. N (t) and D(t) are nonnegative and nondecreasing; hence l i m t ~  N (t) and 

tThe scope of this paper is restricted to inputs of this class. Results pertaining to inputs comprising signals that 
approach a sinusoid without and with adc offset have also been obtained. In fact, the subscript f for 'final value' in 
f~u,f is meant to differentiate this class from f~u,s and flu,c, the classes of functions which respectively approach 
a 'sinusoid' without an offset and a sinusoid with an offset ('combination'). 
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l imt~oo D(t) exist. If both limits are finite or if only one of them is infinite, the proposition 

is proved. Else, the required limit has the form oo/oo. If as t ~ oo, the order at which 

N(t) ~ oo is higher than (the same as) [lower than] that at which D(t) --+ oo, then the 

required limit is infinite (positive and finite) [zero]. [] 

Lemma 1. 

(A4), then 

If u ~ ~2u,f be the input and y the output of a system T(s) satisfying (A1) - 

1 

tl~noo[ {~ foty2(r)dr}~ [= lMooT(O'[ where Moo ~= lim u(t). 
t--+ oo 

Proof. By (A3) and (A4), T(0) is finite and T(s) has a state model 

Jc (t) = Ax(t) + Bu(t), y(t) --- Cx(t), 

with T(s) = C(sI - A) - IB  and limt~oo CeAtB = 0. The zero-state response is 

y(t) = fd CeA(t-t) Bu(r)dr. Since u ~ f2u,f, cea(t-r) Bu(r) has utmost finitely many 

discontinuities of the first kind. Then by part 2 of proposition 1 y is continuous. Clearly, 
y is bounded and limt~oo y(t) = T(0)Moo. By applying part 1 of proposition 1 to y2, 

t Oo t f0 Y2(r)dr = T2(0)M2 

and the lemma follows. [] 

2.3 The performance index 

We use the foregoing results in constructing a performance index and provide an insight 

into its significance as we do so. 
Let gm and gp respectively denote the impulse responses of the reference model Gm (s) 

and the unknown plant G p (s). Further, let u m ~ f2 u, f .  The model output Ym (t) = f~ gm (t - 
r)Um ( r )dr .  As even an upper bound on the order of Gp(s) is not known, we are left with 

a situation wherein Um, Ym and yp are the only functions available to generate the plant 

command up. Thus, yp(t) = fg gp(t - Z)Up(r)dr, where up(t) = h(um, Ym, Yp, t). 
As the aim is to specify h such that yp matches or approximates Ym, the error {Ym - Yp} 

deserves to be incorporated into the performance index. Since error-minimization is sought 

over the range, [0, oo), of time, f ~  {ym(r) - yp(r )}2dr  may serve as a performance 

index. However, this would tend to infinity with even a mild mismatch between Ym (t) and 

yp(t) as t --+ e~. 

Consider 

- 2 -- ~ ym(r)yp(r)dr. 

Even for a step input, f~o y2 (~:)dr = e~. However, in the light of lemma 1, it is clear that 

when Um ~ flu,I,  
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l f0' lim - y2(r)dT = G2m(O)(tfim um(t)}2 E (0, oo), 
t~oo t 

since Gin(s) is asymptotically stable and without any zero at s = 0 and l i m t ~  urn(t) is 
non-zero and finite. If Up E flu,f, then by lemma 1 in like fashion, 

lira - yp2(r)dr = G~(0){ lim Up(t)} 2 ~ (0, e~). 
t --~ O0 t r t--~ O0 

By proposition 1 it can be shown that 

t--.~lim -~ ym(T)yp(r)dt = Gm(O)Gp(O){tr~n um(t)}{tlim up(t)}, 

which also is finite and non-zero. Hence the performance index would be more encom- 

passing if it comprised 

lim 1 f0 t {Ym(/:) - Yp(r)12dr. 
t ---~ oo  t 

This is the mean-square disparity between Ym and yp. Evidently, being a function of 

urn, it will, in general, be different for different model inputs of ~2u,f. To facilitate cost 

comparison for different inputs, the candidate performance index can be refined to 

A t 1 y2m(r)dr] " 
Tff = [ l imk t--+~ l-lot {Yrn(T)-YP(~)]2d~]/[tfi-~mtfo t l 

Lemma 1 shows that the denominator of Jf is positive and finite. We may therefore specify 

Jf as a well-formed criterion for minimization. Nonetheless, it has the limitation that all 

inputs belonging to g2u,f are not concurrently considered. With a view to minimize the 

worst error as in 7-t~-optimal control the performance index is chosen as: 

j f  £x sup {d(um) " d(um)= 
Ura E~u, f 

l i m t ~ ( 1 / t )  f~ {ym(r) - yp(Z)} 2 dr  

limt-~oo(1/t) fg y2(z )d r  

(1) 

The goal is to generate Up that minimizes Jf. Observe that Jf is bounded below by zero. 

2.4 The approach to solution 

Urn, Ym and yp are the only signals available to specify the plant command, Up, as in 

figure 1. The adaptive controller in figure 1 represents a nonlinear time-varying gain h. 

For Um E f2u,f, h has to settle at a value whose magnitude and sign assure matching of 

the magnitude and sign of Ym by those of yp. Boundedness of h is a sine qua non. 

3. Suboptimal schemes 

We shall gradually build the optimal control law starting from two suboptimal schemes in 

this section. This is because the suboptimal schemes provide an insight into the various 

aspects of the problem arising out of 
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I 

Figure 1. A schematic of the setup. 

• relaxing the assumptions on the plant, viz., information about its order and its being 

minimum or nonminimum phase; and 

• the reference model inputs belonging to f~u, f .  

