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Abstract
r deals with the problem of adaptive output feedback neural network controller design for a 

SISO non-affine nonlinear system. Since in practice all system states are not available in output 
measurement, an observer is designed to estimate these states. In comparison with the existing approaches, 
the current method does not require any information about the sign of control gain. In order to handle the 
unknown sign of the control direction, the Nussbaum-type function is utilized. In order to approximate the 
unknown nonlinear function, neural network is firstly exploited, and then to compensate the approximation 
error and external disturbance a robustifying term is employed. The proposed controller is designed based 
on strict-positive-real (SPR) Lyapunov stability theory to ensure the asymptotic stability of the closed-loop 
system. Finally, two simulation studies are presented to demonstrate the effectiveness of the developed 
scheme.
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1. Introduction

Robust control of nonlinear systems is considered as a challenging problem in control theory 
and has attracted a lot of devotion in the past decades [1]. However, most of the previous works 
are based on some idealized assumptions, one of which is that the dynamics of the system is 
completely matched with its mathematical model [2]. There are, of course, unavoidable model 
uncertainties for any practical system, which lead the degradation of controller performance [3]. 
In these cases, the conventional control approaches are not applicable, and usually the universal 
functions approximators (UFAs)-based adaptive approaches are suggested to address this issue 
[4–8]. Therefore, the analytical study of adaptive control of uncertain nonlinear systems using 
UFA has received much attention during last decade.

In this regards, neural networks (NNs) and fuzzy logic (FL) are usually exploited to 
approximate the unknown uncertainties [9–13]. Then, adaptive laws are designed to adjust the 
parameters of the NNs and FL. To this end, two different approaches are used to design the 
controller: direct and indirect approaches [14–18]. The main drawback of indirect approaches is 
singularity problem in calculating the estimation of the control gain direction [19]. The 
projection algorithm, and using regularized inverse of control gain direction are two main 
strategies to deal with the singularity problem [20,21]. In current study, an indirect adaptive 
controller approach using NN is proposed to overcome aforementioned problem.

The main drawback of the UFAs-based controller design is that it requires to know the sign of 
the control gain matrix in advance; however, this is not generally a realistic assumption [19]. The 
problem is much more challenging in cases that the sign of control gain is not known a priori. To 
address this issue, Nussbaum-gain technique can be used [22–24]. For instance, adaptive fuzzy 
controller is developed for uncertain MIMO, and SISO nonlinear systems with unknown control 
gain directions in [7], and [8], respectively. However, the states of the system are assumed to be 
available in most of the previous works [9], while this assumption may not be satisfied in practical 
applications. In these cases, observer-based or output feedback controllers might be used [14,25–
30]. For instance, a Linear Matrix Inequality (LMI) strategy to design
static output-feedback controllers has been presented in [25]. In  [26], an observer-based 
H1 controller has been developed for Markovian jump systems considering actuator 
saturation
nonlinearity and time-delay. Besides, output feedback controller has been proposed for Markov 
jump systems with passivity criteria subjected to time delays [27]. In addition, several approaches 
have been recently developed for nonlinear non-affine systems [4,31,32]. In these methods, the 
unknown non-affine function is firstly converted into affine-like form using the Mean Value 
Theorem. In this regards, an adaptive fuzzy controller using state-feedback for a SISO non-affine 
system with unknown gain sign is presented [24].

In current work, an observer-based adaptive NN controller is developed for an uncertain nonlinear 

non-a
(i)
ffine system with unknown gain sign. The main innovations of the paper are three folds:
The Nussbaum-gain technique is effectively employed to design an adaptive controller for a
SISO non-affine system with unmeasurable states. The proposed method can also be applied
to affine systems.
(ii)
 Using indirect adaptive control and Mean Value Theorem enable us to avoid the controller
singularity issue.
(iii)
 The effects of approximation error in NN and external disturbance are compensated using a
robustifying term in the control signal, so that the proposed approach is able to handle a
certain degree of uncertainties.



in Section 2. A design procedure for observer-based adaptive NN control is established in 

The remained part of this paper is structured as follows: The problem formulation is presented 

Section 3. The promising results of the presented method are demonstrated through simulation 
results in Section 4. Finally, the paper is concluded in Section 5.

