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Abstract—A novel method for estimating parameters of a

dynamic system model is presented using estimates of dynamic
system modes (frequency and damping) obtained from wide area

measurement systems (WAMS). The parameter estimation scheme

is based on weighted least squares (WLS) method that utilizes
sensitivities of the measured modal frequencies and damping to

the parameters. The paper concentrates on estimating the values

of generator inertias but the proposed methodology is general
and can be used to identify other generator parameters such as

damping coefficients. The methodology has been tested using a

wide range of accuracy in the measured modes of oscillations.
The results suggest that the methodology is capable of estimating

accurately inertias and replicating the dynamic behavior of the

power system. It has been shown that the damping measurements
do not influence estimation of generator inertia. The method has

overcome the problem of observability, when there were fewer

measurements than the parameters to be estimated, by including
the assumed values of parameters as pseudo-measurements.

Index Terms—Dynamic power system modeling, parameter es-

timation, small signal analysis, synchronous generators, wide area

measurements.

NOMENCLATURE

Rotor angle.

Rotor angular velocity.

Rotor inertia constant.

Damping coefficient.

Synchronizing torque coefficient.

q-axis voltage behind transient reactance.

d-axis voltage behind transient reactance.

q-axis voltage behind subtransient reactance.

d-axis voltage behind subtransient reactance.

d-axis open circuit transient time constant.

q-axis open circuit transient time constant.
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d-axis open circuit subtransient time constant.

q-axis open circuit subtransient time constant.

d-axis transient reactance.

q-axis transient reactance.

d-axis subtransient reactance.

q-axis subtransient reactance.

q-axis armature current.

d-axis armature current.

I. INTRODUCTION

K NOWLEDGE of parameter values for dynamic gener-

ator models is of paramount importance for creating ac-

curate models for power system dynamics studies. Tradition-

ally, power systems consisted of a relatively limited number

of large power stations and the values of generator parameters

were provided by manufacturers and validated by utilities. Re-

cently however, with the increasing penetration of distributed

generation, the accuracy of the models and parameters of many

small generators connected to the system cannot be guaranteed.

This has motivated the effort reported in this paper to develop a

methodology to estimate the parameter values from online mea-

surements. One application of such a methodology could be es-

timation of parameters of dynamic equivalents.

Traditionally dynamic equivalents have been used to repre-

sent an external power system [1]. Recently, dynamic equiva-

lents are also used to represent the combined effect of a large

number of small (usually renewable) power stations embedded

in the distribution network [2]. [3] proposed an artificial neural

network (ANN)-based boundary matching technique to derive

dynamic equivalents. [4] developed a grey-box approach for

validating dynamic equivalents of active distribution network

cell. Quite often however, the actual observed oscillations may

not match the model that combines a detailed internal network

model and an external network equivalent. There could be two

possible reasons for the discrepancy. Firstly the external equiv-

alent model could have been derived using inaccurate infor-

mation. Secondly the external equivalent could have been de-

rived for certain operating conditions that were different from

the actual conditions studied or, in other words, the model was

not adaptive and therefore could not reflect the actual dynamic

system conditions at hand. For example, if some generators in

the external system are disconnected, the values of parameters

of the equivalent would be changed. An adaptive model is there-

fore desirable for online system studies, whereby the parameters

of the equivalent would change with operating conditions and

reveal the physical system characteristics. This paper addresses
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the above concerns by developing a methodology for online es-

timation of the parameter values of a power system dynamic

model by employing the values of dynamic system modes, i.e.,

modal frequencies and damping, calculated from online mea-

surements using wide area measurement systems (WAMS). The

aim is to minimize the differences between the observed and

modeled modes of oscillation. It should be emphasized that the

proposed methodology does not aim at developing the dynamic

model itself but rather modifying its parameter values using

WAMS measurements. The developed methodology is general

and can be used to identify any generator parameters but, as the

first step, this paper concentrates on estimating the values of

generator inertias.

