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This paper investigates the problem of adaptive output feedback stabilization for a class of nonholonomic systems with
nonlinear parameterization and strong nonlinear drifts. A parameter separation technique is introduced to transform nonlinearly
parameterized system into a linear-like parameterized system. Then, by using the integrator backstepping approach based on
observer and parameter estimator, a constructive design procedure for output feedback adaptive control is given. And a switching
strategy is developed to eliminate the phenomenon of uncontrollability. It is shown that, under some conditions, the proposed
controller can guarantee that all the system states globally converge to the origin, while other signals remain bounded. An illustrative
example is also provided to demonstrate the effectiveness of the proposed scheme.

1. Introduction

Control of nonholonomic systems has received a great deal
of attention over the last few years. It has been shown in [1]
thatmechanical systemswith nonholonomic constraints such
as mobile robots and wheeled vehicle can be either locally
or globally converted to the so-called chained form under
a coordinate transformation and a control mapping. As a
result, the chained form has been used as a canonical form
in analysis and control design for nonholonomic systems.
Due to the nonsatisfaction of Brockett’s necessary condi-
tion [2], nonholonomic systems cannot be asymptotically
stabilized by stationary continuous state-feedback, although
it is controllable. To overcome this difficulty, a number of
approaches have been proposed; see the review paper [3]
and references therein. The proposed solutions for stabiliza-
tion nonholonomic systems include discontinuous feedback,
time-varying feedback, and hybrid control laws. Using there
valid approaches, the robustness issue for the asymptotic and
exponential stability properties has been extensively studied
[4–20].

However, it should be noticed that most of these papers
were concerned with the systems with linear parameter-
ization. Since nonlinear parameterization is exceptionally
difficult to estimate, there are very few reports in literature for
adaptive control of nonlinearly parameterized nonholonomic
systems. Exceptions include [21–23] (and some references
therein), where the authors consider that the whole state
vector is measurable and adaptive control for chained form
systems with nonlinear parameterization using state feed-
back.

In this paper, the case of only partial state vector being
measurable and adaptive control for chained form systems
with nonlinear parameterization by output feedback is con-
sidered. The contributions of this paper are listed as follows:
(i) a new observer design method is proposed, and, based
on the observer, the unmeasurable states of the system
involved are reconstructed; (ii) using parameter separation
technique [24], the parameters nonlinearities are solved and
the resulting adaptive regulator is of minimum dimension
(1D) independent of the parameter dimension; (iii) output
feedback adaptive control based switching strategy is adopted
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to handle the technical problem of uncontrollability at
𝑥
0
(𝑡
0
) = 0, which prevents the finite escape of systems and

guarantees that all the states converge to the origin and other
signals are bounded.

The rest of this paper is organized as follows. In Section 2
preliminary knowledge and the problem formulation are
given. Section 3 presents the state-scaling technique and the
backstepping design procedure, while Section 4 provides the
switching control strategy and the main result. Section 5
gives a simulation example to illustrate the theoretical finding
of this paper. Finally, concluding remarks are proposed in
Section 6.

2. Problem Formulation

In this paper, we present an output feedback adaptive control
design procedure for a class of uncertain chained form
systems with nonlinear parameterization:

�̇�
0
= 𝑢
0
+ 𝑓
1
(𝑥
0
, 𝜃)

�̇�
𝑖
= 𝑢
0
𝑥
𝑖+1

+ 𝑓
𝑖
(𝑥
0
, 𝑥, 𝜃) 1 ≤ 𝑖 ≤ 𝑛 − 1

�̇�
𝑛
= 𝑢
1
+ 𝑓
𝑛
(𝑥
0
, 𝑥, 𝜃)

𝑦 = (𝑥
0
, 𝑥
1
)
𝑇
,

(1)

where (𝑥
0
, 𝑥)
𝑇
= (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛+1, 𝑢 = (𝑢

0
, 𝑢
1
)
𝑇
∈ 𝑅
2,

and 𝑦 ∈ 𝑅
2 are the system state, control input, and system

measurable output,𝑓
𝑖
, 𝑖 = 0, 1, . . . , 𝑛 are continuous functions

of their arguments, and 𝜃 ∈ 𝑅
𝑝 is an unknown constant

vector. The function 𝑓
𝑖
is called the nonlinear drifts of the

system (1).
The objective of this paper is to design an output feedback

adaptive stabilization control in the form

̇
�̂� = 𝜗 (𝑥, 𝑦) , �̇� = ] (𝑥

0
, 𝑥, 𝜇)

𝑢
0
= 𝑢
0
(𝑦, 𝜇) , 𝑢

1
= 𝑢
1
(𝑦, 𝜇)

(2)

such that all signals of the closed loop system are bounded.
Furthermore, the asymptotic regulation of the states is
achieved; that is, lim

𝑡→∞
(|𝑥
0
(𝑡)| + |𝑥(𝑡)|) = 0.

A full characterization of the class of system (1) is given
by the following assumption, which will be the base of the
coming control design and performance analysis.

Assumption 1. For 𝑓
0
, there exists a smooth nonnegative

function 𝜑
0
such that





𝑓
0
(𝑥
0
, 𝜃)





≤




𝑥
0





𝜑
0
(𝑥
0
, 𝜃) . (3)

For 1 ≤ 𝑖 ≤ 𝑛, there are smooth nonnegative function 𝜑
𝑖

such that




𝑓
𝑖
(𝑥
0
, 𝑥, 𝜃)





≤




𝑥
1





𝜑
𝑖
(𝑦, 𝜃) . (4)

Remark 2. Assumptions 1 implies that 𝑓
0
(0, 𝜃) ≡ 0 and

𝑓
𝑖
(0, 0, 𝜃) ≡ 0, that is, the origin is the equilibrium point of

system (1).