2. Problem statement

Consider a SISO uncertain nonlinear system represented with the following state-space
equations:

_xi ¼ xiþ1; i¼ 1; 2;…; n�1
_xn ¼ f ðx; uÞ þ dðtÞ
y x¼ 1 ð1Þ where 
xARn is the plant state vector, uAR is the control input of the system, yAR is the output,
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ÞA the reference signal ym.

Assumption 1. For all ðx; uÞAΩx � ℜ with a controllability region Ωx, the function gðx; uÞ ¼ ð∂f 
ðx; uÞ=∂uÞa0 is nonzero.

Assumption 2. The reference signal ym and its n derivatives, i.e. yim; i ¼ 1; …; n, are bounded, 
smooth, and accessible for design purpose.
Remark 1. Some physical plants could be represented with model (1). For example, second order 
mechanical systems like magnetic suspension system or some chaotic systems like Duffing-
Holmes system may be described by Eq. (1).

Remark 2. It is usually assumed that the sign of function gðx; uÞ is known in advance [31,32]. 
Nevertheless, Assumption 1 indicates that it is not required to know the gain sign of function
gðx; uÞ. In this paper, to deal with this problem the Nussbaum type function is utilized.

Definition 1. [22]. A function NðςÞ is called Nussbaum type function if it meets the following 
properties:

lim
z-1

sup
1
z

Z z

0
NðςÞ dς¼ þ1 ð2Þ

lim
z-1

inf
1
z

Z z

0
NðςÞ dς¼ �1 ð3Þ

Frequently used Nussbaum type functions are ς2 cos ðςÞ; ς2 sin ðςÞ, and expðς2Þ cos ðπς=2Þ.
The even Nussbaum function NðςÞ ¼ expðς2Þ cos ðπς=2Þ is exploited in this paper.

Lemma 1. [33]. Suppose VðtÞ; ςðtÞ are functions defined on ½0; tf Þ with VðtÞ40; 8 tA ½0; tf Þ,
and NðςÞ is an even smooth Nussbaum-type function. If the following inequality holds:

VðtÞrc07

Z t

0
ðgNðςÞ71Þ _ςdτ ð4Þ

where c0 is a proper constant, and g represents a non-zero constant, then VðtÞ; ςðtÞ; andR t
0ðgNðςÞ71Þ_ςdτ have to be bounded on ½0; tf Þ.



Lemma 2. (Mean Value Theorem): Suppose f ðx; yÞ : ℜn � ℜ-ℜ is continuous
n 
at both 

endpoints y ¼ a and y ¼ b, and has a derivative at each point of an open set ℜ � ða; bÞ. 
Therefore, there is a point π A ða; bÞ in a way that [4]

f ðx; bÞ� f ðx; aÞ ¼ f 0ðx; πÞðb�aÞ ð5Þ
The tracking error is defined as

e1 ¼ y�ym: ð6Þ
Indicating

x¼ x1;…; xðn�1Þ
1

h iT
ym ¼ ym;…; yðn�1Þ

m

� �T ð7Þ

then

e¼ x�ym ¼ ½e1;…; en�1
1 �T : ð8Þ

Considering the reference model of the form _ym ¼Aym þ Bynm, the tracking error system can be
written as

_e¼Aeþ B f ðx; uÞ�ynm þ dðtÞ� �
e1 ¼CTe ð9Þ

where

A¼

0 1 … 0

0 0 … 0

⋮ ⋮ … ⋮
0 0 … 1

0 0 … 0

2
664

3
775
n�n

B¼

0

0

⋮
0

1

2
664
3
775
n�1

; CT ¼ ½1; 0;…; 0�1�n:

Considering the Mean Value Theorem, one can write

f ðx; uÞ ¼ f ðxÞ þ gðx; unÞu ð10Þ
where unis a point between zero and u. Hence, Eq. (9) can be rewritten as

_e¼Aeþ B f ðxÞ þ gðx; unÞu�ynm þ dðtÞ� �
e1 ¼CTe ð11Þ

Suppose f ðxÞ, gðx; unÞ are known, dðtÞ ¼ 0, and the state x are available, then, from Eq. (11) the
ideal controller can be chosen as

uideal ¼ g�1ðx; unÞ � f ðxÞ þ ynm�KT
c e

� �
where KT

c is the feedback gain vector to ensure the characteristic polynomial of A�BKT
c

Hurwitz. Consequently, it can be shown that lim
t-1

eðtÞ ¼ 0. Nevertheless, f ðxÞ and gðx; unÞ are
unknown and the systems states x are not measurable, so the controller uideal cannot be realized.