As the input, the proposedmethodology requires the values of

modal frequencies and damping calculated from online WAMS

measurements. We do not deal in this paper with the problem of

how to calculate the modes of oscillation as there are many dif-

ferent approaches proposed in the literature. They usually rely

on signal processing methods for extracting the information of

power system oscillations from measurements of power flow,

frequency or voltage angle difference. Measurement data used

can be usually divided into three types [5]: ringdown signal,

ambient signal and probing signal. Ringdown signal normally

occurs after large system disturbances, while ambient signal is

obtained when the system is subject to continuous small system

disturbances such as load variation. Probing signal is procured

when a system is injected with testing pseudo-random noise

intentionally.

Approaches such as Prony analysis utilize ringdown sig-

nals following a large disturbance and are well established

and widely employed [6]–[8]. In contrast, ambient data

(small-signal) based approaches estimate system dynamic

modes continuously on a near real time basis using approaches

such as Wiener-Hopf equations [9], recursive methods [5],

[10]–[12], or empirical mode decomposition [13]. Continuous

modal measurements contribute significantly to power system

management [14].

We assume in this paper that the dynamic modes (frequency

and damping) have been estimated with certain accuracy by one

of the established techniques and the focus is on the estimation

of the values of generator parameters without considering in

detail a particular mode estimation technique.

The problem is stated as follows. It is assumed that the system

model, i.e., the models of generators and the transmission net-

work, is known but some of the generator parameters may not

be known accurately. To update the values of parameters we use

measurements of oscillatory system modes, i.e., the frequency

and damping, obtained fromWAMS. We compare the observed

modes with the calculated ones, obtained using the assumed

system model with the initial guesses of parameter values. The

objective is to correct the values of parameters such that the ob-

served andmodel-derivedmodes are as close as possible. One of

the main advantages of the methodology is that it can be used

for a continuous updating of the dynamic equivalent model if

continuous estimation of frequency and damping is employed

from ambient data. The transmission network parameters are

assumed to be known.

The stated problem is solved by proposing an effective on-

line updating scheme for dynamic model parameters. Using on-

line estimates of system modes, the modal sensitivity analysis

(MSA) can locate the generators in which the parameters varia-

tion causes the change of oscillatory characteristics. The modal

assurance criterion (MAC) pairs the observed oscillatory modes

with those in the original model. Then a weighted-least-squares

(WLS) scheme is implemented for calculating parameters up-

dates based on the iterative Newton-Raphson algorithm. The

proposed iterative estimation method is shown to be effective

even when the measurements are severely degraded by noise.

When the number of measurements is less than the number of

parameter values to be estimated, initial guesses of the param-

eter values are added as pseudo-measurements. This is shown to

work well although the estimation accuracy obviously depends

on the accuracy of initial values of parameters. Throughout the

paper, we assume that no bad measurement data are present.

The rest of the paper is organized as follows. An introduction

to power system dynamics analysis is presented in Section II.

A novel adaptive parameter estimation method is proposed in

Section III. In Section IV, detailed instructions on the simulation

setup are given, while simulation results are comprehensively

discussed in Section V.

II. POWER SYSTEM DYNAMICS ANALYSIS

A. Power System Dynamic Model Description

Under small system disturbances, the nonlinear power system

model can be linearized at an equilibrium point and represented

as

(1)

where is the vector of the state variables and is the state

matrix.

Different synchronous generator models that are fundamental

for creating (1) are comprehensively discussed in [1]. In this

paper, the sixth-order synchronous generator model is used due

to its closeness to reality. The equations for this model are given

in the Appendices.

B. Modal Sensitivity Analysis

In the use of modal information for parameter estimation, the

principle is that modal measurements should be sensitive to the

parameters. In other words, changes in the parameters should

adequately cause changes in modal frequency or damping. It

can be interpreted physically that parameters of a generator in

a coherent group do not normally affect local modes in another

coherent group, but they may affect considerably local modes

in their own group and also inter-area modes. Hence, if less

sensitive modes are selected for estimating a parameter value,

the results of estimation may be inaccurate. Thus, sensitivity

analysis is an important step in estimation. For a multi-machine

system represented as in (1), the standard eigenvalue analysis

results in

(2)

where

th right eigenvector (mode shape);

th eigenvalue;
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modal damping of the th mode;

modal frequency of the th mode.

