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Clinically deployed deep brain stimulation (DBS) for the treatment of Parkinson’s

disease operates in an open loop with fixed stimulation parameters, and this may

result in high energy consumption and suboptimal therapy. The objective of this

manuscript is to establish, through simulation in a computational model, a closed-

loop control system that can automatically adjust the stimulation parameters to recover

normal activity in model neurons. Exaggerated beta band activity is recognized as a

hallmark of Parkinson’s disease and beta band activity in model neurons of the globus

pallidus internus (GPi) was used as the feedback signal to control DBS of the GPi.

Traditional proportional controller and proportional-integral controller were not effective

in eliminating the error between the target level of beta power and the beta power under

Parkinsonian conditions. To overcome the difficulties in tuning the controller parameters

and improve tracking performance in the case of changes in the plant, a supervisory

control algorithm was implemented by introducing a Radial Basis Function (RBF)

network to build the inverse model of the plant. Simulation results show the successful

tracking of target beta power in the presence of changes in Parkinsonian state as

well as during dynamic changes in the target level of beta power. Our computational

study suggests the feasibility of the RBF network-driven supervisory control algorithm

for real-time modulation of DBS parameters for the treatment of Parkinson’s disease.

Keywords: Parkinson’s disease, feedback signal, beta power, RBF neural network, supervisory control algorithm

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder resulting from death of
dopaminergic neurons in the substantia nigra (Titcombe et al., 2001; Novikova et al., 2006; Bras
et al., 2008; Jankovic, 2008; de Paor and Lowery, 2009). Deep brain stimulation (DBS), that delivers
high-frequency electrical pulses via an implanted pulse generator to focal targets in the basal
ganglia (BG) including the subthalamic nucleus (STN), the globus pallidus internus (GPi), or the
ventrolateral thalamus (Vim), is a widely used therapy for treating PD when drug therapy such as
the administration of levodopa no longer provides adequate control of symptoms (Haeri et al., 2005;
Kiss et al., 2007; Vidailhet et al., 2007; Mehta and Sethi, 2009; Follett et al., 2010; Santaniello et al.,
2011). Present open-loop DBS delivers invariant stimulation with parameters selected manually
based solely on previous empirical evidence. Pre-programmed stimulation is applied regardless of
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changes in the patient’s clinical symptoms or underlying
physiological activity, and open-loop DBS is limited in terms of
efficacy, side effects and efficiency (Modolo et al., 2012; Popovych
and Tass, 2012; Priori et al., 2012).

Optimization of stimulation parameters according to the
individual and time-varying needs of patients is necessary to
improve the treatment of PD (Androulidakis et al., 2008; Steiner
et al., 2017). Several studies suggested that closed-loop DBS
is an effective approach to improve therapeutic efficacy while
limiting side effects and prolonging battery life (Doshi et al., 2003;
Rosin et al., 2011; Little et al., 2013; Wu et al., 2015). Inspired
by successful clinical use of closed-loop stimulation based on
ECoG recordings in the treatment of epilepsy, this approach
was initially adopted for DBS parameter modulation where the
stimulation signal was switched on when beta oscillatory power
exceeded a pre-set threshold in a primate model of PD (Little
et al., 2013) and was subsequently extended to a dual threshold
algorithm (Velisar et al., 2019). The design of closed-loop
DBS, which uses a feedback signal and real-time adjustment of
stimulation parameters, is considered the next frontier in the field
of neuromodulation (Pizzolato andMandat, 2012; Broccard et al.,
2014; Hebb et al., 2014; Arlotti et al., 2016a; Swann et al., 2018).

A range of challenges are associated with closed-loop DBS
including detectable control signals that are stable and robust in
the long term (Little and Brown, 2012; Hoang et al., 2017; Steiner
et al., 2017), understanding the relationship between patient
states and brain control signals (Buzsáki et al., 2012), closed-
loop control algorithms for automatic adjustment of stimulation
parameters (Pirini et al., 2009; Guo and Rubin, 2011; Gorzelic
et al., 2013), and comparisons of open-loop versus closed-
loop DBS and clarification of their underlying mechanisms
(Parastarfeizabadi and Kouzani, 2017). Therefore, the objective
of this manuscript is to develop a computational model-based
closed-loop scheme to adjust automatically the stimulation
parameters for suppressing abnormal oscillatory activity in the
BG. Local field potential (LFP) signals directly recorded from
the DBS electrode appear to be a promising source of feedback
signals (Mazzoni et al., 2015), and beta-band oscillations in the
LFP are related to bradykinesia and rigidity in persons with PD
(Beudel et al., 2017; Rosa et al., 2017; Deffains and Bergman, 2019;
Lofredi et al., 2019; Montgomery, 2020). Here, a biophysically-
based computational network model serves as the plant for the
design of closed-loop control systems, fromwhich LFP signals are
obtained to simulate clinically detectable and recordable signals.