A comprehensive solution is to employ NNs to approximate unknown functions and design an
observer to estimate the system states x. It is shown that the nonlinear continuous functions can
be approximated by NNs with an arbitrary accuracy.

3. Adaptive neural control design

Since the state vector is unmeasurable in practice, it cannot be used in the controller design.
Therefore, the unmeasurable states are firstly estimated. The following structure is considered for
the observer:

_̂e¼Aê�BKT
c êþKoðe1� ê1Þ

ê1 ¼CT ê ð12Þ
where Ko is the observer gain vector to be designed so that the matrix A�KoC

T is Hurwitz, and
ê is the estimation of e. Define the observation error as ~e ¼ e� ê. Then using Eqs. (11) and (12)
one can write

_~e ¼ ðA�KoCT Þ~e þ B½f ðxÞ�ynm þKT
c êþ dðtÞ þ gðx; unÞu�

~e1 ¼CT ~e ð13Þ
or, equivalently,

_~e ¼ ðA�KoCT Þ~e þ B f ðxÞ�ynm þKT
c êþ dðtÞ þ ðgðx; unÞ þ g0Þu�g0u

� �
~e1 ¼CT ~e ð14Þ

where g0 is an arbitrary nonzero constant. Defining f 1ðxÞ ¼ f ðxÞ þ ðgðx; unÞ þ g0Þu, Eq. (14) can
be rewritten as

_~e ¼ ðA�KoC
T Þ~e þ B f 1ðxÞ�ynm þKT

c êþ dðtÞ�g0u
� �

~e1 ¼CT ~e ð15Þ
where x ¼ ½xT ; u�T . Thereafter, estimation of f 1ðxÞ obtained from a NN is utilized to design an 
adaptive controller. The adaptation law is designed so that the controller meets the predefined
objectives and guarantees boundedness of all signals in the closed-loop system. The strict-
positive-real (SPR) Lyapunov design approach is used to guarantee the stability of the closed-
loop system as e~1 in Eq. (15) is accessible. The dynamics of output error in Eq. (15) can be 
obtained as

~e1 ¼HðsÞ½f 1ðxÞ�ynm þKT
c êþ dðtÞ�g0u� ð16Þ

where

HðsÞ ¼CT ðsI�ðA�KoCT ÞÞ�1B ð17Þ
is a known stable transfer function. Eq. (16) is written as

~e1 ¼HðsÞLðsÞ L�1ðsÞf 1ðxÞ þ L�1ðsÞ KT
c ê�ynm

� �þ L�1ðsÞdðtÞ�L�1ðsÞg0u
� � ð18Þ

with

LðsÞ ¼ sm þ b1s
m�1 þ⋯þ bm ðmonÞ ð19Þ

to be used in the SPR-Lyapunov design procedure.
Note that LðsÞ should be chosen such that L�1ðsÞ be a suitable stable transfer function and

HðsÞLðsÞ be a proper SPR transfer function. Therefore, the state-space realization of Eq. (18) can
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be stated as

_~e ¼ ðA�KoCT Þ~e þ Bc L�1ðsÞf 1ðxÞ þ L�1ðsÞ KT
c ê�ynm

� �þ L�1ðsÞdðtÞ�L�1ðsÞg0u
� �

~e1 ¼CT ~e ð20Þ
with SPR transfer function as

HcðsÞ ¼CT ðsI�ðA�KoC
T ÞÞ�1Bc ð21Þ

Remark 3. There is no unique choice for the input arguments of unknown function f 1ðxÞ, i.e. x.
Actually, since u is a function of states x and ynm, and y

n
m is also bounded, then it can quite simply

be shown that x is a function of x.