Left-multiplying by left eigenvector and substituting

gives

(3)

The sensitivity of a particular mode to a parameter can then

be represented as

(4)

with the th right eigenvector is given as

(5)

and the corresponding th left eigenvector

(6)

The full modal sensitivity matrix is then expressed as

...
. . .

...
. . .

...

...
. . .

...
. . .

...

(7)

The eigenvalues corresponding to the oscillatory modes are

normally complex, with the real part equal to the reciprocal of

the damping time constant and the imaginary part equal to the

frequency of oscillation. Thus the sensitivity matrix can be fur-

ther separated into frequency sensitivity and damping sensi-

tivity , and the resultant parts are written as

(8)

Practically, it is not necessary, or possible, to obtain the sen-

sitivity for all the modes in the above sensitivity matrices due

to incomplete measurements or prior selection of reliable mea-

surements.

The methodology presented in this paper is general and can

be used to estimate the values of any generator parameters. The

focus of this paper is on the demonstration of the methodology

to estimate the values of generator inertias due to their strong

influence on the frequency of oscillation.

For the single sixth-order generator described in the

Appendices, the sensitivity of the state matrix with respect

to inertia constant is derived in (9) which is used in (4) for

determining the modal sensitivity matrix. Index “ ” has been

omitted for all the terms to simplify notation:

(9)

where and .

C. Modal Assurance Criterion

As suggested, selected sensitive modes should be used in the

estimation methodology. For a continuous estimation process of

certain parameters under a particular operating condition, the se-

lected modes should be the same at different time points. More-

over, the iterative algorithm proposed in this paper requires that

the selected modes used in each iteration are the same modes.

However, in practice it is quite difficult to differentiate one se-

lected mode from unselected ones when damping and frequency

values are close. As a consequence of mis-pairing, estimated pa-

rameters may be wrong or the algorithm may diverge. To over-

come this, MAC is introduced for mode pairing [15]. The MAC

between two modes is defined as

(10)

where is a right eigenvector (mode shape vector) calculated

from the analytical model with an initial guess and is a mea-

sured right eigenvector.

TheMAC in (10) takes on values from 0, representing no con-

sistent correspondence, to 1, meaning a consistent correspon-

dence. If the value of MAC is close to 1, the two modes are con-

sidered to be highly correlated and therefore may be assumed to

be the samemode. If it is close to 0, then they are less correlated.

The full description of MAC is outside the scope of this paper

but can be found in [16].

III. PARAMETER ESTIMATION

A. Weighted Least Squares Estimation

To derive an optimal parameter update scheme, we follow the

classical WLS estimation [17]. For a mode , by neglecting

the higher order terms in its full Taylor expansion at a given

value , we can derive a Newton-Raphson iterative scheme to

calculate the values of parameters for iterations:

(11)

means the initial values of the subscripted variable;

is the correction to the value of the parameter

calculated in iteration ; is the difference

between the measured eigenvalue and its estimate in th it-

eration, , calculated using ; is the value of the modal

sensitivity matrix calculated using .

By separating the sensitivity matrix into real and imaginary

parts, (11) can be rewritten as

(12)

where is the frequency sensitivity matrix calculated based

on and is the damping sensitivity matrix—see (8).

If the number of measurements is higher than the number

of parameters to be estimated, the optimal solution can be ob-

tained by applying the WLS method, i.e., by minimizing the

objective function equal to the sum of weighted squares of

errors between the measured and estimated value of frequency

and damping:

(13)
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where is the frequency error calculated

using the updated parameters; is similarly

the damping error; and are diagonal weighting ma-

trices. The weights are equal to the reciprocals of the variance of

the corresponding measurements which depend on a particular

methodology used to calculate the values of modal frequency

and damping. The two terms in (13) represent different physical

quantities (frequency and damping estimation errors) but their

influence on the estimation of the parameters can be taken into

account together by weighting the squared estimation errors by

the measurement variances.