The highly nonlinear dynamics of the cortex-basal ganglia-
thalamus network make the selection of controller parameters a
substantial challenge (Kumaravelu et al., 2016). For traditional
proportional-integral-derivative (PID) control, it is difficult to
select appropriate controller gains, and the dependence on the
precise mathematical model of the plant means that control
accuracy cannot be guaranteed (Su et al., 2019). Neural network
control has several potential advantages in this application. First,
the capacity of neural network controllers to represent arbitrary
functions avoids the complex mathematical analysis required for
traditional adaptive control theory. In addition to modeling the
complex and non-linear plant, neural networks can also act as
the controller and continuously adjust the internal connection

weights according to learning rules to minimize a given
performance index. Thus, a supervisory control method based on
radial basis function (RBF) neural networks was developed in this
manuscript. In section “Materials andMethods,” we introduce the
feedback signal selected for closing the loop of DBS and detail the
design of the closed-loop control system. The control effects of
a traditional controller and the intelligent supervisory controller
are analyzed and compared in section “Results,” and the results
are discussed in section “Discussion.” The proposed algorithm
adaptively produced effective stimulation signals in response to
changes in the state (plant) and the reference (target) signal.

MATERIALS AND METHODS

Cortical-Basal Ganglia-Thalamus
Network Model
A biophysically-based model of the cortex-basal ganglia-
thalamus network (Kumaravelu et al., 2016), modified from the
original Rubin-Terman model (Rubin and Terman, 2004), was
adopted as a platform to develop and evaluate the controllers.
The model included representations of neurons in cortex (CTX),
striatum (STR) [sum of direct striatum (dSTR) and indirect
striatum (idSTR)], STN, globus pallidus (GP) (sum of externa
part GPe and interna part GPi) and thalamus (TH), and all
the nuclei were interconnected through either excitatory or
inhibitory synaptic connections to form a network. Each nucleus
contained 10 single-compartment model neurons (Figure 1).

The neurons of the STN, GP, TH, and STRweremodeled using
Hodgkin-Huxley (HH) type equations:

C dvSTN
dt

= −INa − IK − Il − IT − ICaK − Ia − IL − Isyn

C dvGP
dt

= −INa − IK − Il − IT − ICa − Iahp − Isyn + Iapp_GP

C dvTH
dt

= −INa − IK − Il − IT − Isyn + Iapp_TH

C dvSTR
dt

= −Il − IK − INa − Im − Isyn

,

(1)
where C represented the membrane capacitance and was set
to 1µF/cm2 for all cell models, vi (i ∈ {STN,GP,TH, STR})

represented the transmembrane potential of the corresponding
model neuron and was expressed in mV. INa, IK, and Il were
the sodium current, potassium current and non-specific leak
current, IL, IT, and ICa were, respectively, the L-type, T-type,
and high-threshold calcium current, and Ia, Im, ICak, and IAHP

were, respectively, A-type, outward M-type potassium, calcium-
dependent and after-threshold potassium current. Parameters
and equations of the ionic currents are provided in Table 1.
Therein, a, b, c, d1, d2, h, m, n, p, q, and r were activation or
inactivation variables, and the gating kinetics took the form

dX

dt
=

λX(X∞ − X)

τX
, (2)

where X represented one of a, b, c, d1, d2, h, m, n, p, q, or r.
Steady-state gating variables were calculated using

X∞ =
1

1 + exp
(

−(v + wX)
/

σX
) , (3)
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FIGURE 1 | Cortical-basal ganglia-thalamus network model. Gray blocks

represent the collections of cortical (CTX) neurons and basal ganglia (BG)

neurons, respectively. Model schematic shows connections within the

network, where black lines denote inhibitory connections and orange lines

denote excitatory connections. Here, the direct pathway

(eCTX → dSTR → GPi → TH → eCTX), the indirect pathway

(eCTX → idSTR → GPe → GPi → TH → eCTX) and the hyper-direct

pathway (eCTX → STN → GPi → TH → eCTX) are depicted. As well,

excitatory-inhibitory coupling exists between STN and GPe. Excitatory eCTX

and inhibitory iCTX neurons also receive synaptic connections from each

other. The numbers in parentheses on the arrows indicate the synaptic

conductance (mS/cm2) and transmission delay (ms), respectively.

where wX and σX were the half voltage and slope, respectively.
Gating kinetics for STR took the form

dX

dt
= αX(1 − X) − βX × X. (4)

Isyn represented the sum of synaptic currents, with each
projection from presynaptic neuron α to postsynaptic
neuron β (α, β ∈ {CTX, STR, STN,GP,TH}) given by
Iα→β = gα,β × (vβ − Esyn) × S , where gα,β described the
maximal synaptic conductance, and Esyn represented the reversal
potential (uniformly set as −85 mV). An alpha synapse S was
used to model the synaptic dynamics

S =
t − td

τ
× e−

t−td
τ , (5)

where td was the synaptic transmission delay, and
τrepresented the time constant of 5 ms. Further, bias currents
Iapp_i (i ∈ {GPe,GPi,TH}) represented other synaptic inputs
that were not described explicitly in this model.