Lemma 3 (see [24]). For any real-valued continuous function
𝑓(𝑥, 𝑦), where 𝑥 ∈ 𝑅

𝑚
, 𝑦 ∈ 𝑅

𝑛, there are smooth scalar
functions 𝑎(𝑥) ≥ 0, 𝑏(𝑦) ≥ 0, 𝑐(𝑥) ≥ 1 and 𝑑(𝑦) ≥ 1, such
that





𝑓 (𝑥, 𝑦)





≤ 𝑎 (𝑥) + 𝑏 (𝑦)





𝑓 (𝑥, 𝑦)





≤ 𝑐 (𝑥) 𝑑 (𝑦) .

(5)

By Assumption 1 and Lemma 3, we easily obtain the
following lemma.

Lemma 4. For 1 ≤ 𝑖 ≤ 𝑛, there are smooth nonnegative
function 𝜑

𝑖
and unknown constant Θ

𝑖
≥ 1 such that





𝑓
0
(𝑥
0
, 𝜃)





≤




𝑥
0





𝜑
0
(𝑥
0
)Θ
0





𝑓
𝑖
(𝑥
0
, 𝑥, 𝜃)





≤




𝑥
1





𝜑
𝑖
(𝑦)Θ

𝑖
.

(6)

3. Adaptive Output Feedback Control Design

In this section, we focus on designing the control input 𝑢
1

via output feedback provided that 𝑥
0
(𝑡
0
) ̸= 0. The case where

the initial 𝑥
0
(𝑡
0
) = 0 will be treated in Section 4. The special

structure of the system (1) suggests that we should design the
control inputs 𝑢

0
and 𝑢

1
in two separate stages.

Let Θ̃
0

= Θ
0
− Θ̂
0
, where Θ̂

0
is an estimate of Θ

0
.

Assumption 1 leads us to choose the control law 𝑢
0
as

𝑢
0
(𝑥
0
, Θ̂
0
) = 𝑥
0
𝑔
0
(𝑥
0
, Θ̂
0
) (7)

𝑔
0
(𝑥
0
, Θ̂
0
) = −[𝜑

0
Θ̂
0
+ √2𝑘

2

0
+ 2(𝑚

0
𝜑
0
+ 𝜑
0
Θ̂
0
)

2

] , (8)

where 𝑘
0
and 𝑚

0
are positive design parameters to be

specified later.

Remark 5. Note the control 𝑢
0
is an uncertain version of

Sontag formula [25]. It is used to stabilize 𝑥
0
with uncertain-

ties. Because the particular choice of (8), 𝑔
0
(𝑥
0
, Θ̂
0
) ̸= 0 is

guaranteed irregardless of the values of𝑥
0
. Hence, 1/𝑔

0
is well

defined.

Consider the Lyapunov function candidate

𝑉
0
=

1

2

𝑥
2

0
+

1

2

Θ̃
2

0
. (9)

From (7) and (8) and Assumption 1, we have

�̇�
0
= 𝑥
0
[𝑢
0
+ 𝑓
0
(𝑥
0
, 𝜃)] − Θ̃

0

̇
Θ̂
0

≤ 𝑔
0
𝑥
2

0
+ 𝑥
2

0
𝜑
0
Θ − Θ̃

0

̇
Θ̂
0
.

(10)

Choose the adaptation law Θ̂
0
as

̇
Θ̂
0
= 𝑥
2

0
𝜑
0
(𝑥
0
) (11)

renders

�̇�
0
≤ −𝑘
0
𝑥
2

0
. (12)
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Therefore, 𝑥
0
and Θ̃

0
(or, equivalently, Θ̂

0
) are bounded;

without loss of generality, we assume |Θ̃
0
| ≤ 𝑀, so we can

choose design parameter𝑚
0
in (8) as𝑚

0
> 𝑀. Furthermore,

we can conclude that 𝑥
0

→ 0 as 𝑡 → ∞ by using LaSalle’s
Invariant Theorem [26].

Under the control law (7), the solution of 𝑥
0
-subsystem

can be expressed as

𝑥
0
(𝑡) = 𝑥

0
(𝑡
0
) exp(∫

𝑡

𝑡0

𝑢
0
+ 𝑓
0

𝑥
0

𝑑𝑠) (13)

which implies





𝑥
0 (

𝑡)




≥




𝑥
0
(𝑡
0
)




exp(−∫

𝑡

𝑡0










𝑢
0
+ 𝑓
0

𝑥
0










𝑑𝑠)

≥




𝑥
0
(𝑡
0
)




exp(−∫

𝑡

𝑡0

𝜆 (𝑠) 𝑑𝑠) ,

(14)

where 𝜆(𝑠) = 2𝜑
0
Θ̂
0
+ √2𝑘

0
+ 2(𝑚

0
𝜑
0
+ 𝜑
0
Θ̂
0
)

2

+ 𝑘
0
𝜑
0
.

Consequently, 𝑥
0
does not cross zero for all 𝑡 ∈ (𝑡

0
,∞)

provided that 𝑥
0
(𝑡
0
) ̸= 0.