The optimal solution is obtained when [17]

and is expressed as

(14)

It should be noted that (14) will be underdetermined when

the number of unknown parameters exceeds the number of mea-

sured modes. Thus, there would be an infinite number of sets of

parameter differences that satisfy (14). To overcome this, initial

guesses of the parameter values may be treated as pseudo-mea-

surements so that the objective function (13) is further expanded

by adding a term corresponding to the pseudo-measurements

(15)

where is the initial guesses for the unknown parameters and

is the parameter weightingmatrix which is a diagonalmatrix

and positive definite.

Adding the pseudo-measurements has an additional advan-

tage that it restricts the parameter changes to values close to the

initial guesses. In effect, the assumed values of parameters may

not be entirely accurate but they are close to the true values.

It will be shown that treating the initial guesses of parameters

values as pseudo-measurements significantly improves the ac-

curacy of parameter estimation, even when the set of mode mea-

surements was incomplete. Obviously adding the last term in

(15) makes sense only if the initial guesses are accurate. Hence

the last term in (15) should only be added for those parameters

that are known with relatively good confidence.

The diagonal elements of are the reciprocals of the esti-

mated variance of the corresponding parameters. To determine

the variance, it is useful to have some knowledge of the range of

variation of inertia constants from their initial guesses in order

to set the levels of uncertainty in the parameters, so that pa-

rameters with smaller deviations from their initial guesses are

weighted by larger weights.

Finally, it should be added that the approach proposed in this

paper is based on standard WLS estimation where no bad data

are assumed to be present. Obviously for the methodology to be

of practical use the problem of robustness in the presence of bad

data must also be addressed. This is a subject of further research.

As the power system model is nonlinear, the optimal solution

of (15) can be re-written as an iterative equation

(16)

where and are the estimated parameters at th iter-

ation and th iteration respectively. and are the estimated

Fig. 1. Iterative parameter estimation.

modal frequency and damping, respectively. and are the

measured modal frequency and damping.

B. Iterative Parameter Estimation

The iterative parameter estimation with pseudo-measure-

ments is illustrated in Fig. 1. For the variant of the methodology

shown by (16) that includes pseudo-measurements, the param-

eter initial guesses are involved in the “algorithm” block in

the figure. When the updated parameters are all close to those

from the previous estimate, convergence is reached and the

algorithm returns the results of the last estimates.

IV. SIMULATION SETUP

A. Problem Description

Before any newmethodology can be implemented in practice,

it should be tested in a controlled environment to determine its

accuracy and efficiency. Hence this paper describes the results

of tests in which modal frequencies were calculated not from

actual WAMS measurements but rather derived from a power

system model. This has allowed us to assess the accuracy of the

parameter estimation.

The simulation set up was as follows. Using the systemmodel

the corresponding eigenvalues were calculated for the electro-

mechanical modes of oscillation. Then real-time modal mea-

surements were simulated by adding random noise to the eigen-

values and were used to estimate the values of model param-

eters using (16). The initial guesses of parameter values were

assumed to be different than the actual ones (which in practice

are not known). This setup has made it possible to evaluate the

accuracy of estimation by comparing the estimated and the ac-

tual values of the parameters.

Generally both frequency and damping could be used for pa-

rameter estimation however it is well-known that generator in-

ertias affect the oscillation frequency much more than they do

the corresponding damping. This can be easily confirmed by a
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Fig. 2. New York-New England system [18].

TABLE I

ASSUMED AND ACTUAL INERTIA CONSTANTS IN NY-NE SYSTEM

sensitivity analysis using (4). Consequently, we have used fre-

quency measurements only in the estimation of generator iner-

tias, hence neglecting the damping term in (16). Experiments

have confirmed that adding the damping term did not improve

significantly the inertia estimation.

In the simulations we have tested two versions of the pro-

posed methodology. The first used frequency measurements

only-see (13), while the second utilized both frequency mea-

surements and pseudo-measurements (i.e., assumed values of

the parameters)—see (15).