The dynamics of the CTX neurons were described based on

the model developed by Izhikevich (2003)

dvCTX
dt

= 0.04 × v2CTX + 5 × vCTX + 140 − uCTX − IinterCTX − ITH→CTX

duCTX
dt

= a × (0.2 × vCTX − uCTX)

.

(6)

where vCTX represented the transmembrane potential and uCTX
was the recovery variable. The time scale of the recovery variable
uCTX was chosen as a = 0.02 and a = 0.1, respectively, for
excitatory-CTX (eCTX) and inhibitory-CTX (iCTX) neurons. If
the transmembrane potential of CTX neuron exceeded 30 mV,
then vCTX was set to a resting potential equal to -65 mV and uCTX
was set to uCTX + d (for eCTX, d = 8; for iCTX, d = 2). IinterCTX
represented the reciprocal synaptic current from iCTX neurons
to eCTX neurons or that from eCTX neurons to iCTX neurons,
and ITH→CTX was the synaptic input from TH.

The Parkinsonian state was simulated by the adjustment
of model parameters implemented using a parkinsonism
variable, pd, where pd = 0 and pd = 1 were defined as
the healthy state and full Parkinsonian state, respectively.
The M-type potassium current in striatal neurons was
reducedgm = 2.6 − 0.9 × pd, cortico-striatal coupling strength
was decreased gCTX,STR = 0.07 − 0.044 × pd and coupling
strength between GPe neurons was increasedgGPe,GPe =

0.0125 + 0.0375 × pd. To quantify the difference between the
healthy and Parkinsonian states, changes of firing rates and firing
patterns of model neurons were analyzed. It was considered
that one neuron produced a spike or action potential once
its transmembrane potential was greater than the threshold
Vthre = −20mV, with the time of crossing the threshold defined
as the firing time. The average firing rates were calculated
based upon the firing time during the entire simulation
period. In addition, spike synchrony that characterizes the
dynamic patterns in each population of model neurons was
measured. Defining vi(t) as the membrane potential time
course of the jth neuron from a population of n neurons, then
we could average over the population V(t) = 1

n

∑n
i=1 v

i(t).

The variance of membrane potential vi(t) and the variance
of the averaged membrane potential V(t) were expressed as

σ2vi =
〈

[vi(t)]
2
〉

t
−
[

〈vi(t)〉t
]2

and σ2V =
〈

[V(t)]2
〉

t
−
[

〈V(t)〉t
]2
,

respectively (〈· · · 〉t = 1
T

∫ T
0 · · · dt referred to the average value

of the variables within the time of T), and the level of synchrony
was calculated according to the following equation,

χ =

√

√

√

√

√

σ2V

1
n

n
∑

i=1
σ2Vi

, (7)

where χ was normalized between 0 and 1, with χ = 0
indicating neurons within one population fire out of
sync and χ = 1 indicating neurons within that population
discharge synchronously.

Control Problem Description
Parkinson’s disease is characterized by diverse changes in
neuronal activity, and single neuron action potentials,
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TABLE 1 | Equations and parameters for subthalamic nucleus (STN), globus pallidus (GP), TH, and striatum (STR) model neurons.

STN

Ionic currents INa = 49m3h(v − 60), IK = 57n4(v + 90), Il = 0.35(v + 60), IT = 5p2q(v − 165)

ICaK = r2(v + 90), Ia = 5a2b(v + 90), IL = 15c2d1d2(v − 165)

Gating kinetics λm = 1, wm = 40, σm = 8, τm = 0.2 + 3
/ (

1 + exp
(

(v + 53)
/

0.7
))

λh = 1, wh = 45.5, σh = −6.4, τh = 24.5
/ (

exp
(

(v + 50)
/

15
)

+ exp
(

(v + 50)
/

16
))

λn = 1, wn = 41, σn = 14, τn = 11
/ (

exp
(

−(v + 40)
/

14
)

+ exp
(

−(v + 40)
/

50
))

λp = 1, wp = 56, σp = 6.7, τp = 5 + 0.33
/ (

exp
(

(v + 27)
/

10
)

+ exp
(

−(v + 102)
/

15
))

λq = 1, wq = 85, σq = −5.8, τq = 400
/ (

exp
(

(v + 50)
/

15
)

+ exp
(

−(v + 50)
/

16
))

λr = 1, wr = −0.17, σr = 0.08, τr = 2

λa = 1, wa = 45, σa = 14.7, τa = 1 + 1
/ (

1 + exp
(

(v + 40)
/

0.5
))

λb = 1, wb = 90, σb = −7.5, τb = 200
/ (

exp
(

(v + 60)
/

30
)

+ exp
(

−(v + 40)
/

10
))

λc = 1, wc = 30.6, σc = 5, τc = 45 + 10
/ (

exp
(

(v + 27)
/

20
)

