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In this paper, we investigate the adaptive output-feedback stabilisation for a class of stochastic non-linear systems
with time-varying time delays. First, we give some sufficient conditions to ensure the existence and uniqueness of
the solution process for stochastic non-linear systems with time delays, and introduce a new stability notion and
the related criterion. Then, for a class of stochastic non-linear systems with time-varying time delays, uncertain
parameters in both drift and diffusion terms, and general constant virtual control coefficients, we present
a systematic design procedure for a memoryless adaptive output-feedback control law by using the backstepping
method. It is shown that under the control law based on a memoryless observer, the closed-loop equilibrium of
interest is globally stable in probability, and moreover, the solution process can be regulated to the origin almost
surely.
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1. Introduction

Time delay phenomena exist in many mechanical,
physical, biological, medical, and economical systems
(Kolmanovskii and Myshkis 1999). The existence of
time delay is often a source of instability and poor
performance. Since stochastic modelling has come to
play an important role in many branches of science and
engineering application, the stability analysis and
robust control for time-delay stochastic systems have
received much attention (Verriest and Florchinger
1995; Mao et al. 1998; Xie and Xie 2000; Xu and
Chen 2002; Xie et al. 2003; Fu et al. 2005; Lu et al.
2005; Shu and Wei 2005; Rodkina and Basin 2006
and the references therein). Most of these existing
papers focus on stability analysis or H1 analysis
(Verriest and Florchinger 1995; Mao et al. 1998;
Shu and Wei 2005; Rodkina and Basin 2006), or
robust stabilisation of linear stochastic time-delay
systems (Xie and Xie 2000; Xu and Chen 2002; Lu
et al. 2005), and only a few on the construction of
stabilisation controller of non-linear stochastic time-
delay systems (Xie et al. 2003; Fu et al. 2005). It is
known that for non-linear systems, there is no general
controller construction method, and thus, how to
design a controller constructively is the key issue.
Backstepping method provides an effective and

constructive design tool for a class of low-triangle
non-linear systems. Based on this method, a decen-

tralised output-feedback stabilisation controller
dependent on time delays was designed for a class of

large-scale strick-feedback stochastic non-linear sys-
tems with time delays, in which the diffusion terms

are independent of time delays (Xie et al. 2003).
In Fu et al. (2005), the problem of the fourth-moment
exponential output-feedback stabilisation was consid-

ered for a class of stochastic non-linear systems with
constant time delays, in which the diffusion terms were

assumed to be independent of time delays, and the drift
terms were of globally linear growth.

The goal of this paper is to design an adaptive
output-feedback controller constructively for a more

general class of stochastic non-linear systems with time
delays. First, we give some sufficient conditions to

ensure the existence and uniqueness of the solution
process for stochastic non-linear systems with time
delays. In order to discuss the stability of stochastic

non-linear systems with time delays, we introduce
a new stability notion and the related criterion. Then,

we propose a systematic procedure to design a
memoryless adaptive output-feedback control law

for a class of stochastic non-linear systems with
time-varying time delays, uncertain parameters in
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both drift and diffusion terms, and general constant
virtual control coefficients.

The rest of the paper is organised as follows. First
in x2, we provide some notations and preliminary
results. Then in x3, the problem to be investigated is
presented. In x4, we present the design of observer and
later in x5, we give the output-feedback control design
procedure. To illustrate the effectiveness of our results
obtained in previous sections, a numerical example is
discussed in x6. In the final section, we give some
concluding remarks.

2. Notations and preliminary results

Throughout this paper, the following notations are
adopted:

. Rþ denotes the set of all non-negative real
numbers; R

n denotes the real n-dimensional
space; R

n� r denotes the real n� r matrix space;
. Tr(X) denotes the trace for square matrix X;
�min(X) and �max(X) denote the minimal
and maximal eigenvalues of symmetric real
matrix X, respectively;

. jXj denotes the Euclidean norm of a vector X and
the corresponding induced norm for matrices is
denoted by kXkM; kXkF denotes the Frobenius
norm of X defined by kXkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðXTXÞ

p
;

. C([�d, 0];Rn) denotes the space of continuous
R
n-valued functions on [�d, 0] endowed with

the norm k�k defined by k f k¼ supx2[�d,0]j f (x)j for
f2C([�d, 0];Rn); CbF 0

ð½�d; 0�; R
n
Þ denotes the family

of all F 0-measurable bounded C([�d, 0];Rn)-valued
random variables �¼ {�(�): �d� �� 0};

. Ci denotes the set of all functions with continuous
ith partial derivatives; C2,1((Rn

� [�d,1);Rþ))
denotes the family of all non-negative functions
V(x, t) on R

n
� [�d,1) which are C2 in x and C1

in t; C2,1 denotes the family of all functions which
are C2 in the first argument and C1 in the second
argument;

. K denotes the set of all functions: Rþ! Rþ, which
are continuous, strictly increasing and vanish at
zero; K1 denotes the set of all functions which are
of class K and unbounded; KL denotes the set of all
functions �(s, t): Rþ�Rþ!Rþ, which are of K for
each fixed t, and decrease to zero as t!1 for each
fixed s.