The following observation is pertinent before we set out to present the suboptimal laws. 

Observation 1. It was emphasized in the previous section that Um, Ym and yp are the only 
signals in terms of which the plant command, up, has to be specified. Moreover, Jf of 
(1) is independent of any parameter of the plant or model or otherwise. The problem is 

therefore not in the class of parametric optimization problems. Consequently, we cannot 

resort to methods such as gradient descent in some parametric space. This will lead us to 

laws and proofs that are interesting because of their unconventional approach, as will be 

demonstrated. 

Lemma 2 (below) throws light on the aspect of on-line matching, in magnitude, of the 
model output by the plant output. On-line matching of signs of the model and the plant 

outputs is ensured by lemma 3. Lemma 4 is a variant of lemma 3 and it achieves the same 

purpose. 
In what follows in this and the later sections, unless otherwise stated, it is understood 

that we carry forward the notations and specifications of § 2. Further, zero initial conditions 

are assumed. This assumption will be relaxed in corollary 2 towards the end of § 4. 

We are interested in the matching of Ym by yp for the 'step-like' inputs. It will be 

instructive to explore the different candidates for the map h of figure I by considering an 

example. 

Example 1. Let Gm (0) = 4 and Gp (0) = - 1. Then with Um (t) a unit step, l imt~  co Ym (t) 
= 4 and limt~co yp(t) = - 1 .  In the control law of the form Up(t) = h(t)Um(t), if 

an h satisfying limt-+co h(t) = - 4  were chosen, we can achieve the desired matching 

asymptotically. Toward this end, as a candidate for h, suppose we set h I (t) ~ Ym (t)/yp (t). 
A little consideration will show that this may lead to unboundedness of the controller though 

Ym is bounded. This is because it is attended by the problem of zero-crossings of yp due 

to: 

(i) Gp(s) being allowed to be nonminimum phase with unknown zero locations; and 

(ii) zero-crossings of Urn(t) for any finite t are permitted by flu,f .  
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An h2(t) of the form fd Ym / fd Yp also suffers from the same drawback. To circumvent such 

problems, we may as well look at a map h with its denominator positive and nondecreasing, 

say. Then, 

fot 2/L t h2(t) ~= y y2. 

In computing h3 from the above, the loss of sign information is evident. Nonetheless, 

putting off, for the present, the issue of sign-matching, we proceed by taking the cue from 

this last form, h3, and investigate amplitude matching. 

Lemma 2. In the setup of figure 1, let Up(.) n= ot(')Urn(') where urn ~ f2u,f and 

1; O < t  < T1 < o o ,  

or(t) ~ 3tl E (0, T1) 9 yrn(tl)Yp(tl) ~ O; 

I1[  fd Y2(r )dr] / [  1 fd Y2(r)dr]}½[; t > T1. 

T h e n  

(1) ct is bounded; 
1 

(2) limt~oo or(t) = [{[Gm(O)/Gp(O)[2}[. 

(2) 

Note. Intermediate steps in some proofs are indicated by subtitles. 

A rigorous proof of this lemma has been worked out (Shankar 1993). We sketch here 

an outline of that proof with some details here and there. 

Proof Denote limt--+oo Urn(t) = Mrn. Then limt--,oo yrn(t) = Grn(O)Mrn, and as Grn(s) 
has no zero at s = 0, by part 1 of proposition 1, 

lim y2(~:)dz 2 2 - = Grn(O)M m E (0, oo). (3) 
t --* ~x~ t 

Claim. or(t), t ~ [0, oo), is finite. 

The boundedness of Ym and the definition of T1 in (2) is pivotal in proving this claim. T1 is 

a time until after the plant and model outputs are excited. It is necessitated by the definition 

of f2u,f which allows Um to be zero except at removable discontinuities for some finite 

time. It serves an additional nontrivial purpose; that will find mention in the section on 
simulations. 

Claim. l i m t ~  a(t ) exists. 

Follows from suitably applying proposition 2 to (2). 

Our next aim will be to show that o~ settles to a positive, finite value. 

Claim. l i m t - ~  or(t) ~ oo. 

Suppose limt~oo or(t) = oo. Then I limt~oo Up(t)[ = oo. Two cases arise here. 
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Case 1. iimt__>~ lUp(t)l = cx> such that limt~oo lyp(t)l < ~ .  
As Gp(s) may be nonminimum phase, it is necessary to consider a situation wherein 
Up may go unbounded such that yp remains bounded. This is possible iff each factor of 
the form (s - or/), or/ > 0, in the denominator of Up(s) is cancelled by a corresponding 
nonminimum phase zero, (s - a i ) ,  of Gp(s). Consequently, u(t  ) has to grow exponentially 

resulting in limt-_rc~(ot2(t)/t) = oo and thence, 

f0' tim ~z ( t ) l  y~(~)dr = ~ .  
t---*cx~ t 

The LHS of the above is also, by virtue of (2) and (3), 1£ 
lim y2m(r)dr 2 2 

- = Gm(O)M m < ~ .  
t--+oo t 

Contradiction! Hence 

{t~m a(t)  < cx~} OR {tfimc~(t) = ~ and r-+cclim lYp(t)l = c~}. 

The first option proves the claim. The second leads to the following case. 

Case 2. limt~c~ lup(t)l -" ~ such that limt~c~ lyp(t)l = ~ .  

Here, it can be shown by invoking (2) and (3), l i m t ~  a( t)  < cx~, thus violating the 

supposition that l i m t ~  or(t) = ~ .  
Hence the claim. 

Part 1 of the lemma, namely, the boundedness of a now directly follows. Clearly, there- 

fore, Up and hence yp are bounded too. 