In order to approximate unknown function f 1ðxÞ, an RBF neural network with two layers, and
l nodes are used as

f̂ 1ðx̂jΘÞ ¼Θξðx̂Þ ð22Þ

where
Θ¼ θ11 θ12 ⋯ θ1l

� �
is the adjustable parameter vector of the NN, and

ξðx̂Þ ¼ ½ξ1ðx̂Þ;…; ξlðx̂Þ�T is a radial basis function vector that is fixed a priori. The commonly
used Gaussian functions are used as basis function

ξiðxÞ ¼ exp � Jx�μi J2

η2i

� �
; i¼ 1; 2;…; l ð23Þ

where ηi is the width, and μi ¼ ½μi1; μi1;…; μin�T is the center vector of the Gaussian function.
It is supposed that x,x̂; and Θ belong to compact sets U1;U2; and Ω, respectively, defined

as

U1 ¼ fxAℜn : JxJ rM1g
U2 ¼ fx̂Aℜn : J x̂J rM2g
Ω¼ fΘAℜl : JΘJ rM3g ð24Þ

where M1;M2, and M3 are the designed parameters.
Define the optimal parameter vector Θn

Θn ¼ arg min
Θ̂AΩ

sup
xAU1;x̂AU2

jf 1ðxÞ� f̂ 1ðx̂jΘÞj
( )

ð25Þ

and NN approximation error δn

δnðx; x̂Þ ¼ f 1ðxÞ� f̂ 1ðx̂jΘnÞ ð26Þ

Here, Θ denotes the estimation of Θn and let ~Θ ¼Θ�Θn.

Remark 4. Since A�BKT
c

� �
is Hurwitz, the following Lyapunov equation has a unique

positive-definite solution P1 for any given symmetric positive-definite matrix Q1

A�BKT
c

� �T
P1 þ P1 A�BKT

c

� �þQ1 ¼ 0 ð27Þ



 

Assumption 3. For the given positive-definite matrix Q2, there exists a positive-definite solution
P2 for the matrix equations

ðA�KoC
T ÞTP2 þ P2ðA�KoC

T Þ þQ2 ¼ 0

P2Bc ¼C ð28Þ
The adaptive NN-based controller is designed as

u¼NðςÞ �Θξðx̂Þ þ ynm�KT
c êþ ua þ us

� � ð29Þ
with

ua ¼ �KT
oP1ê

us ¼ �ksgn BT
c P2 ~e

� �
_ς¼ ~eT1L

�1ðsÞ Θξðx̂Þ�ynm þKT
c ê�ua�us

� � ð30Þ
and the following adaptation law

_Θ¼ γ BT
c P2 ~eL�1ðsÞξT ðx̂Þ ð31Þ

where ua is the feedback controller for ê, us should be designed such that both NN approximation 
error and external disturbances are compensated, and γ40 is the adaptation gain that should be 
designed.

Assumption 4. δm ¼ L� 1ðsÞðδnðx; x̂Þ þ  dðtÞ þ  ua þ usÞ�ua �us is bounded. In other words, δm
satisfies ‖δm‖oδ.

Concerning to the above discussions, the following theorem summarizes the main property of 
observer-based adaptive neural network controller.

Theorem 1. For the system defined by Eq. (1), the adaptive nonlinear controller is considered as 
Eqs. (29)–(30) with the adaptation law (31). If Assumptions 1–4 are held, the following properties 
are guaranteed using the proposed scheme:

(1) 
The whole closed-loop system is stable, i.e., x; x̂; e; ê; uAL1

(2) 
t-
lim

1 
e1 ¼ 0
Proof. Define the following Lyapunov function candidate

V ¼ 1
2
êTP1êþ

1
2
~eTP2 ~e þ

1
2γ

~Θ ~ΘT ð32Þ

The derivative of V is

_V ¼ 1
2
_̂e
T
P1êþ

1
2
êTP1

_̂eþ 1
2
_~e
T
P2 ~e þ

1
2
~eTP2

_~e þ 1
γ
~Θ _~Θ

T
ð33Þ

Substituting Eqs. (12) and (20) into Eq. (33), one can write

_V ¼ 1
2
êT ðA�BKT

c ÞTP1 þ P1ðA�BKT
c Þ

� �
êþ êTP1KoC

T ~e

þ 1
2
~eT ðA�KoC

T ÞTP2 þ P2ðA�KoC
T Þ� �

~e



þ~eTP2Bc L�1ðsÞf 1ðxÞ þ L�1ðsÞðKT
c ê�ynmÞ

þL�1ðsÞdðtÞ�L�1ðsÞg0u
�þ 1

γ
~Θ _~Θ

T
ð34Þ

Then using Eqs. (27) and (28), Eq. (34) can be rewritten as

_V ¼ � 1
2
êTQ1êþ êTP1KoC

T ~e� 1
2
~eTQ2 ~e

þ~eTP2Bc L�1ðsÞf 1ðxÞ þ L�1ðsÞðKT
c ê�ynmÞ

�
þL�1ðsÞdðtÞ�L�1ðsÞg0u

�þ 1
γ
~Θ _~Θ

T
ð35Þ

By using Eqs. (22) and (26), Eq. (35) can be rewritten as

_V ¼ � 1
2
êTQ1êþ êTP1KoC

T ~e� 1
2
~eTQ2 ~e

þ~eTP2Bc �L�1ðsÞ ~Θξðx̂Þ þ L�1ðsÞΘξðx̂Þ�
þL�1ðsÞδf ðx; x̂Þ þ ðua þ usÞ�ðua þ usÞ
þL�1ðsÞ KT

c ê�ynm
� �þ L�1ðsÞdðtÞ�L�1ðsÞg0u

�þ 1
γ
~Θ _~Θ

T
ð36Þ

Substituting Eqs. (29) and (30) and adaptation law (31) in Eq. (36) and then using Assumption 4
one can write

_V ¼ � 1
2
êTQ1ê�

1
2
~eTQ2 ~e þ ~eTP2Bcδm þ ~eTP2Bcus

þ~eTP2BcL
�1ðsÞðΘξðx̂Þ�ynm þKT

c ê�ua�usÞð1þ g0NðςÞÞ
¼ � 1

2
êTQ1ê�

1
2
~eTQ2 ~e þ ~eTP2Bcðδm þ usÞ þ ð1þ g0NðςÞÞ_ς ð37Þ

Substituting us into Eq. (37) yields:

_V ¼ � 1
2
êTQ1ê�

1
2
~eTQ2 ~e þ ðδ�kÞ ð~eTP2BcÞ þð1þ g0NðςÞÞ_ς

���� ð38Þ

Selecting kZδ, we have

_Vr� 1
2
êTQ1ê�

1
2
~eTQ2 ~e þ ð1þ g0NðςÞÞ_ς ð39Þ

Considering Q¼ diag ½Q1;Q2� and ET ¼ êT ; ~eT
� �

, Eq. (39) becomes

_Vr� 1
2
ETQEþ ð1þ g0NðςÞÞ_ς ð40Þ

Keeping in mind that �ETQEr�λminðQÞ‖E‖2, where λminðQÞ is the minimum eigenvalue of
Q, we have

_Vr� 1
2
λminðQÞ‖E‖2 þ ð1þ g0NðςÞÞ_ς ð41Þ

that implies

_Vr ð1þ g0NðςÞÞ_ς ð42Þ



Integrating Eq. (42) over ½t0; tf �, one can conclude that

Vðtf ÞrVðt0Þ þ
Z tf

t0

ðÞ1þ g0NðςÞ_ς dτ ð43Þ

According to Lemma 1, it is now clear that Vðtf Þ,
R tf

t0
ð1þ g0NðςÞÞ_ς dτ and ςðtÞ are bounded in

t0; tf
� �

. The above discussion is also true for tf ¼1 as discussed in [7].
Integrating Eq. (41) over ½t0; tf �, yields