The 16-generator New York-New England (NY-NE) system

from [18], shown in Fig. 2, has been used in the simulations. The

system contains five coherent groups, shown in Fig. 2. separated

by dashed lines. One generator from each coherent group is se-

lected where the inertia constants of G1, G10, G14, G15, and

G16 will be the parameters to be estimated. The inertia con-

stants of these generators are indicated as M1, M10, M14, M15,

and M16. The assumed and actual values of these parameters

(which would normally be unknown) are given in Table I. The

percentage differences between them are also presented in the

table and are in the range 10%–20%. The remaining generator

parameters and the transmission network model are assumed to

be perfectly known.

TABLE II

OSCILLATORY MODES OF NY-NE SYSTEM

B. Eigenvalue and Modal Sensitivity Analysis

With the initial guesses for M1, M10, M14, M15, and M16,

the oscillatory modes (eigenvalues) have been calculated and

are shown in the second column of Table II. As the system con-

tains 16 generators, there are 15 independent modes of electro-

mechanical oscillations. The real and imaginary parts of the

eigenvalues are denoted as and , respectively, in (16). The

actual oscillatory modes (which would normally be unknown)

are given in the third column of the table. The mode measure-

ments and are simulated by perturbing the actual oscil-

latory modes shown in the last column of Table II by adding

random errors as shown later in the paper. Table II shows that

modes 2 and 6 are most affected by the parameter changes while

modes 12 and 14 are less affected. The other modes are not sig-

nificantly affected.

The direct analytical representation of calculating sensitivity

of modal frequency to generator inertias can be found in [19].

The sensitivities are presented in Fig. 3 with the vertical axis in-

dicating frequency sensitivity and the horizontal axis indicating

total 15modes. For example the first diagram labelledM1 shows

the sensitivities of all the modes to inertia M1. Fig. 3 shows that

the modal sensitivity to a particular parameter can vary signifi-

cantly and confirms the results shown in Table II. As shown in

the first two diagrams in Fig. 3, the sensitivities of modes 2 and

6 are the highest and they are influenced by the disturbed iner-

tias M1 and M10. The changes of M14, M15, and M16 can be

mainly reflected in the changes of the frequencies of mode 12,

14, and 15. Especially, mode 12 can reveal the changes in M14,

M15, and M16 at the same time.

C. Measurement Errors and Weighting Matrices

Error level of estimation of modal frequency and damping

varies and depends on a particular estimation method used,

measuring devices and locations. For investigating the robust-

ness and feasibility of the proposed methodology, a range of

error levels were studied. In this paper representative results are

shown for the frequency errors equal to 1.0%, 5.0%, and 10.0%.

The weighting matrix for parameters, , was calculated based

on estimated standard deviations of 10% for M1, M10 and

M15, 15% for M14, and 25% for M16 from their initial values.
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Fig. 3. Frequency sensitivity (vertical axis) of all the modes (shown on the

horizontal axis) to inertia constants M1, M10, M14, M15, and M16.

D. Observability

For a power system with machines there are inde-

pendent modes of electromechanical oscillations which could

possibly bemeasured. Hence it is only possible to estimate at the

maximum inertias and we have to assume that at least

one inertia value is known with a high accuracy. In practice, the

number of measurable modes of oscillation is significantly less

as some modes can be weak (i.e., have a small amplitude) or so

well-damped that they are difficult to observe.

To test the influence of measurement redundancy, three char-

acteristic sets of measurements have been selected:

The full observability set contains fifteen dynamic modes

shown in Table II which has high redundancy as there are only

five inertias to be estimated. The set contains six measured

modes to estimate five inertias. Referring to the modal sensitiv-

ities shown in Fig. 3, all the measured modes in , apart from

mode 11, are sensitive to the changes in the selected parameters.

As mode 11 gives no information about the parameters, case ii)

constitutes marginal observability.

Set contains only three measured modes so it corresponds

to an unobservable case. The three modes in are highly as-

sociated with all parameters to be identified. The observability

problem of case is overcome by adding the pseudo-measure-

ments ( in (16)).

V. SIMULATION RESULTS

A. Estimation Using Frequency and Pseudo-Measurements

The inertia estimation errors and standard deviations (SD)

(both in %) based on full observability for different

levels of error of the frequency measurements are presented

in Table III. The errors of M1, M10, M14, M15 and M16 are

indicated as , , , , and , respectively. All the

results in this section are averages obtained from 100 random

Monte Carlo simulation runs.