+ exp
(

−(v + 50)
/

15
))

λd1
= 1, wd1

= 60, σd1
= −7.5, τd1

= 400 + 500
/ (

exp
(

(v + 40)
/

15
)

+ exp
(

−(v + 20)
/

20
))

λd2
= 1, wd2

= −0.1, σd2
= −0.02, τd2

= 130

GP

Ionic currents INa = 120m3
∞h(v − 55), IK = 30n4(v + 80), Il = 0.1(v + 65), IT = 0.5a3

∞rv,

ICa = 0.15s2
∞(v − 120), IAHP = 10 × (v + 80) × CA

/

(CA + 10)

Gating kinetics wm = 37, σm = 10

λh = 0.05, wh = 58, σh = −12, τh = 0.05 + 0.27
/ (

1 + exp
(

(v + 40)
/

12
))

λn = 0.1, wn = 50, σn = 14, τn = 0.05 + 0.27
/ (

1 + exp
(

(v + 40)
/

12
))

λr = 1, wr = 70, σr = −2, τr = 15

wa = 57, σa = 2

ws = 35, σs = 2

dCA
/

dt = 10−4 × (−ICa − It − 15 × CA)

TH

Ionic currents INa = 3m3h(v − 50), IK = 5 (0.75 × (1 − h))4 (v + 75), Il = 0.05(v + 70), IT = 5p2
∞rv

Gating kinetics wm = 37, σm = 7

λh = 1, wh = 41, σh = −4, τh = 1
/ (

0.128 × exp
(

−(v + 46)
/

18
)

+ 4/
(

1 + exp
(

−(v + 23)
/

5
)))

wp = 60, σp = 6.2

λr = 1, wr = 84, σr = −4, τr = 0.15 ×
(

28 + exp
(

−(v + 25)
/

10.5
))

STR

Ionic currents INa = 100m3h(v − 50), IK = 80n4(v + 100), Il = 0.1(v + 67)

Im = gmp(v + 100)

Gating kinetics αm = 0.32 × (54 + v)
/ (

1 − exp
(

−(v + 54)
/

4
))

, βm = 0.28 × (27 + v)
/ (

−1 + exp
(

(v + 27)
/

5
))

αh = 0.128 × exp
(

−(v + 50)
/

18
)

, βh = 4
/ (

1 + exp
(

−(v + 27)
/

5
))

αn = 0.032 × (52 + v)
/ (

1 − exp
(

−(v + 52)
/

5
))

, βn = 0.5 exp
(

−(v + 57)
/

40
)

αp = 3.209 × 10−4 × (30 + v)
/

1 − exp
(

−(v + 30)
/

9
)

βp = −3.209 × 10−4 × (30 + v)
/ (

1 − exp
(

−(v + 30)
/

9
))

electrocorticograms, LFPs, and electroencephalograms have
been considered as feedback control signals for closed-loop
DBS (Hoang et al., 2017). The LFP generated by model GPi
neurons was adopted as the feedback signal for closed loop
control. A simple average of transmembrane potentials was
adopted to calculate the LFP of the modeled population due to
its ability to capture subthreshold activity and thereby reflect
oscillatory phenomena (Pettersen et al., 2012; Mazzoni et al.,
2015). Expression of the GPi LFP was given as

LFP(t) =
1

n

n
∑

i=1

vGPi_i. (8)

Here, n = 10 represented the total number of GPi neurons
and vGPi_i corresponded to the transmembrane potential of the
ith GPi neuron. The power within particular frequency bands

of the LFP signal was determined from power spectra using
the Chronux neural signal analysis package [length of moving
window 1 s, step size 0.1 s and tapers in the form of [3 5] (3
is the time-bandwidth product and 5 is the number of tapers
to be used)], and the beta band power was defined as the total
power over 13–30 Hz.

Our goal was to design an adaptive closed-loop controller
to adjust automatically the stimulation signals delivered to the
model neurons of the GPi based on the beta LFP activity
calculated from the model GPi neurons as the feedback control
signal. We defined the stimulation signal as Isti and delivered it
directly to each GPi neuron, and the resulting transmembrane
potential was expressed as

C
dvGPi

dt
= −Il − IK − INa − IT − ICa − Iahp − ISTN→GPi−

IGPe→GPi − IdSTR→GPi + Iapp_GPi + Isti. (9)
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Isti was constructed by using the controller output u(t) to
construct a variable frequency pulse train stimulation signal
[amplitude of 300µA/cm2, pulse duration of 0.3 ms and
period of 1, 000/u(t) ms (frequency of u(t))]. After the end
of each stimulation period, we recalculated the beta power
of the LFP signal and repeated the above steps to update
continuously the optimal controller output. The transmembrane
potentials of model neurons in that other nuclei were
unaffected by direct electrical stimulation but their activity was
influenced during stimulation via either excitatory or inhibitory
synaptic connections.