Claim. limt~c~ or(t) ~ O. 

Suppose not. Then l i m t ~  U p ( t )  - -  0 and, by lemma 1, limt-->~(1/t) f~ y2(r)dr  = 0. 

Using (3) in (2), 

{ [ ~ f 0  t y 2 ( r ) d  r ] / [ ~ f 0  t 2 "} lim ot2(t) = tim y ( r )dr  = oo, 
t---~ ~ t ---~ (X) 

a contradiction. The claim is established. 

Remark I. In fact, this boot-strapping property of or(t) for t > T1, as demonstrated in the 

proof till now, is one of the motivations behind the definition of ot as in (2). 

Remark 2. As ot and Um are bounded, an examination of fg y2(l:)dr and fg y2(r)dr  
reveals, in view of part 2 of proposition 1, that or(t) is continuous in t, except possibly at 

t = T 1 .  

Claim. l imt~o~(d~(t) /dt)  = O. 

In view of the remark 2, Up = t~Um is bounded and has utmost finitely many discontinuities 
of the first kind. Part 2 of proposition 1 then establishes that Ym and yp are continuous. 
Thus t~(t) is differentiable w.r.t, t, t > T1. Then by virtue of l i m t ~  or(t) E (0, cx~), the 

claim holds. 
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Evaluation of limt~oo ~(t): Let otf A limt~o~ or(t). Then limt~oo Up(t) = otfMm. 
From the properties of ot proved hitherto, it can be shown that Up ~ f2u,f. Hence by 
lemma 1 applied to Gp(s) excited by Up, 

{f0 / 
1 t 2 

t~oolim t yp(r )dr  = ]Gp(O)otfMml > O. 

Using this and (3) in (2) and simplifying, 

[ c.,(o) ½} 
With a small technical modification in lemma 2, Corollary 1 follows directly. 

COROLLARY 1 

The results of lemma 2 hold with or(.) redefined as 

1; O < t < T l + e < o ~ ,  Tl,e  > 0 ,  

qtl E (0, T1) 9 ym(tl)Yp(tl) # 0; 

{ [t+--~ J~)-SY 2(r,dr] /[t-~ fO-~ Y2(r)dr] } ½", 

[] 

t >  T l+e .  

[] 

Remark 3. Motivated by the discussion in example 1, in corollary 1 a law was proposed 
which, though blind to sgn{Gm(0)} vis-a-vis sgn{Gp(0)}, was meant to ensure on-line 

magnitude-matching. But such gain-matching is actually not achieved by corollary 1 as 

• af  = 2, and not 4 as is required for gain-matching, and 

• l imt~oc ]ym(t)] = lim/~o~ lYp(t)l requires limt~oo a(t) = 1. This is obvious from (2) 
seen in the light of lemma 1. 

Clearly, unless [Gin (0)[ = [Gp (0) 1, corollary 1 does not ensure gain-matching in magni- 

tude. Moreover, if I Gm (0) I = [Gp (0) h such gain-matching is itself superfluous. In other 
words, if in corollary 1, l imt .o~ ot (t) equals unity, a itself can be dispensed with from the 

control law! Nonetheless, the control Up of corollary 1 is a step towards dc gain-matching. 

This is because the insight gained by analyzing the shortcomings of corollary 1 will be 

exploited in the next section in the design of an optimal controller. In addition, the proof 

of lemma 2, which is essentially the same as that of corollary 1, simplifies the proof of 
theorem 1 (see § 4) as well. 

Remark 4. More importantly, the control of corollary 1 is insensitive to sgn{Grn (0)} vis-a- 

vis sgn{ Gp (0)}'. In handling plants and reference models which are allowed to be nonmin- 

imum phase this further inadequacy of the control law of corollary 1 is obvious. Lemma 3 

is meant to show how sign-matching can be achieved by introducing an additional factor 
fl : [0, oo) i > {1, -1} into the law given by corollary 1. 
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Lemma 3. 
and 

In the setup of figure 1, if Up(.) ~= Ot (. ) fl (. )Um (.) where a is given by corollary 1 

1; 0 < t < T / ~ ,  T t~(TI ,OO) ;  

- 1 ;  2iT3 < t < 2i+lT/~, Up(2iTf).yp(2iTf)Gm(O) < O, 

13(0 =~ i = 0 ,  1,2 . . . .  ; 

1; 2iT3 < t < 2i+1T3, Up(2iT3).yp(2iT#)Gm(O) > O, 

i = 0 , 1 , 2  . . . .  ; 

then 

(1) up and yp are bounded; 

limt~oo [Up(t) I = {Iam(O)/ap(O)l}½ IMml, where Mm ~= limt~oo Um(t); (2) 

(3) l i m t o ~  l yp( t ) l  = {Iam(O)ap(O)l}½1 [Mml; 

(4) the performance index 

3 1 
Jf  = [62(0)  + Iam(O)ap(O)l - 21{Iam(O)l~.lap(O)l=}l]/G2 (O). 

A comprehensive proof of this lemma has been worked out (Shankar 1993). Only an 

abridged version thereof will be presented here to give a flavour of the nature of the issues 

involved and the methods employed to address them. 

Proof. As seen in the proof of lemma 2 (vide (3)), 

lim 1 fO t - Gm(O)M m E (0, oo). t~oo t y2( r )d  z = 2 2 (4) 

Claim. ct, up and yp are bounded  and l i m t ~  or(t) exists. 

This follows by suitably adapting the proof of lemma 2 and is regardless of the existence 

of limt~oo fl(t). It is important in this context to observe that ~1 = 4-1 and is allowed to 

change only at discrete instants of time separated by exponentially growing intervals. This 

is part I of the lemma. 