From the above analysis, we can see the 𝑥
0
-state in (1) can

be globally regulated to zero via 𝑢
0
in (7) as 𝑡 → ∞. It is

troublesome in controlling the x-subsystem via the control
input 𝑢

1
in the limit (i.e., 𝑢

0
= 0), the x-subsystem is

uncontrollable. This problem can be avoided by utilizing the
following discontinuous state scaling transformation [4]:

𝑧
𝑖
=

𝑥
𝑖

𝑥
𝑛−𝑖

0

1 ≤ 𝑖 ≤ 𝑛. (15)

Under the new z-coordinates, with choice of 𝑢
0
as in (7), the

x-system is transformed into

�̇�
1
= 𝑔
0
𝑧
2
− (𝑛 − 1) 𝑔

0
𝑧
1
+

𝑓
1

𝑥
𝑛−1

0

�̇�
𝑖
= 𝑔
0
𝑧
𝑖+1

− (𝑛 − 𝑖) 𝑔
0
𝑧
1
+

𝑓
𝑖

𝑥
𝑛−2

0

�̇�
𝑛
= 𝑢
1
+ 𝑓
𝑛
.

(16)

It should be noted that the measurement of state 𝑧
1
can be

obtained if the to-be-designed control 𝑢
0
is only dependent

on output 𝑦. If 𝑥
0
(𝑡) ̸= 0 for every 𝑡 ≥ 0, the discontinuous

state transformation (15) is applicable.
We design the following observer for the system (16):

̇
�̂�
1
= 𝑔
0
�̂�
2
− (𝑛 − 1) 𝑔0

�̂�
1
+

𝑘
1
𝑢
0

𝑥
0

(𝑧
1
− �̂�
1
)

̇
�̂�
𝑖
= 𝑔
0
�̂�
𝑖+1

− 𝑔
0
�̂�
𝑖
+

𝑘
𝑖
𝑢
0

𝑥
0

(𝑧
1
− �̂�
1
)

̇
�̂�
𝑛
= 𝑢
1
+

𝑘
𝑛
𝑢
0

𝑥
0

(𝑧
1
− �̂�
1
) ,

(17)

where 𝑘
1
, . . . , 𝑘

𝑛
are design parameters to be determined later.

The estimation error �̃� = 𝑧 − �̂� satisfies the dynamical
equations:

̇
�̃�
1
= 𝑔
0
�̃�
2
− (𝑛 − 1) 𝑔

0
�̃�
1
− 𝑘
1
𝑔
0
�̃�
1
+

𝑓
1

𝑥
𝑛−1

0

̇
�̃�
𝑖
= 𝑔
0
�̃�
𝑖+1

− (𝑛 − 𝑖) 𝑔0
�̃�
𝑖
− 𝑘
𝑖
𝑔
0
�̃�
1
+

𝑓
𝑖

𝑥
𝑛−𝑖

0

̇
�̃�
𝑛
= −𝑘
𝑛
𝑔
0
�̃�
1
+ 𝑓
𝑛
+ 𝜙
𝑑

𝑛
.

(18)

The differential equations (18) can be rewritten into the
compact form

̇
�̃� = 𝑔
0
𝐴�̃� + Φ, (19)

where

𝐴 =

(

(

(

(

(

−𝑘
1
− 𝑛 + 1 1 0 0 ⋅ ⋅ ⋅ 0

−𝑘
2

−𝑛 + 2 1 0 ⋅ ⋅ ⋅ 0

... 0 −𝑛 + 3 1 d 0

...
... d d d 0

−𝑘
𝑛−1

...
... d −1 1

−𝑘
𝑛

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0

)

)

)

)

)

Φ =

(

(

(

(

(

(

(

(

(

𝑓
1

𝑥
𝑛−1

0

𝑓
2

𝑥
𝑛−2

0

...
𝑓
𝑛−1

𝑥
0

𝑓
𝑛

)

)

)

)

)

)

)

)

)

.

(20)

About matrix 𝐴 defined by (20), there exists the following
lemma.

Lemma 6. The eigenvalues of the matrix A defined by (20)
can be arbitrarily assigned by a proper selection of the design
parameters 𝑘

1
, . . . , 𝑘

𝑛
.

Proof. The proof can be found in [16] and thus omitted here.

Lemma 7. By Assumption 1 and Lemma 4, we easily obtain
that, for every 1 ≤ 𝑖 ≤ 𝑛, there exists smooth nonnegative
function 𝛾

𝑖
such that











𝑓
𝑖
(𝑥
0
, 𝑥, 𝜃)

𝑥
𝑛−𝑖

0











≤




𝑧
1





𝛾
𝑖
(𝑥
0
, 𝑧
1
, Θ̂
0
)Θ
𝑖
. (21)
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In view of (18), (19), and (16), the overall system to be controlled
can be expressed as

̇
�̃� = 𝑔
0
𝐴�̃� + Φ

�̇�
1
= 𝑔
0
�̂�
2
+ 𝑔
0
�̃�
2
− (𝑛 − 1) 𝑔

0
𝑧
1
+

𝑓
1

𝑥
𝑛−1

0

̇
�̂�
𝑖
= 𝑔
0
�̂�
𝑖+1

− (𝑛 − 𝑖) 𝑔
0
�̂�
𝑖
+ 𝑘
𝑖
𝑔
0
�̃�
1

̇
�̂�
𝑛
= 𝑢
1
+ 𝑘
𝑛
𝑔
0
�̃�
1
.

(22)

We now turn to the constructive design procedure of the
control.

Step 1. This step can be regarded as the initial assignation
of the entire design procedure. At this step, we introduce a
Lyapunov function for the estimation error �̃�. Define Θ =

max{Θ
𝑖
, Θ
2

𝑖
} and Θ̃ = Θ − Θ̂, where Θ̂ is the estimate of Θ.