The classical error-based PID control law has the form

upid(t) = kpe(t) + ki

∫

e(t)dt + kd
de(t)

dt
, (10)

where e(t) = yd(t) − y(t)(yd(t) and y(t) represented the beta
power in LFP signals of the GPi from healthy control and
controlled Parkinsonian states, respectively). The performance of
the PID controller depends greatly on selecting the appropriate
gains, and this can be a time-consuming manual process. As
the LFP was a highly dynamic variable subject to large changes,
differential action might amplify noise interference. Therefore,
the differential term was omitted, and both proportional (P)
and proportional-integral (PI) controllers were designed to
minimize the error between the desired and measured beta band
power in the LFP.

A stable self-tuning controller was designed using a dynamic
RBF network. Figure 2 is a block diagram of the RBF
supervisory control system and a schematic diagram of the
RBF network. The neural network-based controller acted
as a feedforward controller, by building an inverse model
of the controlled plant. The input layer, hidden layer and
output layer determined the structure of the RBF neural
network. x = [x1, x2, . . . , xi, . . . , xn]

T (n was the number of
input layer nodes) represented the network input vector and
h = [h1, h2, . . . , hj, . . . , hm]T (mwas the number of hidden layer
nodes) represented the hidden layer output. Each hidden layer
node had a central value cj, the Euclidean distance of which to
network input xi was described as

∣

∣

∣

∣xi − cj
∣

∣

∣

∣. As well, each hidden
layer node was an arithmetic element with activation function
given by

hj = exp

(

−
||x − cj||

2

2b2j

)

. (11)

The center vector c = [c1, c2, . . . , cm] and the width vector
b = [b1, b2, . . . , bm]T determined the influence of the Gaussian
function, where the width of the Gaussian basis function directly
influenced the mapping capability to network input, while the
center value correlated with its sensitivity to network input.

If we set the weight vector asw = [w1,w2, . . . ,wm]T , then the
network output can be obtained as

urbf (t) = h1w1 + · · · + hjwj + · · · + hmwm. (12)

The structure of the RBF network was selected as 1 − nm − 1,
that is, containing 1 input layer node, nm hidden layer nodes
and 1 output layer node. The number of hidden layer nodes was

set to 11, network weights were initially set to random values
between 0 and 1, and parameters of Gaussian function were
set as c = [−2, −1, 0, 1, 2]T , b = [5, 5, 5, 5, 5]T . The weights of
the RBF controller were continuously adjusted on-line to make
the feedback error e(t) approach zero, which equated to up(t)
approaching zero. Consequently, the RBF controller gradually
occupied the leading position and even replaced the function of
the P/PI controller. The RBF network error index was designed
in the form of E(t) = 1

2 (up(t))
2, to lead up(t) (e(t)) to converge

to 0. Considering that the total controller output was the sum of
the traditional P/PI controller and the adaptive RBF controller
u(t) = urbf(t) + up(t), the error index can be written as

E(t) =
1

2
(urbf(t) − u(t))2 (13)

According to the gradient descent method, the network weights
were adjusted as follows

1wj(t) = −η
∂E(t)

∂wj(t)
= −η (urbf(t) − u(t)) hj(t), (14)

w(t) = w(t − 1) + 1w(t) + α(w(t − 1) + w(t − 2)). (15)

Further, applying the gradient descent method to the adjustment
of c and b will optimize effective learning by the RBF network,
thus we had

1bj(t) = −η
∂E

∂bj
= −η (urbf(t) − u(t))wjhj

∣

∣

∣

∣

∣

∣x-c2j

∣

∣

∣

∣

∣

∣

b3j
, (16)

b(t) = b(t − 1) + 1b(t) + α
(

b(t − 1) + b(t − 2)
)

, (17)

1cj(t) = −η
∂E

∂cj
= −η (urbf(t) − u(t))wjhj

x − cj

b2j
, (18)

c(t) = c(t − 1) + 1c + α (c(t − 1) − c(t − 2)) . (19)

where η ∈ (0, 1) represented the learning rate η = 0.30and
α ∈ (0, 1) represented the momentum factor α = 0.05.

A quantitative index of the control effect was defined as the
root mean square error between the controlled output and the
reference signal,

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

yi − yd
)2

(20)

where N represented the sampling point of the feedback signal.

RESULTS

The biophysically-based cortical-Basal-thalamus network
model was used to test the effectiveness of closed-loop DBS.
Performance of the RBF network-based supervisory algorithm
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FIGURE 2 | Block diagram of improved supervisory algorithm under the guidance of radial basis function (RBF) network. Stimulation signal u(t) is applied to GPi

model neurons and the simulated beta power y(t) is obtained from LFP of the GPi. The stimulation signal u(t) is determined by the joint action of the P controller

output up(t) and RBF network controller output urbf(t).

was evaluated by considering changes in the state of the plant
intended to represent dynamics including cycling of medication
and progress of the disease, as well as dynamic changes in the
reference (target) signal.