λminðQÞ
2

Z tf

t0

ET ðτÞEðτÞ dτrVðt0Þ�Vðtf Þ þ
Z tf

t0

ð1þ g0NðςÞÞ_ς dτ

which denotes

λminðQÞ
2

Z 1

t0

ET ðτÞEðτÞ dτrVðt0Þ�Vð1Þ þ
Z 1

t0

ð1þ g0NðςÞÞ_ς dτ ð44Þ

Since
R1
t0
ð1þ g0NðςÞÞ_ς dτ, Vðt0Þ, and Vð1Þ are bounded, it is concluded thatR 1

t0
ET ðτÞEðτÞ dτo1. From Eqs. (32) and (41) it is derived that ê; ~eAL1. From the definition

of e, x, and uðtÞ it can be concluded that e; x; x̂; uAL1.
Let ψðtÞ ¼ ET ðtÞ EðtÞ. From Eqs. (12), and (20) since ET ¼ ½êT ; ~eT � is bounded, it is concluded

that _EðtÞ is bounded. Therefore, ψðtÞ is uniformly continuous and it is possible to apply the
Barbalat Lemma [34] to the function ψðtÞ which guarantees lim

t-1
ψðtÞ ¼ 0, and consequently, it is

deduced that lim
t-1

E¼ 0. Therefore, lim
t-1

~e ¼ 0 and lim
t-1

ê¼ 0. Considering that e¼ êþ ~e and

e1 ¼CTe; it can be concluded that lim
t-1

e1 ¼ 0 that completes the proof.

Remark 5. Since the control law (29) has the sign function, chattering phenomenon, caused by
the signal discontinuity, may happen when such control law is directly applied. In order to
overcome this issue, a saturation function with a boundary layer φ, instead of sign function, can
be considered as follows:

sat
ð~eTP2BcÞ

φ

� �
¼

sgn ð~eTP2BcÞ
φ

	 

;

��� ~eTP2Bc

� �
φ

���41

~eTP2Bc

� �
φ

;
��� ~eTP2Bc

� �
φ

���r1

8>>>><
>>>>:

ð45Þ

Remark 6. The presented approach is such that it can be applied to affine systems without much
effort. In fact, if the system is in the affine form, the Mean Value Theorem is not required in the
proof procedure. Therefore, there is no doubt that the proposed approach is also applicable to
affine systems.

4. Simulation results

In this section, two case studies are given to demonstrate the proficiency of the proposed
adaptive neural controller. The first simulation is a non-affine nonlinear system and the second
one is affine. These simulations confirm that the proposed approach can deal with both non-affine
and affine nonlinear uncertain systems.



Example 1. For the first study, an academic SISO non-affine nonlinear system is considered [23]. 
The dynamic equations of this system are described by

_x1 ¼ x2
_x2 ¼ �x1 þ 2x2 þ uffiffiffiffiffiffiffiffiffiffiffijujþ0:1

p �2x21x2 þ dðtÞ
y¼ x1

ð46Þ

The control goal is that the system output x1 tracks the desired trajectory ym ¼ 0:5 sin ðtÞ. The
external disturbance is considered as d1ðtÞ ¼ 0:5 sin ð2tÞ. Moreover, the design parameters are
selected as γ ¼ 103; k¼ 20; φ¼ 0:001. In addition, the feedback and observer gain matrices
are given by

Kc ¼ 144 24
� �T

; Ko ¼ 60 900
� �T

:

The SPR filter L�1
1 ðsÞ is selected as L�1

1 ðsÞ ¼ ð1=sþ 2Þ. Besides, the positive-definite matrices
Q1, and Q2 are chosen as

Q1 ¼
10�2 0

0 10�2

" #
; Q2 ¼

10 0

0 10

� 

In order to design the NN approximator l¼ 9 nodes are taken, and the centers of basis functions
are uniformly distributed in x̂1 x̂2

� �
A �2; 2½ � � �2; 2½ �. In addition, the widths are selected

0as η ¼ 1:8, and the initial weights of NN is considered as Θ0 ¼ . The simulation is carried out in 
MATLAB environment, and initial conditions of the system and observer are selected as
x0 ¼ �0:2; 0:4½ �T , and ê0 ¼ 0:1; 0:1½ �T , respectively. The tracking performance of the proposed 
controller is illustrated in Fig. 1. Apparently, the tracking error is bounded and the proposed
adaptive NN output feedback controller can excellently attain the trajectory tracking of the 
system output.