Consider an n-dimensional stochastic time-delay
system

dxðtÞ ¼ f ðxðtÞ, xðt� dðtÞÞ; tÞdt

þ gðxðtÞ; xðt� dðtÞÞ; tÞdwt; 8t � 0; ð1Þ

with initial data fxð�Þ: � d � � � 0g ¼ � 2 CbF 0
�

ð½�d; 0�; R
n
Þ, where d(t): Rþ! [0, d] is a Borel measur-

able function; f: R
n
�R

n
�Rþ!R

n and g: R
n
�R

n
�

Rþ!R
n�r are locally Lipschitz; wt is an r-dimensional

standard Brownian motion defined on the complete

probability space (�,F , {F t}t�0,P), with � being

a sample space, F being a �-field, {F t}t�0 being

a filtration, and P being a probability measure.
Define a differential operator L as follows:

LV ¼
@V

@t
þ
@V

@x
f ðxðtÞ; xðt� dðtÞÞ; tÞ þ

1

2
Tr gT

@2V

@x2
g

� �
;

where V(x,t)2C2,1.
The following theorem provides a sufficient condi-

tion to ensure the existence and uniqueness of global

solution for the system (1), which is an extension of

Has’minskii (1980, Theorem 4.1 of Chapter 3).

Theorem 1: For system (1), assume that both terms

f (x, y, t) and g (x, y, t) are locally Lipschitz in (x, y), and

f (0, 0, t), g(0, 0, t) are bounded uniformly in t. If there

exists a function V(x, t)2C2,1(Rn
� [�d,1);Rþ) such

that for some constant K>0 and any t� 0,

LV � Kð1þ VðxðtÞ; tÞ þ Vðxðt� dðtÞÞ; t� dðtÞÞÞ; ð2Þ

lim
jxj!1

inf
t�0

Vðx; tÞ ¼ 1; ð3Þ

then, there exists a unique solution on [�d,1) for any

initial data fxð�Þ: � d � � � 0g ¼ � 2 CbF 0
ð½�d; 0�; R

n
Þ.

Proof: It can be proved by a method similar to the

time-invariant delay case in Mao (2002), and is thus

omitted. œ

In order to discuss the stability of stochastic non-linear

systems with time delays, we introduce the following

stability notion.

Definition 1: The equilibrium x¼ 0 of system (1) with

f (0, 0, t)� 0, g(0, 0, t)� 0 is said to be globally stable in

probability if for any �>0, there exists a function

�(�)2K such that

PfjxðtÞj � �ðk�kÞg � 1� �; 8t � 0;

8� 2 CbF 0
ð½�d; 0�; R

n
Þnf0g; ð4Þ

where k�k¼ sup� 2 [�d,0]jx(�)j.

Remark 1: Definition 1 can be regarded as an

extension of the stability notions without time delays

in Krstić and Deng (1998) and Deng et al. (2001).

Compared with the stability notions in

Kolmanovskii and Nosov (1986) and Kolmanovskii
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and Myshkis (1999), it has the following advantages: (i)
it focuses on the global case, which is essential in the
stabilisation of stochastic non-linear systems (Pan
2002); (ii) the presentation is based on class K
functions rather than the "-� format, which shows a
clearer connection between conventional deterministic
stability results (in the style of Khalil 2002) and
stochastic stability ones; and (iii) it makes the role of
the initial condition explicit instead of a kind of
qualitative description in Kolmanovskii and Nosov
(1986) and Kolmanovskii and Myshkis (1999).

The following theorem gives some sufficient conditions
ensuring global stability in probability.

Theorem 2: For system (1), assume that both terms
f (x, y, t) and g(x, y, t) are locally Lipschitz in (x, y)
and f (0, 0, t)� 0, g(0, 0, t)� 0. If there exists a function
V(x, t)2C2,1(Rn

� [�d,1);Rþ) and two K1 functions
	1 and 	2 such that

	1ðjxðtÞjÞ � VðxðtÞ; tÞ � 	2 sup
�d�s�0

jxðtþ sÞj

 !
; ð5Þ

LV � �WðxðtÞÞ; ð6Þ

where W(x) is continuous and non-negative, then,
(i) there exists a unique solution on [�d,1); and
(ii) the solution x¼ 0 of the system (1) is globally
stable in probability, and moreover,

P lim
t!1

WðxðtÞÞ ¼ 0
n o

¼ 1:

Proof: Conclusion (i) can be proved directly by
Theorem 1, and conclusion (ii) can be proved in
a way similar to the proofs of Deng et al. (2001,
Theorem 2.1) and Mao (2002, Theorem 2.1). Hence
the details are omitted here. œ

Remark 2: For any t� 0, let 
t(�)¼ x(tþ �),
� 2 [�d, 0]. Then, 
t2C([�d, 0];R

n) and conditions (5)
and (6) are equivalent to

	1ðj
tð0ÞjÞ � �Vð
t; tÞ � 	2ðk
tkÞ;

L �V � �Wð
tð0ÞÞ;

for a continuous functional �Vð ; tÞ 2 Cð½�d; 0�; R
n
Þ�

Rþ ! Rþ, which is called Lyapunov–Krasovskii
functional (Kolmanovskii and Nosov 1986). In fact,
for any  2C([�d, 0];Rn), we can define �Vð ; tÞ :¼
Vð ð0Þ; tÞ, where V satisfies (5) and (6). For simplicity,
in the rest of this paper, the notation 
t and �V are not
introduced and the function V(x,t) can be considered
as a Lyapunov–Krasovskii functional.