Firing Rates and Firing Patterns of Model
BG Neurons
The transmembrane potentials of model GPe, GPi, and STN
neurons in the cortical-Basal-thalamus network model are
displayed in Figure 3. The Parkinsonian condition resulted in
changes in both the rate and pattern of model neuron activity.
As a result of excitation via the indirect pathway and hyper-
direct pathway together with inhibition via the direct pathway,
firing rates in the Parkinsonian condition increased in STN
and GPi model neurons and decreased in GPe model neurons
(Figure 4A), consistent with previous experimental studies (Kita
and Kita, 2011). Moreover, increased spike synchrony was
observed across all nuclei in the Parkinsonian state compared
to the healthy state (Figure 4B). These indexes were analyzed
using one-way analysis of variance (ANOVA), which revealed a
significant difference in firing rate (STN: F = 901 and p < 0.001,
GPe: F = 48 and p < 0.001, and GPi: F = 184 and p < 0.001) and
synchrony index (STN: F = 239 and p < 0.001, GPe: F = 1554
and p < 0.001, and GPi: F = 62 and p < 0.001) between
healthy state and Parkinsonian state. The model thus exhibited
features of the pathophysiological neural activity occurring in PD
and was a suitable testbed to develop and analyze closed-loop
control strategies.

The GPi, which is clinically accessible for both recording of
LFPs and delivery of DBS, was selected as the source of the
feedback signal for closed loopDBS (Figures 5A,B). Compared to
the healthy state, where the LFP exhibited little power in the beta
band, the LFP in the Parkinsonian condition exhibited oscillatory
activity, generating a significant peak in the power spectrum
(Figure 5C). The LFP signals were filtered within the beta band
to extract differences between healthy and Parkinsonian states,
and the filtered GPi LFP activity in the healthy state (Figure 5D)

FIGURE 3 | Transmembrane potential as a function of time of model neurons

in STN, GPe, and GPi. The blue traces depict model neuron activity in the

healthy condition while orange traces depict model neuron activity in the

Parkinsonian condition.

served as a reference to guide the modulation of Parkinsonian
neural activity by DBS, thus constituting a closed-loop system to
suppress exaggerated beta oscillatory activity (Figure 5E).

Limitation of Traditional P and PI
Controllers
We first quantified the relationship between the stimulation
frequency and the beta power (Figure 6), where f = 0 is
equivalent to the Parkinsonian state without DBS. Low frequency
stimulation actually increased beta power, and the beta power was
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FIGURE 4 | Characterization of model neuron activity in healthy and Parkinsonian conditions. (A) Firing rates (mean ± standard error) for model STN, GPe, and GPi

neurons in healthy (blue) and Parkinsonian (orange) conditions. Values are averaged across three runs for each nucleus. (B) Spike synchrony (mean ± standard error)

for model STN, GPe, and GPi neurons under healthy (blue) and Parkinsonian (orange) conditions. All model neurons exhibit increases in spike synchrony in the

Parkinsonian state as compared to the healthy state. (*** represented a significant difference, p < 0.001).

A B C

D E

FIGURE 5 | Local field potential (LFP) activity from model neurons in the GPi. In panels (A,B), blue trace depicts the LFP in the healthy state while the orange trace

depicts the LFP in the Parkinsonian state. Panel (C) illustrates the power spectral density of the GPi LFP across 10 trails to quantify the corresponding oscillatory

activity, where shaded error region represents standard errors. Panels (D,E) depict the band-pass filtered (13–30 Hz) LFP activity in the GPi.

progressively reduced as the stimulation frequency was increased
higher than 50 Hz. A beta power of 120 dB was calculated
from the healthy state and set as the desired state, and the
range of stimulation frequencies was between 5 and 200 Hz. The
modulation of DBS was reformulated as a train of monophasic
pulses with an initial stimulation frequency of 5 Hz, and the
updated stimulation frequency was generated based upon the
error between the actual and target beta power in the LFP from
the GPi model neurons.

The performance of the P controller and PI controller
in regulating the beta band LFP in the GPi with GPi
DBS were compared (Figures 7, 8), where the blue dotted
lines represented the healthy state and the orange traces
represented the controlled PD state. Small kp appeared
to make no difference to the suppression of beta band
activity, while large kp caused strong oscillations between
effective and ineffective suppression of beta band activity

(Figure 7). The performance following addition of the
integral controller with different combinations of kp and
ki was assessed (Figure 8). The control of beta power in
the GPi LFP was strongly dependent on the selection of kp
and ki, where effective values

(

kp = 0.5, ki = 0.5
)

promoted
the suppression of high beta power while ineffective values
(

kp = 0.1, ki = 0.01
)

did not contribute to improvement
of the PD state. The search of proportional and integral
gains through trial-and-error produced fluctuations in
performance and created uncertainty about the effectiveness
of closed-loop DBS, especially in the face of changes in the
properties of the plant.