The introduction of fl = 4-1 into the control law here does not require more than straight- 

forward modifications in the proof of lemma 2 in establishing that limt~e~ or(t) ~ 0 and 

lira dot(t)/dt = 0. (5) 
t---~ o o  

Claim. limt~oo/~(t) exists and equals sgn{Gm(O)Gp(O)}. 
Herein lies the focus of this lemma. By definition fl(t) is constant for t E (2 i T/~, 2 i+1T~], 
i = 0, 1,2 . . . .  The interval (2 i+1 - 2i)T# increases without bound as i ~ e~. Let tl# and 

tu~ be such that for some i, 2i Tfl < tl~ < tu~ < 2i+lT/~. Suppose 

fl(t) = + 1 ,  t 6 [tt~, tuo]. (6) 
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Then for t ~ [tlf, tug], 

Up (t) = ot (t)Um (t). (7) 

As Um ~ g2u,f is differentiable as t ~ oo, 3tfl 6 91+ 9tim (t) exists Yt > tf l .  Choose 

tlg > tgl. (8) 

Then tim (t) exists Vt > tlg. So from (7), for t ~ (ttf, tuB], the interval in which ¢t is not 

allowed to change, 

tip (t) =& (t)Um(t) + or(t) tim (t). (9) 

Assuming for  the moment that (7) holds for  all t > tlg, (9) yields, in view of (5), l imt~ oo tip 

(t)  = 0, 

i.e., for any egl > O, 3tf2 E ~It + 9 ] tip (t)l < egl Yt > tg2. (10) 

Let 

tlg >_ tg2. (11) 

Note that even though (7) does not necessarily hold for all t >_ rig, but only for t ~ [rig, tuf ], 
yet in view of (11), 

] tip (t)] < e l l ,  tlff <_ t < tug. (12) 

This is because of the causal nature of the system. Equation (12) was derived primarily 

to illustrate how system causality can be used to advantage in proving the existence of 

l imt~o,  el(t). 

Now back to the assumption that (7) holds for  all t > tlf, 

Jot yp(t) = gp(t -- r)Up(Tr)dr ----- [tiff CpeAp(t_r)Bpup(r)d r 
Jo 

ftl t 
nt- CpeAp(t-r) Bpup(TJ)dr. 

(Cp, Ap, Bp) is a minimal realization of Gp(s). As l i m t ~  eAp I = O, 

Let 

Then 

(13) 

lim [ t l# fpeAp(t -r)npup( '~)d$ = f t l f l f p ,  lim [eAp(t-r)]npup($)d$ =0 .  
t-+°° do dO t---~oo 

fo i.e., for any eg2 > 0, 3tg3 ~ 9t + ~ cpeap(t-r)  Bpup(r )dr  < el2 

Vt > tg3. 

tug > tg3. (14) 

fo tz~ CpeAp(tu~-r) Bpup(r )dr  < ~g2. (15) 
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The second term in the RHS of (13) will now be taken up. 

[ 11 ftl CpeAp(t-r)Bpup(z)dr= Up(Z) CpeAp(t-~Bpd~ 
13 ~ d r =tl# 

- fttt [ftl: CpeAp(t-r-)Bpd'] itp (r) d~ 

= [Up(t) ftt t, CpeAp(t-~ Bpd ~] 

ftf CpeAp(t ~) ap l Bp + - - tip ( r )d r  

- ftltt3 Cpeap(t-tt#) apl Bp tip (r)dz. 

Consider the first term in the RHS of (16). 

Up(t)ftltCpeAp(t-~Bpdz=up(t)[CpeAp(t-~(-apl)Bp]ttt ~ 

=Up(t)[-CpAplBp] 

+Up(t)Cpeap(t-tt#) Ap 1 Bp. 

As l i m t ~  cpeap(t-tla) Apl Bp = 0 and as Up is bounded, 

for any e#3 > 0, 3t#4 E 9t + 9 Up(t)CpeAp(t-ttDAplBp < el3 Vt > tl34. 

Set 

Then, 

(16) 

(17) 

Up(tu#)CpeAp(t"#-tt#)AplBp < e#3. (19) 

Hence using Gp(O) = -CpAp I Bp, it follows from (17) that 

ftu~ CpeAp(tu~_~ Bpd ~ [Up(tu#)Gp(O) - e#3] < Up(tu#) Jtl~ 

< [Up(tu ) p(O) + e 3]. (20) 

Likewise the second and the final terms in the RHS of (16) can be analysed to yield 

respectively the following: 

tuIJ Cpeap(tu#_Z) Apl B p tip (z)dt  < el4 (21) for any e#4 > 0, fJtl_~ 

tub >-- t~4. (18) 



Optimal tuning o f  nonminimum phase systems 449 

and 

tu 
forany eri5 > 0, Jtl~ CpeAp(tu#-tt#)AplBp itp ( r )dr  < eriS. 

Using (20), (21) and (22) in (16) and rearranging, 

Up(turi)Gp(O) - [eri3 + eri4 + eris] < CpeAp(tu¢-r)Bpup(T)d~ 
art# 

< Up(turi)Gp(O) + [eri3 + eri4 + 8ri5]. 

(22) 

(23) 

and that 

turi > tris. (25) 

Then as ot > O, Up(turi) = fl(turi)a(turi)Um(turi) # O. Consequently eriE, eri3, eri4 and 
eris, which are arbitrarily small, can be so chosen that 

0 < [eriE + eri3 + eri4 + 8ri5] << lup(turi)l.IGp(O)l. (26) 

When (24) is seen in the light of (26), it is apparent that yp(turi) # O, that 

sgn{yp(turi)} = sgn{up(turi)Gp(O)}, 

sgn{up(turi)yp(turi)} = sgn{up(turi)}sgn{up(turi)Gp(O)} = sgn{Gp(0)}. 