Consider the Lyapunov function

𝑈
0
= �̃�
𝑇
𝑃�̃� +

Θ̃
2

2

, (23)

where 𝑃 is the positive definite solution of the Riccati
equation

𝑃𝐴 + 𝐴
𝑇
𝑃 = 𝐼
𝑛
. (24)

Then, taking time-derivation of 𝑈
0
along the solution of

(19), we have

�̇�
0
= 𝑔
0‖
�̃�‖
2
+ 2�̃�
𝑇
𝑃Φ − Θ̃

̇
Θ̂. (25)

By Lemma 7 and the expression of Φ in (20), we have

‖Φ‖
2
≤ 𝑧
2

1
Φ(𝑥
0
, 𝑧
1
, Θ̂
0
)Θ, (26)

where Φ = ∑
𝑛

𝑖=1
𝛾
2

𝑖
(𝑥
0
, 𝑧
1
, Θ̂
0
) is a nonnegative smooth

function. Then, for the terms on the right-hand side of (25),
by completing the square, we have

2�̃�
𝑇
𝑃Φ = 𝜀

2

0
‖�̃�‖
2
+ 𝜀
−2

0
Φ
𝑇
𝑃𝑃Φ − 𝜀

2

0






�̃� − 𝜀
−2

0
𝑃Φ







2

≤ 𝜀
2

0
‖�̃�‖
2
+ 𝜀
−2

0
‖𝑃‖
2
𝑧
2

1
Φ

2

Θ,

(27)

where 𝜀
0
is a positive design parameter to be specified later.

Substituting (27) into (25) leads to

�̇�
0
= (𝑔
0
+ 𝜀
2

0
) ‖�̃�‖
2
+ Ψ
0
(Θ̂ + Θ̃) −

̇
Θ̂Θ̃, (28)

where Ψ
0
= 𝜀
−2

0
‖𝑃‖
2
𝑧
2

1
Φ

2.

Step 2. Take 𝑉
1
= 𝑈
0
+ 𝑧
2

1
/2 as the Lyapunov function of this

step. Then, by (28) we have

�̇�
1
≤ (𝑔
0
+ 𝜀
2

0
) ‖�̃�‖
2
+ Ψ
0
(Θ̂ + Θ̃) −

̇
Θ̂Θ̃

+ 𝑔
0
𝑧
1
�̂�
2
+ 𝑔
0
𝑧
1
�̃�
2
+ 𝑧
2

1
𝛾
1
(Θ̃ + Θ̂) ;

(29)

with the choice of the virtual controller

�̂�
∗

2
= −

1

𝑔
0

𝑧
1
[𝑛 + 𝑔

2

0
𝜀
−2

1
+ (𝜀
−2

0
‖𝑃‖
2
Φ

2

+ 𝛾
1
)
√
Θ̂
2
+ 1]

= 𝑧
1
𝛽
1
(𝑥
0
, 𝑧
1
, Θ̂)

(30)

we have

�̇�
1
≤ (𝑔
0
+ 𝜀
2

0
+ 𝜀
2

1
) ‖�̃�‖
2
− 𝑛𝑧
2

1
+ 𝑔
0
𝑧
1
(�̂�
2
− �̂�
∗

2
)

+ (Ψ
1
−

̇
Θ̂) (Θ̃ + 𝜂

1
) ,

(31)

where Ψ
1
= 𝑧
2

1
(𝜀
−2

0
‖𝑃‖
2
Φ

2

+ 𝛾
1
) ≥ 0 and 𝜂

1
= 0.

Step i (2 ≤ 𝐼 ≤ 𝑛). Suppose at step 𝑖 − 1 we have designed a
set of smooth virtual controllers �̂�∗

1
, . . . , �̂�

∗

𝑖
defined by

𝑧
∗

1
= 0,

�̂�
∗

2
= 𝜉
1
𝛽
1
(𝑥
0
, 𝜉
1
, Θ̂
0
, Θ̂) ,

...

�̂�
∗

𝑖
= 𝜉
𝑖−1

𝛽
𝑖−1

(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂
0
, Θ̂) ;

𝜉
1
= 𝑧
1
− 𝑧
∗

1
,

𝜉
2
= �̂�
2
− �̂�
∗

2
,

...

𝜉
𝑖
= �̂�
𝑖
− �̂�
∗

𝑖

(32)

with 𝛽
1
(𝑥
0
, 𝜉
1
, Θ̂) > 0, . . . , 𝛽

𝑖−1
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂) > 0 being

smooth, such that

�̇�
𝑖−1

= (𝑔
0
+

𝑖−1

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝑛 − 𝑖 + 2) (𝜉

2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖−1
)

+ 𝑔
0
𝜉
𝑖−1

(�̂�
𝑖
− �̂�
∗

𝑖
) + (Ψ

𝑖−1
−

̇
Θ̂) (Θ̃ + 𝜂

𝑖−1
) ,

(33)

where

0 ≤ Ψ
𝑖−1

(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂
0
, Θ̂)

≤ (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖−1
) 𝛼
𝑖−1

(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂
0
, Θ̂)

(34)

for 𝐶∞𝛼
𝑖−1

≥ 0.

We intend to establish a similar property for (�̃�,
𝑧
1
, . . . , �̂�

𝑖
)-subsystem. Consider the Lyapunov function

𝑉
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂)=𝑉

𝑖−1
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂
0
, Θ̂) +

1

2

𝜉
2

𝑖
.