A substantial improvement in control performance was
achieved by the supervisory algorithm, where suppression of the
exaggerated beta power present in the Parkinsonian condition
was achieved within 1 s (Figure 9A). The weights of the
RBF network were adjusted in real-time, in response to the
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FIGURE 6 | Relationship between the deep brain stimulation pulse repetition

frequency and the beta power in the LFP from the GPi (mean ± standard error

for 50 trials).

update of the beta power of the GPi (Figure 9B). As the
beta power was gradually suppressed, the RBF network took
over the leading role that the P/PI controller played in the
initial control stage (Figure 9C). Ultimately, the DBS pulse
repetition frequency was calculated as shown in Figure 9D,
and the DBS signal is depicted in Figure 9E. Changes in beta
power between the healthy state, open-loop 130 Hz DBS, P
controller, PI controller and adaptive DBS were compared by
calculating the root mean square error between the controlled
output signal and the reference signal during the last 4 s
of simulation. The averaged RMSE were 18.64, 112.41, 39.38,
and 23.89, respectively, In cases of open-loop 130 Hz DBS, P
control

(

kp= 0.1
)

, PI control
(

kp= 0.5, ki= 0.5
)

and combined
P and RBF control, indicating that the improved supervisory
algorithm drive the beta power to the target setting with a
higher accuracy.

Evaluation of Robustness of the
Supervisory Algorithm
The closed-loop RBF network-based supervisory control
algorithm achieved effective tracking of the target beta power,
but several challenges required further consideration. First,
Parkinson’s disease is a chronic and progressive disease in
which the patient’s condition gradually worsens over time,
and individual variation should be considered in model-
based evaluations. Second, the reference waveform was the
LFP signal from the healthy network model. Although this
signal carries abundant information, it does not represent the
variety of different disease states, for example during cycling
of medication, and this potentially limits the generalizability of
the control system.

To evaluate further the performance of the proposed closed-
loop algorithm in the face of changes in the Parkinsonian
state (Figure 10), the parkinsonism variable pd was randomly
generated from 0 to 1. Controlled beta power gradually converged
to the desired healthy signal after 1 s, demonstrating the adaptive
capability of the RBF network across disease states. In addition,
beta power exhibits dynamic changes, especially prior to and
during movement, and thus tracking of time-varying beta power
may be required to promote desired movement behavior. In the
face of a time varying reference beta power signal switching at
1 Hz (Figure 11), the controlled beta power still followed the
dynamic reference signal, albeit with substantial overshoot.

DISCUSSION

This manuscript proposed an improved supervisory control
algorithm for adaptively adjusting the stimulation signal to

A B

C D

FIGURE 7 | Control effect of P controller with beta power as the feedback signal. Blue dotted lines represent the desired GPi beta power that recorded from healthy

state, and orange traces represent feedback GPi beta power from the controlled state. Black solid lines denote the beginning of stimulation. (A) kp = 0.01, (B)

kp= 0.1, (C) kp= 1, (D) kp= 10.
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A B C

D E F

FIGURE 8 | Control effect of PI controller with beta power as the feedback signal. Blue dotted lines represent the desired GPi beta power that recorded from healthy

state, and orange traces represent feedback GPi beta power from the controlled state. Black solid lines denote the beginning of stimulation. (A) kp= 0.1, ki = 0.01,

(B) kp= 0.1, ki= 0.5, (C) kp= 0.1, ki= 2, (D) kp= 0.5, ki= 0.01, (E) kp= 0.5, ki= 0.5, (F) kp= 0.5, ki= 2.

A

B

C

D

E

FIGURE 9 | Feedback control using the RBF controller with beta power as the control signal (kp= 0.1). Panel (A) depicts the dynamic process of the controller

reducing beta power in the GPi, panel (B) shows the evolution of real-time updated weights of the RBF network, (C) plots the trend of P controller and RBF

controller, respectively, (D) generates the DBS pulse repetition frequency. Panel (E) is the stimulation signal, a series of 0.3 ms duration 300 µA/cm2 amplitude

pulses with the instantaneous frequency determined by the controller.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 750806

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Zhu et al. Adaptive Parameter Modulation of DBS

FIGURE 10 | Robustness analysis of the RBF controller in the presence of dynamic changes in the Parkinsonian state (kp= 0.1). (A) Dynamic change of

Parkinsonian state is characterized by the parameter, pd. The RBF-controller modulated beta power during dynamic changes is depicted in the bottom panel. Panel

(B) shows the evolution of real-time updated weights of the RBF network, (C) plots the trend of P controller and RBF controller, and (D) generates the DBS pulse

repetition frequency. Here, the stimulation amplitude is set to 300 µA/cm2 and the pulse duration is set to 0.3 ms.