Remark 3: In Mao (1999, 2002), a Lyapunov–
Razumikhin function is used to analyse the stability
of stochastic systems with time delays. A Lyapunov–
Razumikhin function is a common Lyapunov function
(positive definite and radially unbounded) and its
derivative along the solution trajectory is required to
be negative (definite) when some Razumikhin condi-
tion holds, while a Lyapunov–Krasovskii functional
has a more relaxed upper bound, and its derivative
along the solution trajectory needs to be negative
(definite) in all directions. It is well known, as far as the
stability of time-delay systems is concerned, that the
Razumikhin method can be regarded as a special case
of the method of Lyapunov–Krasovskii functionals
(Kolomanovskii and Myshkis 1999, x4.8, p. 254 and
Pepe and Jiang 2006). In this paper, the stability
analysis is based on the Lyapunov–Krasovskii func-
tionals, and moreover, by the backstepping method,
a Lyapunov–Krasovskii functional and an adaptive
control law are constructed simultaneously to achieve
our stabilisation result.

3. Problem formulation

Consider the following stochastic non-linear system
with time delays:

dx1ðtÞ ¼ ðm1x2ðtÞ þ f1ðyðtÞ; yðt� dðtÞÞ; tÞ Þ dt

þ g1ðyðtÞ; yðt� dðtÞÞ; tÞ dwt;

..

.

dxn�1ðtÞ ¼ ðmn�1xnðtÞ þ fn�1ðyðtÞ;

yðt� dðtÞÞ; tÞ Þ dtþ gn�1ðyðtÞ;

yðt� dðtÞÞ; tÞ dwt;

dxnðtÞ ¼ ðmnuðtÞ þ fnðyðtÞ; yðt� dðtÞÞ; tÞÞ dt

þ gnðyðtÞ; yðt� dðtÞÞ; tÞ dwt;

yðtÞ ¼ x1ðtÞ;

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð7Þ

where x¼ [x1, . . .,xn]
T, u2R, y2R represent the state

vector, the control input, the measurement output,
respectively; d(t): Rþ! [0, d] is the time-varying time
delay satisfying _dðtÞ � � < 1 for a known constant �, and
the initial condition fxð�Þ: � d � � � 0g ¼ � 2 CbF 0

�

ð½�d; 0�; R
n
Þ is unknown; the virtual control coefficients

(Krstić et al. 1995) mi 6¼ 0, i¼ 1, . . ., n, are known
constants; fi2R, gTi 2 R

r, i¼ 1, . . ., n, are uncertain
locally Lipschitz continuous functions; wt2R

r is an
r-dimensional standard Brownian motion defined on
a complete probability space (�,F , {F t}t� 0, P), with �

being a sample space, F being a �-field, {F t}t�0 being a
filtration and P being a probability measure.
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To facilitate control system design, the following
assumption is made:

A1: There are unknown constants l�i > 0, h�i > 0, and
known smooth functions ’id� 0, ’i� 0,  id� 0,  i� 0,
i¼ 1, . . ., n, such that

j fiðyðtÞ;yðt�dðtÞÞ;tÞj � l�i ’idðjyðt�dðtÞÞjÞþ l�i ’iðjyðtÞjÞ;

jgiðyðtÞ;yðt�dðtÞÞ;tÞj � h�i  idðjyðt�dðtÞÞjÞþh�i  iðjyðtÞjÞ:

Without loss of generality, we assume that ’i(0)¼
’id(0)¼ i(0)¼ id(0)¼ 0 for any i¼ 1, . . . , n.

Remark 4: In Fu et al. (2005), the drift terms fi (y(t),
y(t� d(t)),t)¼ fi (y(t))þ hi (y(t� d)) are known and
depend on constant time delays, where hi(�) is of
globally linear growth; the diffusion terms gi (y(t),
y(t� d(t)), t)¼ gi (y(t)) are known and are independent
of time delays. In Xie et al. (2003), the diffusion terms
are also known and independent of time delays. In this
paper, the drift and diffusion terms are all dependent
on time-varying time delays and uncertain parameters.

Remark 5: For the unknown covariance case, one can
formulate the noise term as �(t)dwt (Deng et al. 2001),
where wt is a standard Brownian motion and �(t) is an
unknown bounded deterministic function. In this case,
by modifying Assumption A1 as follows:

jgiðyðtÞ; yðt� dðtÞÞ; tÞ�ðtÞj � h�i  idðjyðt� dðtÞÞjÞ

þ h�i  iðjyðtÞjÞ;

one can easily generalise our results to the unknown
covariance case.

The control objective of this paper is to construct-
ively design an adaptive output-feedback controller:

_�ðtÞ ¼ $ð�ðtÞ; yðtÞÞ;

uðtÞ ¼ �ð�ðtÞ; yðtÞÞ;

such that the closed-loop equilibrium of interest is
globally stable in probability, and moreover, the
solution process can be regulated to the origin almost
surely, i.e. Pflimt!1 jxðtÞj ¼ 0g ¼ 1:

4. Observer design

Since x1 is measurable, it needs only to estimate the
states x2, x3, . . . , xn. Thus, without adopting a full-
order observer as in Xie et al. (2003), Fu et al. (2005),
and Hua et al. (2005), here we use a reduced-order one:

�0 :

_̂xiðtÞ ¼ miþ1 x̂iþ1ðtÞ þ aiþ1yðtÞð Þ

�aim1 x̂1ðtÞ þ a1yðtÞð Þ;

i ¼ 1; . . . ; n� 2;
_̂xn�1ðtÞ ¼ mnuðtÞ � an�1m1ðx̂1ðtÞ þ a1yðtÞÞ;

8>>><
>>>:

where a1, . . ., an�1 are constants such that the following

matrix:

A ¼

�m1a1 m2 0 0 0
�m1a2 0 m3 0 0

..