Fig. 2 manifests that the control signal is also bounded. The boundedness of the norm of NN 
weights is depicted in Fig. 3. Fig. 4 demonstrates the variation of the adaptive parameter ς and
Nussbaum gain NðςÞ.
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Fig. 1. Tracking performance of system output and reference signal.
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To show the effect of Nussbaum gain, the same simulation with the same parameters is carried
out when f ðx; uÞ changes to f ðx; uÞ ¼  �x1 þ 2x2 � pju

uffiffiffiffiffiffiffiffijþ0:
ffiffi
1
ffi �2x21x2. These simulations are

illustrated in Fig. 5. It can be seen, the Nussbaum gain can be adapted effectively when the non-
affine function is changed while the system output tracks the desired signal successfully.

Example 2. Consider a single-link rigid manipulator. The dynamic equations of such system are 
given by [35]

ml2q€ þ b_q þ mlgv cos ðqÞ ¼  u ð47Þ 
where l and m are length and mass of the link respectively, q is the angular position with initial
values qð0Þ ¼  0:1 and q_ð0Þ ¼  0. The above equation can be rewritten in the form (10) with x1 ¼ 
q,
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Fig. 4. The adaptive parameter ς (solid line) and Nussbaum gain NðςÞ (dashed line).
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Fig. 5. (a) Tracking performance (b) ς (solid line) and Nussbaum gain NðςÞ when the control gain is changed.
x2 ¼ _q, f ðxÞ ¼ � b
ml2

	 

x2� gv

l

� �
cos ðx1Þ and gðxÞ ¼ 1

ml2

	 

. For the simulation purpose, the

parameters are chosen as m¼ l¼ b¼ gv ¼ 1.
The control signal is designed such that the system output tracks the desired signal ym, which

is constructed based on the following reference model:

_xd1
_xd2

 !
¼ 0 1

�16 �8

� �
xd1
xd2

 !
þ 0

1

� �
rðtÞ ð48Þ

where ym ¼ xd1 and rðtÞ is a pulse signal with amplitude 5 and period 10 s. The external
disturbance dðtÞ ¼ 0:4 sin ð0:2πtÞ is added to the system. The link mass is changed to m¼ 1:2
from t¼ 5 s. In this study, the controller parameters are designed as γ ¼ 100; k¼ 5; φ¼ 0:001.
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The feedback and observer gain matrices, and also matrices Q1, and Q2 are chosen as the same as 
the first example.
In this case study, NN parameters, except the initial elements of the weighting vector that is

selected 0:1, are constructed as similar as the previous example. L� 1ðsÞ are chosen as L� 1 ¼ ð1=s þ 
0:5Þ to use the 

T
SPR-Lyapunov design 

T
approach. The initial condition is also considered as

x0 ¼ �0:2; 0:4½ � , and  ê0 ¼ �0:1; 0:1½ � . The tracking performance of the proposed controller is 
shown in Fig. 6. As shown in this  figure, the tracking error is bounded and the desired performance is 
successfully achieved by the designed adaptive neural network output feedback controller.
The control signal is illustrated in Fig. 7. From these figures, it is clear that all signals, i.e. the

control signal and 
fi

outputs, are 
fi

bounded. The variation of ς and the Nussbaum function NðςÞ are
shown in Fig. 8. This gure con rms that Nussbaum gain will be automatically updated based on
control direction.
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5. Conclusion

In this paper an observer-based adaptive controller for a class of SISO non-affine nonlinear
systems with unknown control gain sign has been proposed. The controller design parameters
were obtained using an adaptive mechanism that exploits neural network as universal function
approximator. This approach is also applicable to non-affine systems using Mean Value
Theorem. In addition, Nussbaum gain technique has been utilized to deal with unknown control
direction. Furthermore, in this approach, it is not necessary to assume that the system states are
measurable, in other words an observer can be employed to estimate unmeasured states that are
used in the controller design. Using the SPR-Lyapunov stability analysis, it has been proven that
the proposed adaptive observer-based controller guarantees the asymptotic stability of the closed-
loop system. Finally, two simulation examples have been applied to nonlinear systems.
Simulation results confirmed the effectiveness of the proposed approach when encounters both
affine and non-affine nonlinear uncertain systems.
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