(35)
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Clearly

�̇�
𝑖
= (𝑔

0
+

𝑖−1

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝑛 − 𝑖 + 2) (𝜉

2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖−1
)

+ 𝑔
0
𝜉
𝑖−1

(�̂�
𝑖
− �̂�
∗

𝑖
) + (Ψ

𝑖
−

̇
Θ̂) (Θ̃ + 𝜂

𝑖
)

+ 𝜉
𝑖

{

{

{

𝑔
0
�̂�
𝑖+1

− (𝑛 − 𝑖) 𝑔
0
�̂�
𝑖
+ 𝑘
𝑖
𝑔
0
�̃�
1
−

𝜕𝑧
∗

𝑖

𝜕Θ̂
0

𝑥
2

0
𝜑
0

−

𝜕�̂�
∗

𝑖

𝜕Θ̂

̇
Θ̂ −

𝜕𝑧
∗

𝑖

𝜕𝑥
0

(𝑢
0
+ 𝑓
0
)

−

𝜕�̂�
∗

𝑖

𝜕𝑧
1

[𝑔
0
𝑧
2
− (𝑛 − 1) 𝑔

0
𝑧
1
+

𝑓
1

𝑥
𝑛−1

0

]

−

𝑖−1

∑

𝑗=2

𝜕�̂�
∗

𝑖

𝜕�̂�
𝑗

[𝑔
0
�̂�
𝑗+1

− (𝑛 − 𝑗) 𝑔
0
�̂�
𝑗
+ 𝑘
𝑗
𝑔
0
�̃�
1
]

}

}

}

.

(36)

Since �̂�∗
𝑖
is a smooth function and satisfies

�̂�
∗

𝑖
(𝑥
0
, 0, . . . , 0, Θ̂

0
, Θ̂) = 0 (37)

therefore there exist some continuous functions 𝜓
𝑖
, 1 ≤ 𝑖 ≤

𝑛 − 1 such that

�̂�
∗

𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂
0
, Θ̂) =

𝑖−1

∑

𝑗=1

𝜉
𝑘
𝜓
𝑗
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖−1
, Θ̂
0
, Θ̂) .

(38)

After lengthy but simple calculations based on the com-
pletion of squares, there is a smooth nonnegative function 𝜎

𝑖

such that





𝜉
𝑖


















(𝑛 − 𝑖) 𝑔0
�̂�
𝑖
− 𝑘
𝑖
𝑔
0
�̃�
1
+

𝜕𝑧
∗

𝑖

𝜕Θ̂
0

𝑥
2

0
𝜑
0

+

𝜕�̂�
∗

𝑖

𝜕Θ̂

̇
Θ̂ +

𝜕𝑧
∗

𝑖

𝜕𝑥
0

𝑢
0
+

𝜕�̂�
∗

𝑖

𝜕𝑧
1

[𝑔
0
𝑧
2
− (𝑛 − 1) 𝑔0

𝑧
1
]

+

𝑖−1

∑

𝑗=2

𝜕�̂�
∗

𝑖

𝜕�̂�
𝑗

[𝑔
0
�̂�
𝑗+1

− (𝑛 − 𝑗) 𝑔
0
�̂�
𝑗
+ 𝑘
𝑗
𝑔
0
�̃�
1
]













≤ 𝜀
2

𝑖
‖�̃�‖
2
+

1

4

𝑖−1

∑

𝑗=1

𝜉
2

𝑗
+ 𝜉
2

𝑖
𝜎
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂) ,

(39)

where 𝜀
𝑖
is a positive design parameter to be specified later.

Using (38) and Lemma 4, we have











𝜕𝑧
∗

𝑖

𝜕𝑥
0

𝑓
0











≤

𝑖

∑

𝑗=1






𝜉
𝑗






𝜌
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂) Θ

0
, (40)

where 𝜌
𝑖
≥ 0 is a smooth function.

By Lemma 7, there is a smooth function 𝜔
𝑖
≥ 0 such that











𝜕�̂�
∗

𝑖

𝜕𝑧
1





















𝑓
1

𝑥
𝑛−1

0











≤




𝑧
1





𝜔
𝑖
(𝑥
0
, 𝑧
1
, . . . , �̂�

𝑖
, Θ̂
0
, Θ̂) Θ

1
. (41)

Based on the completion of squares, it is deduced that
there is a smooth function 𝜛

𝑖
≥ 0 satisfying





𝜉
𝑖
















𝜕𝑧
∗

𝑖

𝜕𝑥
0

𝑓
0
+

𝜕�̂�
∗

𝑖

𝜕𝑧
1

𝑓
1

𝑥
𝑛−1

0











≤
[

[

∑
𝑖−1

𝑗=1
𝜉
2

𝑗

2 (1 + Θ̂
2
) (1 + 𝜂

2

𝑖−1
)

+ 𝜉
2

𝑖
𝜛
]

]

Θ

≤
[

[

∑
𝑖−1

𝑗=1
𝜉
2

𝑗

2 (1 + Θ̂
2
) (1 + 𝜂

2

𝑖−1
)

+ 𝜉
2

𝑖
𝜛
𝑖
]

]

Θ̃

+

1

4

𝑖−1

∑

𝑗=1

𝜉
2

𝑗
+ 𝜉
2

𝑖
𝜛
𝑖
√
Θ̂
2
+ 1

(42)

since





𝑔
0
𝜉
𝑖−1

(�̂�
𝑖
− �̂�
∗

𝑖
)




≤

1

4

𝜉
2

𝑖−1
+ 𝜉
2

𝑖
𝛾
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂) (43)

for a smooth function 𝛾
𝑖
≥ 0.