Constraints (8) and (11) have to be simultaneously satisfied by ttri. Let 

tlri > max{tril, triE}. 

(27) 

(28) 

Let 

Substituting (23) and (15) into (13) and simplifying, 

Up(turi)Gp(O) - [eri2 + eri3 + eri4 + eri5] < yp(turi) < Up(turi)Gp(O) 

+[eriE + eri3 + eri4 + eri5]. (24) 

Gp(O) 5~ 0 by (A5). 
Inequality (24) was derived with the initial assumption (6), i.e., fl ( t ) = 1, t ~ [ tlri , turi ]. 

A scrutiny o f  the derivation is, however, sufficient to reveal that even i f~ ( t )  = - 1 ,  t 

[tlri, turi], (24) would hold. 

Before proceeding further with (24), it shall be shown that when turi exceeds a threshold 

value, Up(turi) must necessarily be non-zero regardless of whether 13(0 = 1 or - 1 .  

Since l i m t ~  Urn(t) = Mm 5~ 0, 

for any eri 6 E (0, IMm[), 

3tri5 E ~+ B Mm - eri6 < Um (t) < Mm + eri6 Yt >_ tri5. 
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Constraints (14), (18) and (25) have to be simultaneously satisfied by tu# which, in addition, 
has to exceed tl#. Choose 

(29) tu/3 >_ max{tl~, t~3, tfl4, t~5}. 

From (28) and (29), tl/3 and tu# can be set such that for some i, say j ,  

tll3 > 2JTI3 andtl# < tu~ = 2J+IT#. 

Equation (27) now implies sgn{up(2 j+l Tl3)yp(2J+l T~)} = sgn{Gp(0)} and thence, 

sgn{Gm (O)up (2 j+l  T3)y p (2 j+l  T/~)} = sgn{Gm (O)Gp (0)}. (30) 

It is emphasized here that (30) is true independent of the assumption that (7) holds for 

all t > tl~. Also, it has been seen that [3 ( t ) = - 1 for t ~ [ tl#, tu# ] leads to the same result. 
When (30) is compared with the definition of [3 it is clear that regardless of what [3(t) 

for t e (2JT#, 2J+IT#] was, 

[3(0 = sgn{Gm(O)Gp(O)}, t e (2J+lT3, 2J+2T/3]. (31) 

Hence it is established that 

lim [3(0 = sgn{Gm(O)Gp(O)}. (32) 
t--+OO 

Evaluation o f l i m t  ~ ~ l Up (t) l and l im t  ~ c~ l Yp (t) l. Let ~f  A l imt~ ~ a (t). We can arrive 
at 

Then 

I Gm (0) ½1 

-- L o--y j 

Gm(O) 11 
lim ]Up(t) I = 

/ i a p ( o ) l  j . Igml .  

l} 
Hence limt~c~ l Yp (t) ] = { I Gm (0) Gp (0) ] 2 .IMm 1. 

This completes the proof of parts 2 and 3. 

The role o f t  and evaluation of Jf  . 

lf0t t~lim t Y2(r)dr = IGm(O)Gp(O)IM2m" 

Applying lemma 1 to the plant excited by Up, we get 

(33) 

Now, 

Mm{t~m fl(t)}, 
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Table 1. Role of ft. 

Condition Consequence 

sgn(Mrn) sgn{Gm(0)} sgn{Gp(0)} limt~oo/5(t) sgn{limt~oo ym(t)} sgn{limt-~o~ yp(t)} sgn{limt--.oo~p(t)} 

+1 +1 +1 +1 +1 +1 +1 
- 1  + i  +1 + I  - 1  - 1  - 1  
+1 - 1  +1 - 1  - 1  - 1  +1 
- 1  - 1  +1 - 1  +1 +1 - 1  
+1 +1 - 1  - 1  +1 +1 - 1  
- 1  +1 - 1  - 1  - 1  - 1  +1 
+1 - 1  - 1  + !  - 1  - l  - 1  
- 1  - 1  - 1  +1 +1 +1 +1 

Note. Here ~p(t) denotes the plant output if fl - 1. 

andthence, 

t~o~lim yp(t) = Gp(O){t~In ~ Up(t)} = Gp(O) 

We have seen that 

lim ym(t) =- Gm(O)Mm. 
t---~ oo 

Gin(O) 
Mm{t~__IIl f l ( t )} .  

(34) 

(35) 

Table 1 brings out the effectiveness of B in ensuring that limt~oo yp(t) has the same sign as 

l imt~ oo Ym (t). In developing the table, (32), (34) and (35) have been used. All permissible 

combinations of sgn{Mm }, sgn {Gin (0) } and sgn { Gp (0) } are considered. 

It can be seen that for all combinations of Mm, Gm (0) and Gp (0), the model and the 

plant outputs are of the same sign as t ~ oo. On the other hand, if fl -- 1, i.e., if the control 

law of corollary 1 were employed, the model and plant outputs would have different signs, 

as t ~ oo, whenever Gm (0) and Gp (0) have different signs. 

It is now straightforward to show that 

lim - ym(r)yp(r)dT = Gm(O)Gp(O) ~ 
t---~ oo t 

(36) 

Using (4), (33) and (36) and simplifying using table 1, we get 

1 f0 t }2 lira - { y m ( r ) - y p ( r )  dz 
t - -*~  t 

3 l 
= Gm(0)M ~ 2  2 + [Gm(O)Gp(O)[ M 2 _ 21{IGm(O)I~IGp(O)IT}IM 2. 