. . .
.

�m1an�2 0 0 0 mn�1

�m1an�1 0 0 0 0

2
666664

3
777775

is stable, i.e. the polynomial �n�1þ a1m1�
n�2
þ

a2m1m2�
n�1
þ � � � þ an�1m1m2 � � �mn�1 is Hurwitz.1 Let

l� ¼ maxf1; l�i ; h
�
i ; 1 � i � ng,

FðyðtÞ; yðt� dðtÞÞ; tÞ ¼ ½ f2 � a1 f1; . . . ; fn � an�1 f1�
T;

GðyðtÞ; yðt� dðtÞÞ; tÞ ¼ gT2 � a1g
T
1 ; . . . ; gTn � an�1g

T
1

� �T
;

and ~x ¼ ½ ~x2; . . . ; ~xn�
T with the components

~xi (i¼ 2, . . . , n) given as follows:

~x2ðtÞ ¼
1

l�
ðx2ðtÞ � x̂1ðtÞ � a1yðtÞÞ;

..

.

~xnðtÞ ¼
1

l�
ðxnðtÞ � x̂n�1ðtÞ � an�1yðtÞÞ:

8>>>><
>>>>:

Then, the evolution behaviour of the state estimation

error ~x can be described by

d ~xðtÞ ¼ A ~xðtÞ þ
1

l�
FðyðtÞ; yðt� dðtÞÞ; tÞ

� �
dt

þ
1

l�
GðyðtÞ; yðt� dðtÞÞ; tÞdwt;

ð8Þ

and the complete system can be expressed as

d ~xðtÞ ¼ A ~xðtÞ þ
1

l�
FðyðtÞ; yðt� dðtÞÞ; tÞ

� �
dt

þ
1

l�
GðyðtÞ; yðt� dðtÞÞ; tÞdwt;

dyðtÞ ¼ ½m1x̂1ðtÞ þ a1m1yðtÞ þ l�m1 ~x2ðtÞ

þf1ðyðtÞ; yðt� dðtÞÞ; tÞ�dt

þg1ðyðtÞ; yðt� dðtÞÞ; tÞdwt;

dx̂1ðtÞ ¼ ½m2x̂2ðtÞ þ a2m2yðtÞ � a1m1ðx̂1ðtÞ

þa1yðtÞÞ�dt;

..

.

dx̂n�2ðtÞ ¼ ½mn�1x̂n�1ðtÞ þ an�1mn�1yðtÞ

�an�2m1ðx̂1ðtÞ þ a1yðtÞÞ�dt;

dx̂n�1ðtÞ ¼ ½mnuðtÞ � an�1m1ðx̂1ðtÞ þ a1yðtÞÞ�dt:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð9Þ

Remark 6: The observer �0 is independent of time

delays, i.e. memoryless, which results in more complex

error dynamics. As we all know, a memoryless control

law is more desired in practical engineering for its

lower storage demand and higher reliability.
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Remark 7: Since the virtual control coefficients are
constants and may be different, we design a new
observer which depends on the virtual control coeffi-
cients, and is different from the observer designed for
each subsystem in Liu et al. (2007), but has the similar
error dynamics except for the different matrix A. In the
following, we can see clearly the effects of these
coefficients on the controller design.

5. Adaptive control

In this section, we give the adaptive control design for
the system (7) by the backstepping method. At first,
we introduce a new state transformation

z1 ¼ y; ziþ1 ¼ x̂i � 
i x̂i; l̂
� 	

; i ¼ 1; . . . ; n;

where x̂i ¼ ½y; x̂1; . . . ; x̂i�1�
T and 
iðx̂i; l̂Þ, i¼ 1, . . . , n,

are smooth virtual controls to be designed, l̂ðtÞ is
a parameter to be designed. Then, by Itô formula,
we have

dz1ðtÞ ¼ m1z2ðtÞ þm1
1ðtÞ þ a1m1yþ l�m1 ~x2ðtÞ½

þ f1ðyðtÞ; yðt� dðtÞÞ; tÞ�dt

þ g1ðyðtÞ; yðt� dðtÞÞ; tÞdwt; ð10Þ

dziþ1ðtÞ ¼ dx̂iðtÞ �
@
i
@y

dyðtÞ �
Xi�1
k¼1

@
i
@x̂k

dx̂kðtÞ �
@
i

@l̂

_̂
ldt

�
1

2

@2
i
@y2

g1g
T
1 dt

¼

 
miþ1ziþ2ðtÞ þmiþ1
iþ1ðtÞ þ aiþ1miþ1yðtÞ

þ
X4
j¼1

�iþ1;jðtÞ

!
dtþ�iþ1ðtÞdwt;

i ¼ 1; . . . ; n� 1; ð11Þ

where

znþ1 ¼ 0; 
n ¼ u; an ¼ 0;

�iþ1;1 ¼ �aim1ðx̂1 þ a1yÞ �
@
i
@y

m1ðx̂1 þ a1yÞ

�
Xi�1
k¼1

@
i
@x̂k

mkþ1x̂kþ1 þ akþ1mkþ1yð

� akm1ðx̂1 þ a1yÞÞ;

�iþ1;2 ¼ �
@
i
@y

l�m1 ~x2;

�iþ1;3 ¼ �
@
i
@y

f1 �
1

2

@2
i
@y2

g1g
T
1 ;

�iþ1;4 ¼ �
@
i

@l̂

_̂
l;

�iþ1 ¼ �
@
i
@y

g1; 1 � i � n� 1:

Now, we start the backstepping design procedure.