Substituting (39), (42), and (43) into (36) gives

�̇�
𝑖
≤ (𝑔

0
+

𝑖

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝑛 − 𝑖 +

5

4

) (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖−1
)

+ (Ψ
𝑖−1

−
̇

Θ̂) (Θ̃ + 𝜂
𝑖−1

) − 𝑔
0
𝜉
𝑖
�̂�
𝑖+1

+ 𝜉
2

𝑖
[𝜛
𝑖
√
Θ̂
2
+ 1 + 𝜎

𝑖
+ 𝛾
𝑖
]

+
[

[

∑
𝑖−1

𝑗=1
𝜉
2

𝑗

2 (1 + Θ̂
2
) (1 + 𝜂

2

𝑖−1
)

+ 𝜉
2

𝑖
𝜛
𝑖
]

]

Θ̃ + 𝜉
𝑖

𝜕�̂�
∗

𝑖

𝜕Θ̂

̇
Θ̂.

(44)

Define

Ψ
𝑖
= Ψ
𝑖−1

+

∑
𝑖−1

𝑗=1
𝜉
2

𝑗

2 (1 + Θ̂
2
) (1 + 𝜂

2

𝑖−1
)

+ 𝜉
2

𝑖
𝜛
𝑖

𝜂
𝑖
= 𝜂
𝑖−1

+ 𝜉
𝑖

𝜕�̂�
∗

𝑖

𝜕Θ̂

.

(45)

Using (34), it is not difficult to verify that

0 ≤ Ψ
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂)

≤ (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖
) 𝛼
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂)

(46)

for a 𝐶∞𝛼
𝑖
≥ 0.
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Moreover, (44) can be rewritten as follows:

�̇�
𝑖
≤ (𝑔
0
+

𝑖

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝑛 − 𝑖 +

5

4

) (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖−1
)

+ (Ψ
𝑖
−

̇
Θ̂) (Θ̃ + 𝜂

𝑖
) − 𝑔
0
𝜉
𝑖
�̂�
𝑖+1

+ 𝜉
2

𝑖
[𝜛
𝑖
√
Θ̂
2
+ 1 + 𝜎

𝑖
+ 𝛾
𝑖
]

−
[

[

∑
𝑖−1

𝑗=1
𝜉
2

𝑗

2 (1 + Θ̂
2
) (1 + 𝜂

2

𝑖−1
)

+ 𝜉
2

𝑖
𝜛
𝑖
]

]

𝜂
𝑖−1

− 𝜉
𝑖

𝜕�̂�
∗

𝑖

𝜕Θ̂

Ψ
𝑖
.

(47)

By (46), we have














[

[

∑
𝑖−1

𝑗=1
𝜉
2

𝑗

2 (1 + Θ̂
2
) (1 + 𝜂

2

𝑖−1
)

+ 𝜉
2

𝑖
𝜛
𝑖
]

]

𝜂
𝑖−1

+ 𝜉
𝑖

𝜕�̂�
∗

𝑖

𝜕Θ̂

Ψ
𝑖














≤

1

8

𝑖−1

∑

𝑗=1

𝜉
2

𝑗
+ 𝜉
2

𝑖
𝜛
𝑖
√𝜂
2

𝑖−1
+ 1 +











𝜉
𝑖

𝜕�̂�
∗

𝑖

𝜕Θ̂











(𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖
) 𝛼
𝑖

≤

1

4

𝑖−1

∑

𝑗=1

𝜉
2

𝑗
+ 𝜉
2

𝑖
𝜛
𝑖
√𝜂
2

𝑖−1
+ 1 + 𝜉

2

𝑖

𝑖

∑

𝑗=1

̃
𝛽
𝑖,𝑗
.

(48)

The last inequality from the following relation





𝜉
𝑖
















𝜉
2

𝑗

𝜕�̂�
∗

𝑖

𝜕Θ̂

𝛼
𝑖











≤

1

8

𝜉
2

𝑗
+ 𝜉
2

𝑖
̃
𝛽
𝑖,𝑗
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂) , (49)

where ̃
𝛽
𝑖,𝑗

≥ 0, 1 ≤ 𝑗 ≤ 𝑖 − 1 are smooth functions and
̃
𝛽
𝑖,𝑖

≥ |𝜉
𝑖
(𝜕𝑧
∗

𝑖
/𝜕Θ̂)𝛼

𝑖
|, is a smooth function.

Putting (47) and (48) together, we arrive at

�̇�
𝑖
≤ (𝑔
0
+

𝑖

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝑛 − 𝑖 + 1) (𝜉

2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖−1
)

+ (Ψ
𝑖
−

̇
Θ̂) (Θ̃ + 𝜂

𝑖
) + 𝑔
0
𝜉
𝑖
�̂�
𝑖+1

+ 𝜉
2

𝑖
[𝜛
𝑖
√
Θ̂
2
+ 1 + 𝜎

𝑖
+ 𝛾
𝑖
+ 𝛾
𝑖
] ,

(50)

where 𝛾
𝑖
= 𝜛
𝑖
√𝜂
2

𝑖−1
+ 1 + ∑

𝑖

𝑗=1
̃
𝛽
𝑖,𝑗
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂).

Now, it easy to see that the smooth virtual controller

�̂�
∗

𝑖+1
= −

1

𝑔
0

𝜉
𝑖
[𝑛 − 𝑖 + 1 + 𝜅

𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂)]

:= 𝜉
𝑖
𝛽
𝑖
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂)

𝜅
𝑖
= 𝜛
𝑖
√
Θ̂
2
+ 1 + 𝜎

𝑖
+ 𝛾
𝑖
+ 𝛾
𝑖

(51)

renders

�̇�
𝑖
≤ (𝑔

0
+

𝑖

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝑛 − 𝑖 + 1) (𝜉

2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑖
)

+ 𝑔
0
𝜉
𝑖
(�̂�
𝑖+1

− �̂�
∗

𝑖+1
) + (Ψ

𝑖
−

̇
Θ̂) (Θ̃ + 𝜂

𝑖
) .