Now by (37) and (4), 

3 1 
d(um) = [G2(0) + [Gm(O)Gp(O)[ - 2l{IGm(0)l~ IGp(O)I~}II/G2m(O). 

(37) 

(38) 
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We make here an interesting observation, namely, d(um) is independent of Mm. Hence the 

RHS of (38) remains the same for all ura ~ ~2u,f. Therefore 

Jf [G2(0) + IGra(O)Gp(O)l-21{IGm(O)l~ 1 = IGp(O)I~}I]/G2(O). t3 

We now provide an alternative sign-matching scheme in the law of lemma 4 to follow. 

In view of lemma 3 and its proof, the motivation behind this scheme is relatively easy to 

grasp. We shall confine ourselves to making a few cursory comments on the similarities 

and differences between the two sign-matching schemes• 

Lemma 4. Lemma 3 holds even if ~ there is replaced by 

1; O < t < T l + e ,  e~f f t+ ;  

/~(t) A - 1 ;  t > T1 + e, Gm(O)[1/(t + e)] fd-e Up(r)yp(r)dr < 0; 

1; else. 
[] 

The underlying principle that is exploited in both sign-matching schemes is essentially 

the same. In fact, table 1 is valid here also• The primary variation is that/3 here is adapted 

continuously instead of at pre-specified instants as before. As a result, the computational 

effort involved here is relatively more• The time at which fl settles to its final value indeed 

depends on the choice of T#. 
Lemma 3 demonstrates how the introduction of fl in the control law ensures the desired 

sign-matching• Thus both minimum and non-minimum phase plants and reference models 

have been successfully taken care of. In this sense, the control law of lemma 3 is a refinement 
of the law of corollary 1. It is, nonetheless, not optimal as judged by the performance index• 

Both these aspects are brought out in example 2. 

Example 2. 

8(s + 3) 
Gm (s) = (s + 2)(s + 4) '  

(s - 9) 
G p ( s ) =  (s + 1)(s + 10)' Urn(') ~ f2u,f; Mra = 1. 

With the law of corollary 1, Up = aura, the ym(t) -'+ 3.0, c~f ----- 1.8257, yp(t) -+ 

-1 .6432 and Jf = 2.3954. This large value of Jf is obtained because as t ---> oo, yra(t) 

and yp (t) have opposite signs even though their magnitudes are close• Else, if the control 

law of lemma 3, Up = ot~Um, were employed then yp(t) ---> 1.6432 due to fl(t) and 

Jf = 0.2046• Thus lemma 3 is a refinement of corollary 1. 

Now, choose Up = -Ym. Then Jf = 0.01. Thus the scheme of lemma 3 is sub-optimal. 

Obviously, the control law, Up = -Ym, can perform miserably for some other Gp(s), 

whereas Up = a[3Um will continue to force Jf to the value specified in lemma 3. The 

former control was chosen having the details Gra(s) and Gp(s) in mind. As Gp(s) is 

indeed unknown, Jf cannot be computed a priori. Nonetheless, lemma 3 specifies exactly 

how Jf depends on Gra(s) and Gp(s). 
With this, corollary 1 and lernma 3 (or lemma 4) set the stage for the optimal control 

schemes that follow• 
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4. On-line-adaptive-optimal schemes 

The schemes of § 3 do not ensure the desired asymptotic matching of the model output by 

the plant output. It was remarked (vide remark 3) that l i m t ~  or(t) = 1 is necessary and, 

further, that such an ot is dispensable from the control law in the context of corollary 1. 

This holds even in respect of the laws of lemmas 3 & 4. Naturally, the question that we 

seek to answer is the following: Which bounded function, say y, of a,  simultaneously 

ensures, in the present framework, the convergence t~ --~ 1 and, in turn, itself converges to 

I Gm (0)/Gp (0) l? If we succeed in constructing such a function, we would have solved the 

problem posed in § 2. This is precisely the motivation for the gain-matching schemes. Sign- 

matching as ensured by lemmas 3 or 4 must indeed continue to hold. A scheme Af  which 

proposes a y(ot) which is updated only at specified instants of time, and which is shown 

to be e-optimal, has been reported (Shankar 1993). Algorithm ~4fo to be proposed here is 

in pursuit of optimality. Unlike in ~4f, adaptation in Afo is continuous. A second optimal 

scheme, .A~o, that is capable of 'improving', in some sense, on Afo will then be presented. 
Finally, corollary 2, below, shows how the presence of non-zero initial conditions of the 

plant is not a deterrent to the results presented in this paper. 

Algorithm .4fo: The system is setup as in figure 1. 

Urn(" ) E ~'2u,f, ~(-), as given in lemma 3, and 

/3(-), as given in lemmas 3 or 4. 

1; O < t < T l + e ,  e E 9t+; 

y ( t ) ~  1 + t/f~ - e  .(r)+l / dr ;  

t > T l + e ,  l + t / f ~ - e  ~ ( O + l / d r - > O  , OE~t+;  

O; else, 

The control law: up(.) ~ /~(')×(')Um('). 

Theorem 1. Let the control law be given by algorithm .Afo. Then 

(1) t~, y, Up and yp are bounded; 

(2) l i m t ~  or(t) = 1; 

(3) limt~oo fl(t) = sgn{Gm(O)Gp(O)}; 

(4) l i m t ~  y(t)  = IGrn(O)/Gp(O)l; 

(5) limt~oo Up(t) = sgn{Gm(O)Gp(O)} IGm(O)/Gp(O)[ Mm; 

(6) l i m / ~  yp(t) = limt~c~ ym(t) = Gm(O)Mm; and 

(7) the performance index Jf = O. 