Step 1: Recall that in x 4, the parameters ai are

designed such that A is stable. We know that there

exists a positive definite matrix P such that

ATPþ PA ¼ �I:

Let

V1 ¼
�1
2

~xðtÞTP ~xðtÞ

 �2

þ
1

4
y4ðtÞ þ

1

2�0
l̂ðtÞ � l
� 	2

þ
1

1� �

Z t

t�dðtÞ

SðyðsÞÞds;

where �1>0, �0>0 are design parameters; l is an

unknown constant such that l � maxfl�
4=3
; h�

4

1 g, l̂ ¼ l̂ðtÞ

is governed by the update law
_̂
l ¼ $nðx̂n; l̂Þ and to

be designed to counteract the parameter uncertainties;

and S(�) is a positive continuous function to be

determined.
Notice that _dðtÞ � � < 1, it follows from (8), (10)

and Itô formula that

LV1 ¼ ��1 ~xTP ~xj ~xj2 þ
2�1
l�

~xTP ~x FTP ~x

 �

þ
�1

l�
2 Tr ð2P ~x ~xTPþ ~xTP ~xPÞGGT

� 

þ y3ðm1z2 þm1
1 þ a1m1yþ l�m1 ~x2 þ f1Þ

þ
3

2
y2g1g

T
1 þ

1

�0
l̂� l
� 	

_̂
l

þ
1

1� �
SðyðtÞÞ �

1� _dðtÞ

1� �
Sðyðt� dðtÞÞÞ

� ��1 ~xTP ~xj ~xj2 þ
2�1
l�

~xTP ~x FTP ~x

 �

þ
�1

l�
2 Tr ð2P ~x ~xTPþ ~xTP ~xPÞGGT

� 

þ y3ðm1z2 þm1
1 þ a1m1yþ l�m1 ~x2 þ f1Þ

þ
3

2
y2g1g

T
1 þ

1

�0
l̂� l
� 	

_̂
l

þ
1

1� �
SðyðtÞÞ � Sðyðt� dðtÞÞÞ: ð12Þ

For simplicity, here and hereafter, the argument t of

all states, such as ~xðtÞ, y(t) and z2(t), is omitted except

for the case in S(�) or specialisation.
Since ’i, ’id,  i,  id, i¼ 1, . . . , n, are smooth and

vanish at zero, there exist smooth non-negative

functions ’i, ’id,  i and  id such that

’4i ðjyðtÞjÞ � ’iðyðtÞÞ y
4ðtÞ;

 4
i ðjyðtÞjÞ �  iðyðtÞÞ y

4ðtÞ;

(
ð13Þ

’4idðjyðt� dðtÞÞjÞ � ’idðyðt� dðtÞÞÞ y4ðt� dðtÞÞ;

 4
idðjyðt� dðtÞÞjÞ �  idðyðt� dðtÞÞÞ y4ðt� dðtÞÞ:

(
ð14Þ
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Thus, by Assumption A1 and Young inequality,2

we obtain

y3m1z2 �
3

4
"4=31 m4=3

1 y4 þ
1

4"41
z42;

y3l�m1 ~x2 �
3

4
"4=31 m4=3

1 y4l�4=3 þ
1

4"41
~x42

�
3

4
"4=31 m4=3

1 y4lþ
1

4"41
~x42;

y3f1 � jy
3jl�1ð’1d þ ’1Þ

�
3

2

4=30 ly4 þ

1

4
40
’41d þ

1

4
40
’1y

4;

3

2
y2g1g

T
1 � 3jyj2h�

2

1 ð 
2
1d þ  

2
1Þ

�
3


1
y4lþ

3

2

1 

4
1d þ

3
1
2
 1y

4;

2�1
l�

~xTP ~xðFTP ~xÞ � 2�1kPk
2
Mj ~xj

3 1

l�
jFj

� 2�1kPk
2
M

3

4
"4=3j ~xj4 þ

1

4"4
1

l�
F

����
����4

" #

�
3�1
2
kPk2M"

4=3j ~xj4

þ C1

Xn
i¼2

’iy
4 þ a4i�1’1y

4

 �

þ C1

Xn
i¼2

’4id þ a4i�1’
4
1d


 �
;

�1

l�
2 Trfð2P ~x ~xTPþ ~xTP ~xPÞGGTg

¼
2�1

l�
2 Tr GTP ~x GTP ~x


 �Th i
þ
�1

l�
2

~xTP ~x

 �

Tr GTPG

 �

�
2�1

l�
2 GTP ~x
�� ��2

F
þ
�1

l�
2

~xTP ~x
�� ��

� �maxðPÞkGk
2
F

�
2 2�1kPk

2
M þ �1�

2
maxðPÞ

� �
l�

2

�
Xn
i¼2

jgij
2 þ a2i�1jg1j

2

 �

j ~xj2

� C2

Xn
i¼2

 4
id þ a4i�1 

4
1d


 �

þ C2

Xn
i¼2

 iy
4 þ a4i�1 1y

4

 �

þ C3j ~xj
4;

where

C1 ¼
16�1kPk

2
Mðn� 1Þ

"4
;

C2 ¼ 16 2�1kPk
2
M þ �1�

2
maxðPÞ


 �
ðn� 1Þ�;