The results show that the proposed methodology works well

as the inertia estimation errors have been significantly reduced

TABLE III

ESTIMATION BASED ON

TABLE IV

ESTIMATION BASED ON

TABLE V

ESTIMATION BASED ON

compared with the errors shown in Table I. When the error of

the frequency was increased, the estimation accuracy dropped.

The results of the estimation based on (i.e., marginal ob-

servability) are shown in Table IV. The results show a similar

pattern to those when estimation was based on . With the

highly associated modes included, the group of measurements

which included more redundancy did not contribute much to the

accuracy of the estimates nor the estimating speed, since the re-

dundant measurements were not involved in improving the es-

timation process due to their low sensitivity.

The set contained fewer measurements than inertia con-

stants to be estimated. The results in Table V showed that the

parameters could be still estimated with high accuracy due to

inclusion of pseudo-measurements. The accuracy of parameter

estimation was similar to that using sets or .

Recall that the aim of estimation is minimization of the fre-

quency estimation errors. Hence Tables VI–VIII show the mean

errors (in %) between the estimated modal frequencies, calcu-

lated using the modified parameter values, and the actual fre-

quencies for , , and . For a small frequency measurement

error (1%) in set , the large frequency estimation errors are

observed for the modes associated with the estimated inertias:

2, 6, 12, 14, 15 (see Fig. 3). The reason is that the pseudomea-

surements are forcing the objective function towards the initial

values of inertias at the cost of increased frequency errors.When

the frequency measurement error was increased to 10%, that ef-

fect was reduced as the frequency measurement errors were in

the same range as the inertia estimation errors.



2860 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 6, NOVEMBER 2014

TABLE VI

MEAN ERRORS OF

TABLE VII

MEAN ERRORS OF

TABLE VIII

MEAN ERRORS OF

B. Estimation When Not Using Pseudo-Measurements

The methodology was also tested for using frequency

measurements only, i.e., without using the assumed values

of inertias as pseudo-measurements. This approach could not

be applied to the inadequate measurement case , since

the measurement set was underdetermined and therefore an

infinite set of solutions could fit the objective function. The

estimation using this methodology in terms of and

showed that it lacked robustness and did not always converge.

The reason for non-convergence was the high nonlinearity

of the power system dynamic model. It was found that the

convergence of the algorithm was highly dependent on initial

inertia guesses and the values of frequency measurement er-

rors. Table IX shows the percentage of divergence cases in 100

random Monte Carlo simulation runs. Generally, the number

of divergence cases increased with the growing frequency

measurement errors. The overall conclusion was therefore that

pseudomeasurements have to be added to the measurement set

to ensure convergence.

TABLE IX

PERCENTAGE OF DIVERGENCE

VI. CONCLUSION

A novel algorithm was developed for estimating the values

of dynamic model parameters based on dynamic modal infor-

mation. The aim is to minimize the differences between the ob-

served and modeled modal frequency and damping. One pos-

sible application of the methodology is adapting the parameters

of a dynamic equivalent to changing operating conditions which

are different to the ones used when developing the equivalent.

The focus of this paper was on the estimation of generator

inertia values, however the proposed methodology is general

and not confined to inertia estimation. The methodology can

therefore be applied to estimation of other parameters such as

e.g. the damping coefficients. The methodology is iterative and

utilizes the framework of WLS estimation. The methodology

effectively circumvented the technical barrier for pairing modal

measurements when they were close in frequency or damping

by using MAC.

The methodology has been tested using a wide range of

accuracies in the measured frequency of oscillations. The

results suggest that the methodology is capable of estimating

accurately inertias and replicating the dynamic behavior of

the power system. Simulations also have shown that it was

necessary to use pseudomeasurements of the assumed values

of parameters to ensure convergence of the algorithm. The

pseudomeasurements also helped to overcome the problem of

observability when there were fewer measurements than the

parameters to be estimated.

APPENDIX

The six-order synchronous generator model is given as

(17)

The elements in the state matrix of (17) are calculated as

follows:

(18)
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(19)

(20)

(21)
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