(52)

As 𝑖 = 𝑛, the last step, we can construct explicitly
a change of coordinates (𝜉

1
, . . . , 𝜉

𝑛
), a positive-definite and

proper Lyapunov function 𝑉
𝑛
= 𝑉
𝑛−1

+ 𝜉
2

𝑛
/2, and a smooth

controller 𝑢∗
1
= −𝜉
𝑛
𝛽
𝑛
such that

�̇�
𝑛
≤ (𝑔

0
+

𝑛

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑛
)

+ 𝜉
𝑛
(𝑢
1
− 𝑢
∗

1
) + (Ψ

𝑛
−

̇
Θ̂) (Θ̃ + 𝜂

𝑛
) .

(53)

Therefore, by choosing the smooth actual control 𝑢
1
and

update law for Θ̂ as

𝑢
1
= −𝜉
𝑛
𝛽
𝑛
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂) (54)

̇
Θ̂ = Ψ

𝑛
(𝑥
0
, 𝜉
1
, . . . , 𝜉

𝑖
, Θ̂
0
, Θ̂) (55)

we have

�̇�
𝑛
≤ (𝑔
0
+

𝑛

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑛
) . (56)

In Section 4, we will show that an appropriate choice of
the design parameters 𝑘

0
and 𝜀
𝑖
guarantees the asymptotic

convergence of the state (𝑥
0
, 𝑥) of the original system (1) in

closed loop with our control laws (7), (8), (54), and (55) as
long as the initial condition 𝑥

0
(𝑡
0
) is nonzero. It will also be

shown in the next section how to handle the singular case
where 𝑥

0
(𝑡
0
) is zero.

4. Switching Controller and Main Result

In the preceding section, we have given controller design for
𝑥
0
(𝑡
0
) ̸= 0. Without loss of generality, we can assume that

𝑡
0
= 0. Now, we discuss how to select the control laws 𝑢

0
and

𝑢
1
when 𝑥

0
(0) = 0. Choose 𝑢

0
as

𝑢
0
= 𝑥
0
𝑔
0
+ 𝑢
∗

0
, 2𝑢

∗

0
> 0, (57)

where 𝑔
0
is given by (7).

Choosing the same Lyapunov function (9), its time
derivative is given by

�̇�
0
≤ −𝑘
0
𝑥
2

0
+ 𝑢
∗

0
𝑥
0

(58)

which leads to the boundedness of 𝑥
0
and consequently the

bound of Θ̂
0
as well. Consequently, 𝑥

0
does not escape and

𝑥
0
(𝑡
𝑠
) ̸= 0 for any given finite 𝑡

𝑠
> 0. Thus state-scaling for

the control design can be carried out.
During the time period [0, 𝑡

𝑠
), using 𝑢

0
defined in (57),

new control law 𝑢
1

= 𝑢
∗

1
(𝑥
0
, 𝑥, 𝜇) and new update law
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�̇� = ]∗(𝑥
0
, 𝑥, 𝜇) can be obtained by following the control

procedure described above to the original x-system in (1).
Then we can conclude that the x-state of (1) cannot blow up
during the time period [0, 𝑡

𝑠
). Since 𝑥(𝑡

𝑠
) ̸= 0 at 𝑡

𝑠
, we can

switch the control input𝑢
0
and𝑢
1
to (7) and (54), respectively.

We are now ready to state the main theorem of our paper.

Theorem 8. Under Assumption 1, if the above switching con-
trol strategy is applied to (1) with an appropriate choice of the
design parameters 𝑘

𝑖
and 𝜀


𝑖
𝑠, uncertain system (1) is globally

regulated at the origin. Furthermore, the estimated parameters
are bounded.

Proof. According to the above analysis, it suffices to prove the
statement in the case where 𝑥

0
(0) ̸= 0.

Since we have already proven that lim
𝑡→∞

𝑥
0
(𝑡) = 0

and Θ̂
0
is bounded in Section 3, we just need to show that

lim
𝑡→∞

𝑥(𝑡) = 0 and Θ̂ is bounded. In this case, as a result of
(7), (11), (54), and (55), from (56), it holds that

�̇�
𝑛
≤ (𝑔
0
+

𝑛

∑

𝑘=0

𝜀
2

𝑘
)‖�̃�‖
2
− (𝜉
2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑛
) . (59)

Choose the design parameters 𝑘
0
and 𝜀


𝑖
𝑠 so that

𝑘
0
≥

𝑛

∑

𝑘=0

𝜀
2

𝑘
. (60)

Therefore, we have

�̇�
𝑛
≤ − (𝜉

2

1
+ ⋅ ⋅ ⋅ + 𝜉

2

𝑛
) (61)

which means 𝜉 and Θ̂ are bounded. Furthermore, we can
conclude that 𝜉 → 0 as 𝑡 → ∞ by using LaSalle’s Invariant
Theorem [26]. This implies that 𝑧 → 0 as 𝑡 → ∞. From the
state scaling transformation (15), we conclude that 𝑥 → 0 as
𝑡 → ∞. This completes the proof of Theorem 8.

Remark 9. As seen from (54) and (7), the control law 𝑢
1
may

exhibit extremely large value when 𝑥
0
(𝑡
0
) ̸= 0 is sufficiently

small. This is unacceptable from a practical point of view. It
is therefore recommended to apply (57) in order to enlarge
the initial value of 𝑥

0
before we appeal to the asymptotically

converging controllers (7) and (54).