C3 ¼
2�1kPk

2
M þ �1�

2
maxðPÞ

2�
;

’id and  id are shortened for ’id(jy(t� d(t))j),

 id(jy(t� d(t))j), respectively, and "1, 
0, 
1, ", � are

positive design constants to be specified. These,

together with (12), give

LV1 � y3 m1
1 þ a1m1yþ
3

4
"4=31 m4=3

1 yþ
1

4
40
’1y

�

þ
3
1
2
 1yþ C1

Xn
i¼2

’i þ a4i�1’1

 �

y

þ C2

Xn
i¼2

 i þ a4i�1 1


 �
y

#
þ

1

�0
l̂� l
� 	

_̂
l

þ l
3

4
"4=31 m4=3

1 y4 þ
3

2

4=30 y4 þ

3


1
y4

� �
þ

1

4"41
z42

� �1 ~xTP ~xj ~xj2 þ ~cj ~xj4 þ
1

4"41
~x42

þ�dðjyðt� dðtÞÞjÞ þ�1dðjyðt� dðtÞÞjÞ

þ
1

1� �
SðyðtÞÞ � Sðyðt� dðtÞÞÞ; ð15Þ

where

~c ¼
3�1
2
kPk2M"

3=4 þ C3;

�dðjyðt� dðtÞÞjÞ ¼ C1

Xn
i¼2

’4idðjyðt� dðtÞÞj

 �

þ a4i�1’
4
1dðjyðt� dðtÞÞjÞÞ

þ C2

Xn
i¼2

 4
idðjyðt� dðtÞÞj


 �
þ a4i�1 

4
1dðjyðt� dðtÞÞjÞÞ;

�1dðjyðt� dðtÞÞjÞ ¼
1

4
40
’41dðjyðt� dðtÞÞjÞ

þ
3

2

1 

4
1dðjyðt� dðtÞÞjÞ:

Define the virtual parameter update law and the virtual

control as follows:

$1 ¼ �0
3

4
"4=31 m4=3

1 y4 þ
3

2

4=30 y4 þ

3


1
y4

� �
; ð16Þ


1ðy; l̂Þ ¼ �
1

m1
�1yþ �ðyÞyþ a1m1yþ

3

4
"4=31 m4=3

1 y

�

þ
1

4
40
’1yþ

3
1
2
 1yþ C1

Xn
i¼2

’i þ a4i�1’1

 �

y

þ C2

Xn
i¼2

 i þ a4i�1 1


 �
y

þ l̂
3

4
"
4
3

1m
4
3

1yþ
3

2



4
3

0yþ
3


1
y

� ��
; ð17Þ
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where �1>0 is a design parameter, and �(�) is a

smooth non-negative function to be designed later.

Obviously, 
1ð0; l̂Þ ¼ 0 for all l̂ 2 R.
It follows from (15), (16) and (17) that

LV1 � ��1y
4 � �ðyÞy4 þ

1

�0



l̂� l

�
_̂
l�$1

�
þ

1

4"41
z42 � �1 ~xTP ~xj ~xj2 þ ~cj ~xj4 þ

1

4"41
~x42

þ�dðjyðt� dðtÞÞjÞ þ�1dðjyðt� dðtÞÞjÞ

þ
1

1� �
SðyðtÞÞ � Sðyðt� dðtÞÞÞ: ð18Þ

Remark 8: Owing to the appearance of Itô correction

term (Kallenberg 2002) a quartic Lyapunov–

Krasovskii functional is to be constructed, which is

different from the quadratic Lyapunov–Krasovskii

functional in the deterministic cases. To deal with the

time-varying time delays, a time-varying term with the

regulation factor 1=ð1� �Þ is to be designed, which is

similar to the deterministic case, but the design of

integrand S(�) is more complex due to the appearance

of the stochastic disturbance.

Step k (k¼ 2, . . . , n). At this step, we can obtain an

inequality similar to (18). For clarity, it is summarised

in the following Lemma.

Lemma 1: For every k¼ 1, . . . , n, there exist smooth

functions $i,
i, (1� i� k) and positive constants �i such
that 
ið0; l̂Þ ¼ 0 for all l̂ 2 R and that along the solutions

of (9), Vk ¼ V1 þ
1
4

Pk
j¼2 z

4
j satisfies

LVk � �
Xk
j¼1

�jz
4
j � �ðyÞy

4

þ
1

�0



l̂� l

�
�
Xk
j¼2

z3j
@
j�1

@l̂

" #
_̂
l�$k

�

þ
1

4"4k
z4kþ1 � �1 ~xTP ~xj ~xj2 þ ~cj ~xj4

þ
Xk
j¼1

1

4"4j
~x42 þ �kðyðtÞÞ

þ�dðjyðt� dðtÞÞjÞ þ�kdðjyðt� dðtÞÞjÞ

þ
1

1� �
SðyðtÞÞ � Sðyðt� dðtÞÞÞ; ð19Þ

where

�kðyðtÞÞ ¼
k� 1

4
40
’1ðyðtÞÞ þ

3ðk� 1Þ

2

1 1ðyðtÞÞ

�

þ
Xk
j¼2

bj
2
 1ðyðtÞÞ

!
y4ðtÞ;

�kdðjyðt� dðtÞÞjÞ ¼
k

4
40
’41dðjyðt� dðtÞÞjÞ

þ
3k

2

1 

4
1dðjyðt� dðtÞÞjÞ

þ
Xk
j¼2

bj
2
 4
1dðjyðt� dðtÞÞjÞ:

Proof: See Appendix A. œ

At the last step that k¼ n, we obtain the parameter

update law and the control law

_̂
lðtÞ ¼ $nðyðtÞ; . . . ; znðtÞ; l̂ðtÞÞ; ð20Þ

uðtÞ ¼ 
nðyðtÞ; . . . ; znðtÞ; l̂ðtÞÞ; ð21Þ

where

$n ¼ $n�1 þ �0z
4
n#n;


n ¼ �
1

mn
�nzn þ anmnyþ�n1 þ

1

4"4n�1
zn

�

þ l̂� �0
Xn�1
j¼2

z3j
@
j�1

@l̂

 !
zn#n �

@
n�1

@l̂
$n

#
;

#n ¼
1

bn

@2
n�1
@y2

� �2

z2n þ
3

2

4=30

@
n�1
@y

� �2

þ1

" #2=3

þ
3

4
"4=3n m4=3

1

@
n�1
@y

� �2

þ1

" #2=3

þ
3


1

@
n�1
@y

� �4

:

Thus, by taking the following Lyapunov–Krasovskii

functional candidate:

Vn ¼ Vn�1 ~x; y; . . . ; zn�1; l̂; t
� 	

þ
1

4
z4n;

we have

LVn��
Xn
j¼1

�jz
4
j ��ðyÞy

4� �1�minðPÞ� ~c�
Xn
j¼1

1

4"4j

" #
j ~xj4

þ�nðyðtÞÞþ�dðjyðt�dðtÞÞjÞþ�ndðjyðt�dðtÞÞjÞ

þ
1

1��
SðyðtÞÞ�Sðyðt�dðtÞÞÞ: ð22Þ

We are now in a position to choose the function �(�)
in (17) so as to obtain a desired control law of the

form (20)–(21).
First, the positive function S(�) is designed such

that the term S(y(t� d(t))) is to counteract the time-

delay terms and (14). Thus, define S(�) as follows:

SðyðtÞÞ ¼ SðyðtÞÞ y4ðtÞ;
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where

SðyðtÞÞ ¼C1

Xn
i¼2

’idðyðtÞÞþa4i�1’1dðyðtÞÞ

 �

þC2

Xn
i¼2

 idðyðtÞÞþa4i�1 1dðyðtÞÞ

 �

þ
n

4
40
’1dðyðtÞÞþ

3n

2

1 1dðyðtÞÞþ

Xn
i¼2

bi
2
 1dðyðtÞÞ:

Then, we design the smooth non-negative function �(�)
to cancel the term S(y(t)). To this end, define �(�) as

�ðyðtÞÞ ¼
1

1� �
SðyðtÞÞ þ

n� 1

4
40
’1ðyðtÞÞ

þ
3ðn� 1Þ

2

1 1ðyðtÞÞ þ

Xn
j¼2

bj
2
 1ðyðtÞÞ: ð23Þ

Choose parameters �, ", �1, "j, j¼ 1, . . . , n, such that

c0 ¼ �1�minðPÞ � ~c�
Xn
j¼1

1

4"4j
> 0

with �j, �0, 
0, 
1,bj being any positive constants.

Then, it follows from (22) and (23) that

LVn � �
Xn
j¼1

�jz
4
j � c0j ~xj

4: ð24Þ

With (24) and Theorem 2, we obtain the following

stability result.

Theorem 3: The closed-loop system has a unique

solution on [�d,1) and the closed-loop equilibrium of

interest is globally stable in probability, and moreover,

the solution process can be regulated to the origin almost

surely, i.e. Pflimt!1 jxðtÞj ¼ 0g ¼ 1:

Remark 9: From the above design procedure, we can

see that the virtual control coefficients mi, i¼ 1, . . . , n,

and the upper bound of the change rate of time delays

� have important impact on the control effort. To keep

the control effort within the certain range, the virtual

control coefficients cannot be arbitrarily small and the

upper bound of the change rate of time delays � cannot

be arbitrarily close to 1, which should be considered in

practical engineering design.

6. Simulation

In this section, we will give a numerical example to

illustrate the efficiency of our results obtained in

previous sections.

Consider the following stochastic system with time

delays

dx1ðtÞ ¼ x2ðtÞ þ
1

2
�11x

2
1ðt� dðtÞÞ sinðtÞ

� �
dt

þ
1

4
�12x1ðtÞ dwt;

dx2ðtÞ ¼ 2uðtÞ þ
1

2
�21x1ðtÞ

� �
dt

þ
1

4
�22x1ðt� dðtÞÞ dwt;

yðtÞ ¼ x1ðtÞ;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð25Þ

where dðtÞ ¼ 1
2 ð1þ sinðtÞÞ:

With the notation of Assumption A1, we can take

’1ðjyðtÞjÞ ¼ 0; ’1dðjyðt� dðtÞÞjÞ ¼
1

2
y2ðt� dðtÞÞ;

 1ðjyðtÞjÞ ¼
1

4
jyðtÞj;  1dðjyðt� dðtÞÞjÞ ¼ 0;

’2ðjyðtÞjÞ ¼
1

2
jyðtÞj; ’2dðjyðt� dðtÞÞjÞ ¼ 0;

 2ðjyðtÞjÞ ¼ 0;  2dðjyðt� dðtÞÞjÞ ¼
1

4
jyðt� dðtÞÞj:

Let l*�max{1,j�11j, j�12j, j�21j, j�22j} and l � maxfl�4=3;
j�12j

4g. Design the state-observer as

_̂x1ðtÞ ¼ 2uðtÞ � ðx̂1ðtÞ þ yðtÞÞ:

Then, the parameter update law $2, the virtual control


1 and control u are

_̂
l ¼ $2 ¼ $1 þ �0z

4
2#2;


1 ¼ � �1 þ 2
C2

256
þ

3
1
512
þ

b2
512

� �
þ 1þ

3

4
"4=31 þ

3
1
512

�

þ
C1

16
þ

C2

256
þ l̂

3

4
"4=31 þ

3

2

4=30 þ

3


1

� ��
y

� 2
C1

16
þ

2

64
40

� �
y5;

u ¼ �
1

2
�2z2 � x̂1 � y�

@
1
@y
ðx̂1 þ yÞ

�

þ
1

4"41
z2 þ l̂z2#2 �

@
1

@l̂
$2

�
;

where

$1 ¼ �0
3

4
"4=31 þ

3

2

4=30 þ

3


1

� �
y4;

#2 ¼
1

b2

@2
1
@y2

� �2

z22 þ
3

2

4=30

@
1
@y

� �2

þ1

" #2=3

þ
3

4
"4=32

@
1
@y

� �2

þ1

" #2=3

þ
3


1

@
1
@y

� �4

:
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Let �1¼ 0.5, "¼ 1, �¼ 0.04, "1¼ "2¼ 4, b2¼ 
0¼ 1,


1¼ 100, �1¼ �2¼ 0.01, �0¼ 20. Then we obtain

C1¼ 2 and C2¼ 150. Assume �11 ¼
1
2, �12 ¼

1
2, �21 ¼

1
2,

�22 ¼
1
4. Then, we have the simulation results: Figures 1

and 2 for initial conditions x1(0)¼ 0.0005, x2(0)¼ 1,

x̂1ð0Þ ¼ 0, l̂ð0Þ ¼ 1.

From Figures 1 and 2, we can see that under the

constructed controller, the solution process of the

closed-loop system converges to zero almost surely. We

can also see that a little larger control effort is needed

at the beginning, especially for the larger initial values.

Generally, when there exist time delays and stochastic

0 2 4 6 8 10
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1.0008
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  State estimate
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6

Control u

Figure 2. Parameter estimate, state estimate and control of the closed-loop system.
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Figure 1. States of the closed-loop system.
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disturbances, the effort of a controller designed based

on the backstepping method is bigger than the

common case, to which attention should be paid in

practical use.

7. Concluding remarks

In this paper, we have studied the adaptive output-

feedback stabilisation for a class of stochastic

non-linear systems with time delays. Our main

contributions are three-fold: (i) global adaptive stabil-

isation controller design has been investigated for

stochastic non-linear systems with time-varying time

delays and the design is constructive; (ii) different from

the existing work of stabilisation for stochastic non-

linear systems with time delays, the existence and

uniqueness of the solution of the closed-loop system

have been investigated; (iii) in the stochastic time-delay

systems investigated in this paper, uncertain para-

meters in both drift and diffusion terms are allowed

and handled by the means of adaptive control

techniques.
The method used in this paper can be modified

or extended to investigate the adaptive control of

stochastic time-delay systems driven by noise of

unknown covariance, and to large-scale stochastic

multi-time-delay non-linear systems. In the results

presented here, the control is independent of noise.

As for the noise-dependent case, the controller

construction of non-linear stochastic time-delay sys-

tems is hard and complicated, and will be a good topic

for further research.
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Notes

1. As it is well known, there exist constants a1
0, . . . , a0n�1

such that the polynomial �n�1 þ a01�
n�2 þ a02�

n�1 þ � � � þ

a0n�1 is Hurwitz. In this case, we can take a1 ¼ ða
0
1Þ=ðm1Þ,

a2 ¼ ða
0
2Þ=ðm1m2Þ, . . . , an�1 ¼ ða

0
n�1Þ=ðm1m2 � � �mn�1Þ.

2. For any two given real vectors x and y with the same
dimension, xTy � �p=pjxjp þ 1=ðq�qÞjyjq; where �>0,
p>1, q>1, and p�1þ q�1¼ 1.

3. When k¼ n�1, we have zkþ2¼ 0 in (A1). Thus define


n ¼ �
1

mn
�nzn þ anmnyþ�n1 þ

1

4"4n�1
zn

�

þ l̂� �0
Xn�1
j¼2

z3j
@
j�1

@l̂

 !
zn#n �

@
n�1

@l̂
$n

#
:
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Appendix

A. Proof of Lemma 1

As shown at Step 1 of x 5, Lemma 1 holds for k¼ 1. Now, we
demonstrate Lemma 1 by induction. Assume that Lemma 1
is true for Step k, we will show that Lemma 1 is still true for
Step kþ 1. To this end, consider the following function:

Vkþ1 ¼ Vk ~x; y; . . . ; zk; l̂; t
� 	

þ 1
4 z

4
kþ1:

It follows from (11) that
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As in Step 1, by Assumption A1, Young inequality and (13),
we have
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where and whereafter, "j, bj, j¼ 2, . . . , n, are positive design
constants to be specified. These together with (19) and (A1)
lead to
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Define the virtual parameter update law and the virtual
control as follows:3
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Obviously, 
kþ1ð0; l̂Þ ¼ 0 for all l̂ 2 R.
It follows from (A2), (A3) and (A4) that for
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Therefore, the proof is completed. œ
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