[] 
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Outline of proof. It may be observed that by definition, 7/ _> 0. The existence of o~f _A 

limt->oo or(t) is ensured by proposition 2 as before. 

{try < 1} =~ {tF~mooy(t) = 0} =:~ {t~rnyp(t) = 0} =:~ {olf = OO}, 

a contradiction. It can also be shown that 

{otf > 1} ~ {t~m y(t) = oo} =6 {t~m lyp(t)l = oc} =,, {off =0} ,  

a contradiction again. Thus 0 t f  = 1. 

Note that for limt~o¢ ~, (t) to exist, it is sufficient that the integrand [(or - 1)/(or + 1)] --+ 

0. This in turn can happen i f f a f  = 1. So limt~oo y(t) exists. 

Hereafter, after ensuring the existence limt--+o¢/~(t) as before, the various limits can be 

directly evaluated and the rest of  the theorem proved. [] 

Theproblem stated in § 2 is hereby solved. 

We are now in a position to propose an alternative optimal scheme, .A~o. The cue for 

this second scheme is contained in the fact that by theorem 1, trf = 1. 

Algorithm A~o. This algorithm is identical to algorithm .Afo except that the control law 

is given by 

Up(.) oe(.)#(.)×(.)Um(.). [] 

Theorem 2. The results of theorem I hold with the control law specified by algorithm 

.A~o. [] 

The proof readily follows from the proof of theorem 1 taken with the results that ot 

is bounded and it smoothly settles at unity. After all, in that event, the control of .A~o 

approaches the control of Afo. 
.A~o is optimal like .Afo in the sense of Jf. Also, in both the cases, to start with, 

o~(t) = 1, t e [0, T1], and finally, o t f =  1. It may therefore appear on the face of it that 

.A~o will contribute a mere unnecessary transient excursion. That, however, is not the case. 

It does possess some additional interesting properties. We will reserve our comments on 

this issue until after presenting the simulations of the two laws. 

Non-zero initial conditions: In all the schemes discussed thus far, zero initial conditions 

were assumed (vide §3); i.e., xp(O+) = 0. As the plant considered here is asymptotically 

stable, any unforced dynamics (due to non-zero initial conditions) has to decay smoothly 

and at an exponential rate. Such dynamics, if any, may be looked upon as the effect of 

some specific, yet unknown, finite-time perturbation in the control. Seen in this light, the 

results presented in this paper are not compromised. This aspect is formally brought out 

in the following corollary. 

COROLLARY 2 
Corollary 1, lemmas 3 and4, and theorems I and2 hold even if ot(.) is consistently replaced 

by 5t (.) where 
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~(t) ~ / p(t); 

/ ~(t); 

O < t  < T l + e ,  T I , e E ~  +, 

3tl E (0, TI) ~ ym(tl)yp(tl) ¢ 0}; 
else; 

and p : [0, T1 ] I > 9t is bounded and continuous or has utmost finitely many discontinu- 

ities of the first kind. [] 

It may be noted that the condition 

{qtl E (0, T1) ~ ym(tl)Yp(tl) ¢ 0} 

sets only a lower bound for T1. T1 is simply required to be greater than the time at which 

Um begins to activate the outputs of the model and the plant. 

Remark 5. Before closing this section a few words on the formulation of the various 

schemes proposed in this paper will be in order. With an eye on tracking plants that exhibit. 

either continuous/frequent, small drifts or relatively large, infrequent jumps, the schemes 

are designed to be continually sensitive to any deviation from the desired performance and 

to modify the control suitably. This puts the schemes proposed as also the proofs given 

here in the proper perspective. 

5. Simulations 

Reporting simulations here serves a dyad of purposes. First, to facilitate comparison be- 

tween the control laws presented in this paper so as to demonstrate the progressive refine- 

ment as remarked in the previous sections. Second, to provide an insight into the roles 

played by T1 and 1/which are to be chosen by the user, i.e., to highlight how, using the 

same law, better transient responses may be obtained by suitable choice of Tl and rl. In 

all simulations, therefore, we use the same reference model, Gin(s), and one of the two 

plants, G p l  (s)  and Gp2(S ) .  Thus, 

reference model: Gm(s) = 1/(s + 2), 

plant 1 : Gpl (s) = (s + 2)/[(s + 1)(s + 3)(s + 4)] and 

plant 2 : Gp2(S) = (s - 2)/[(s + 1)(s + 3)(s + 4)]. 

Plant 1 is minimum phase like the model, whereas plant 2 is nonminimum phase. They 

are both chosen to have the same poles to bring to focus the effect of the change in the 

location of the zero. It may be observed that the model has no pole in common with either 

of the plants. We have 

Grn (0) / Gp I (0) = -- Gm (0) / Gp2 (0) = 3, 

which is the desired magnitude of the controller gain. 

In all cases, the reference model input is chosen as urn(t) -- 5u(t), where u(t) is the 

standard unit step. e = 0.1 throughout. 
I 

The plant response in the absence of control is designated yp and is shown along with 

Ym and yp. 
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Figure 2. (a) Reference model and plant responses, and (b) controller performance for case 1. 
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Figure 4. (a) Reference model and plant responses, and (b) controller performance for case 3. 

Case 1. Plant 2; the control Up = OtUm of lemma 2; T1 = 2.0; ~ = 0.2; figure 2. a -* d ~  

and sign-mismatch exists as expected. 

Case 2. Plant 2; the control Up = aflUm of lemma 4; Tl = 2.0; r / =  0.2; figure 3. a --~ de3 

as before but sign-matching is achieved, The prolonged transient in yp is due to the delay 

in fl settling at - 1. A better transient response is often desirable. 