5. Example

To verify our proposed controller, we consider the following
low-dimensional system with parametric uncertainty:

�̇�
0
= 𝑢
0

�̇�
1
= 𝑢
0
𝑥
2
+ ln (1 + (𝜃𝑥

1
)
2
)

�̇�
2
= 𝑢
1
,

(62)

where 𝜃 is unknown constant parameter. Define Θ = 1 +

𝜃
2; obviously, this system satisfies Lemma 4; that is, | ln(1 +

(𝜃𝑥
1
)
2
)| ≤ |𝑥

1
|Θ.The purpose is to design 𝑢

0
and 𝑢
1
based on

only 𝑦 = (𝑥
0
, 𝑥
1
)
𝑇 such that (𝑥

0
, 𝑥
1
, 𝑥
2
)
𝑇

→ 0 as 𝑡 → ∞.

If 𝑥(0) = 0, controls 𝑢
0
and 𝑢

1
are set as in Section 4

in interval [0, 𝑡
𝑠
), such that 𝑥(𝑡

𝑠
) ̸= 0; then we can adopt

the controls developed below. Therefore, without loss of
generality, we assume that 𝑥(0) ̸= 0.

For simplicity, in the first subsystem, we can choose the
control law 𝑢

0
= 𝑔
0
𝑥
0
and introduce the introduce the state

scaling transformation:

𝑧
1
=

𝑥
1

𝑥
0

, 𝑧
2
= 𝑥
2
. (63)

In new 𝑧-coordinates, the (𝑥
1
, 𝑥
2
)-subsystem of (62) is

rewritten as

�̇�
1
= 𝑔
0
(𝑧
2
− 𝑧
1
) +

1

𝑥
0

ln (1 + (𝜃𝑥
1
)
2
)

�̇�
2
= 𝑢
1
.

(64)

Design observer to reconstruct 𝑧
1
and 𝑧

2
of system (62) as

follows:
̇

�̂�
1
= 𝑔
0
(�̂�
2
− �̂�
1
) + 𝑔
0
𝑘
1
(𝑧
1
− �̂�
1
) , 𝑘

1
= −4

̇
�̂�
2
= 𝑢
1
+ 𝑘
2
(𝑧
1
− �̂�
1
) , 𝑘

2
= −2.

(65)

Then, the estimation error �̃� = (𝑧
1
− �̂�
1
, 𝑧
2
− �̂�
2
)
𝑇 satisfies the

equation

̇
�̃� = 𝑔
0
(

−𝑘
1
− 1 1

𝑘
2

0

) �̃� +

1

𝑥
0

(

ln (1 + (𝜃𝑥
1
)
2
)

0

) . (66)

In this case, we have

𝐴 = (

3 1

−2 0
) . (67)

Solving the matrix equation 𝐴
𝑇
𝑃 + 𝑃𝐴 = 𝐼

2
, we obtain

𝑃 = (

0.500 0.500

0.500 0.100
) . (68)

The eigenvalues of 𝑃 are 0.1910, 1.3090, and thus ‖𝑃‖ =

1.3090.
Using the method given in Section 3, we can design the

adaptive controller as follows:

�̂�
∗

2
= −

1

𝑔
0

𝑧
1
[3 + 𝑔

2

0
𝜀
−2

1
+ 1.604𝜀

−2

0
+
√
Θ̂
2
+ 1] = 𝑧

1
𝛽
1

𝑢
1
= −𝜉
2
[9 + 𝛽

1
+ 𝛽
4

1
+ 𝛽
2

1

√
Θ̂
2
+ 1]

̇
Θ̂ = 𝑧

2

1
(1.604𝜀

−2

0
+ 1)

2

+ 𝜉
2

2
𝛽
2

1
.

(69)

The unknown parameter 𝜃 is assumed to be 1. In simula-
tion, the design parameters are chosen as 𝑔

0
= −1 and 𝜀

0
=

𝜀
1
= 𝜀
2
= 0.25. The simulation results for initial conditions

(𝑥
0
(0), 𝑥
1
(0), 𝑥
2
(0)) = (2, 1, −1) and (�̂�

1
(0), �̂�
2
(0), Θ̂(0)) =

(1, −1, 1) are shown in Figures 1–4. From the figures, it is
clear to see all the closed-loop system states are regulated to
zero and the parameter estimates are bounded as proven in
Theorem 8.
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Figure 1: System states.

The estimation of z1
The estimation of z2
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Figure 2: Observer states.

6. Conclusions

In this paper, a constructive adaptive output feedback control
strategy is presented for a class of nonlinearly parameterized
nonholonomic systems with strong nonlinear drifts. To deal
with the nonlinear parameterization problem, a parameter
separation technique is introduced to transform the non-
linear parameterized nonholonomic system into a linear-
like parameterized nonholonomic system. We estimate only
Θ, the bound of the unknown parameter rather than the
parameter vector 𝜃. This, in turn, results in a minimum
dimension (1D) parameter update law. The controller design
is developed by using the integrator backstepping approach

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

The estimation of Θ

t (s)

Figure 3: Parameter estimate.
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70

u0

u1

t (s)

Figure 4: Control inputs.

based on observer and parameter estimator.With a switching
strategy eliminating the phenomenon of uncontrollability,
the system states asymptotically converge to the origin, while
other signals remaining bounded is guaranteed. Simulation
results have shown the effectiveness and feasibility of the
proposed control strategy.
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