Case 3 below is meant to show how a different choice of TI in the otherwise same 

situation can provide a substantially improved yp. 

Note. The difference in the spreads of the time axes between one figure and another has 

to be recognized before interpreting the plots. 

Case 3. Plant 2; the control~up = otflUm of lemma 4; T1 = 1.0; 0 = 0.2; figure 4. 

While the asymptotic behaviour is as in case 2, the following improvements are 

noteworthy. 

(i) Much better transient behaviour of yp and faster convergence. 

(ii) Quicker settling of/~ to - 1. 

(iii) a not only settles faster, but its peak value is reduced by a factor of 2. 

Case 4. Plant 1; the control Up = [JyUm of algorithm Afo with fl of lemma 4; T1 = 2.0; 

r / =  0.2; figure 5. ot ~ 1 unlike in earlier cases, fl remains at +1. The convergence of y to 
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Figure 5. (a) Reference model and plant responses, and (b) controller performance for case 4. 
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Figure 6. (a) Reference model and plant responses, and (b) controller performance for case 5. 
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3, the desired value, is the highlight in this case. Amplitude-matching is achieved, though 

not yet so upto t = 200. 
The rate of convergence of ),, and thence of yp, however, leaves much to be desired. It 

was this desire that motivated, as stated more than once in § 4, the second algorithm .A}o 

which, though optimal like .4fo in the sense of Jf,  is an 'improvement' over the latter. 

Case 5 is meant to demonstrate this fact. 

Case 5. Plant 1; the control Up ~ Olt~yU m of algorithm .A}o with ¢1 of lemma 4; T1 = 2.0; 

0 = 1.0; figure 6. Observe that the plots are for t ~ [0, 50] here. The initial excursion 

of t~ from unity has evidently contributed to the improvement in the overall gain t~g and 

hence in yp, in addition to reshaping 1/itself for the better. Of further interest is the faster 

convergence of or itself in this case as compared to case 4. Indeed, our claim that algorithm 

.A}o compares favourably with algorithm .Afo is amply justified. 

Even here, there is scope for fine-tuning the controller by suitably choosing 17. Consider 

case 6. 

Case 6. Plant 1; the control Up = Ot t~ /U  m of algorithm .A}o with ¢1 oflemma 4; Tl = 2.0; 

1/ = 2.0; figure 7. or, y, oey and yp - each of these is seen to be more desirable here in 

comparison to case 5. 

Case 7. Plant 2; the control Up = t~yUm of algorithm ¢4}o with/~ of lemma 4; T1 = 2.0; 

0 = 0.2; figure 8. ¢1 comes into play here. The trajectories of the gains and of yp before 

and after convergence of ¢1 to - 1  are markedly different. The efficacy of the algorithm 

~4}o is borne out clearly. 

Finally, we seek to answer the following question: With any of the schemes proposed in 

this paper, for plant 2 (which is, of course, unknown), can we improve upon the response of 

case 7? The last case to follow provides an answer. Only one change is made from case 7, 

i.e.,/'1 is set to 0.5. 

Case 8. Plant 2; the control Up = Oll~yU m of algorithm .A}o with/~ oflemma 4; T1 = 0.5; 

r / =  0.2; figure 9. The answer is evident, indeed. While the peak value of the overall gain 

a 1/may have gone up compared to that in case 7, it has, paradoxically, contributed to a 

decrease in the peak overshoot of yp. 

Remark 6. A systematic analysis of the simulations reveals an interesting phenomenon. 

The successive refinements in the laws is due to the improvements in the individual factors 

involved in the control. When even one of t~, /~, y or yp moves towards its desirable 

value, it induces all the others toward their respective desirable values. Conversely, any 

tendency to undesirable behaviour on the part of any one of the above variables reflects in 

all the rest so that such a tendency is effectively countered. This combination of inverse 

relationships between some signals and boot-strapping within the same signal is seen to 

yield a significant enhancement in the overall performance. 
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6. Conclusion 

In the context of stable MRAC, on relaxing the requirement that the order or an upper bound 

on the order of the plant be known, and by allowing the plant and the reference model 

to have nonminimum phase zeros, restriction on the permissible model inputs arises as a 

natural consequence. Persistency of excitation is done away with. For inputs from a class of 

'step-like' functions, the problem is readily formulated in an optimal control framework. 

Using sub-optimal schemes which are proposed in the beginning as building blocks, two 

on-line adaptive optimal schemes are designed. The schemes ensure boundedness of the 

controller and its asymptotic stability. 
This paper improves upon the e-optimal schemes reported in an earlier work (Shankar 

1993) for a class of adaptive control problems only recently addressed. The striking features 

of the algorithms proposed here are simplicity and total time-domain implementation. 

The foregoing schemes are attractive in the context of enhanced performance in posi- 

tion control problems where (i) a reduced-order model is often inadequate, and (ii) the 

parameters of the transfer function vary with the operating conditions. MRAC has been 

tried out in connection with aircraft control, in power systems and for automatic steering 

of ships (van Amerongen & Udnik Ten Cate 1975; Arie et al 1986). This work is a first 

step towards applications such as autopilots for ships and positioning systems of missile 

launchers. 
For inputs belonging to a class of 'sinusoid-like' functions without and with de offset, 

adaptive laws have been designed and similar optimal tuning achieved. 

This paper is dedicated to Dr R M Umesh. 
The first author wishes to thank Prof. M A L Thathachar for many useful discussions. 

Dr V Jayashankar, G Ramasubramanian, M T Arvind and K Krishna have kindly extended 

their help. Our thanks to them. 
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