A

B

C

D

FIGURE 11 | Robustness analysis of the RBF controller during dynamic changes in the reference beta power (kp= 0.1). (A) Dynamic change of the reference beta

power is characterized by the blue dotted line. The RBF-controller modulated beta power is depicted in the bottom panel. Panel (B) shows the evolution of real-time

updated weights of the RBF network, (C) plots the trend of P controller and RBF controller, and (D) generates the DBS pulse repetition frequency. Here, the

stimulation amplitude is set to 300 µA/cm2 and the pulse duration is set to 0.3 ms.

improve DBS control of the Parkinsonian state. Myriad control
algorithms have been applied to the design of closed-loop DBS
system, for example, on-off control, dual-threshold control,
delayed feedback control, PID control, fuzzy control, and model

predictive control (Little et al., 2013; Liu et al., 2015, 2016;
Popovych et al., 2017; Su et al., 2019; Velisar et al., 2019).
For on-off control and dual-threshold control, a stimulus was
triggered by the control signal exceeding or falling below
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a threshold. Energy consumption was reduced as compared
to traditional open-loop stimulation, but selection of optimal
stimulation parameters during the DBS-on stage still needed
to be addressed. The design of delayed feedback controller
or PID controller depended strongly on the selection of
controller gains and delay time constant, and the performance
was dependent on the plant. Thus, such controllers may
exhibit limited adaptability for individual variations due
to, for example, changes in medication status or active
versus inactive state. More advanced control algorithms, for
example fuzzy control and model predictive control, have
been developed for modulation of DBS parameters. However,
the robustness of the control algorithm was improved at
the cost of using a non-standard signal–the unmodulated
controller output was applied directly to the stimulated
targets, and this may be difficult to implement with an
implanted pulse generator. In addition, Gao et al. (2020)
proposed a deep reinforcement learning-based approach to
construct an adaptive DBS framework. The reinforcement
signal provided by the environment was an evaluation of
the quality of the action that the agent produced. It should
be noted that the external environment yielded evaluations
(reward or punishment) rather than correct answers to
the output of the learning system, and the performance
of the learning system was improved by reinforcing the
actions that were rewarded. Neural networks have the
capacity to approximate arbitrary complex nonlinear systems,
and an RBF network was adopted in this manuscript for
selecting the appropriate pulse repetition frequency of DBS.
The proposed RBF-based algorithm constituted supervised
learning that provided a corresponding target output for
each input. Through the feedback structure, the stability
and robustness can be guaranteed, and the precision and
adaptability were improved.

A biophysiologically feasible cortex-basal ganglia-thalamus
computational network model that represents the Parkinsonian
state in 6-OHDA lesioned rats was used as the plant and
to calculate LFP signals and the effects of DBS. DBS of
the STN or the GPi are currently the most common and
effective surgical targets for the treatment of PD, but there
does not appear to be one superior target. Several studies
compared the efficacy of stimulating STN versus GPi and
that both STN-DBS and GPi-DBS are equally effective in
improving motor dysfunction (Honey et al., 2017; Zhang et al.,
2021). STN-DBS contributes to more significant medication
reduction and is favorable to decrease energy consumption
due to the smaller stimulating region, but STN-DBS appears
to increase the incidence of psychiatric complication. If
medication reduction is not a major concern, GPi-DBS has
the advantage of direct dyskinesia suppression. LFP signals
from the GPi, which can be directly obtained through
DBS leads in clinical application (Stanslaski et al., 2012;
Arlotti et al., 2016b; Parastarfeizabadi and Kouzani, 2019)
and carry abundant potential information from synchronous
neural activity were extracted and processed as the feedback
signal for closing the loop (Little and Brown, 2012; Priori
et al., 2012; Hebb et al., 2014; Arlotti et al., 2016a; Sinclair

et al., 2018). The design of the closed-loop control system
followed a traditional strategy. For such a highly nonlinear
and complex plant, the selection of optimal proportional gains
was challenging, and simulation results illustrated that the P
controller did not achieve effective tracking of the reference
signal. The RBF neural network exhibits both self-learning and
self-adaptation and was the foundation for constructing an
intelligent control system. The improved supervisory control
algorithm with the RBF network controller showed satisfactory
tracking performance and was able to regulate the beta
oscillatory power across dynamic changes in the plant and the
reference signal.

The proposed algorithm has several potential advantages
for clinical implementation. First, although the closed-loop
control algorithm was designed based on a biophysical model
of the cortex-basal ganglia-thalamus network, precise parameters
(e.g., synaptic conductance, reversal potentials) and network
structure (e.g., synaptic connectivity) were not necessary since
the RBF network builds an inverse representation based on
input output information. Second, DBS stimulation signals were
delivered through and LFP recordings were obtained from
same implanted electrode, thereby avoiding the requirement of
additional external sensors. A limitation of this simulation study
is the setting of the desired tracking signal, and the variable
dynamics of the cortical-Basal-thalamus network were not fully
considered. Further exploration combined with the selection of
biological markers that relate to specific symptoms and states
remains an important challenge. Further, understanding the
relationship between stimulation parameter changes and changes
in specific patient symptoms, including the time course of
such changes, is crucial to improving clinical treatment. For
example, data-driven input-output model identification might be
a promising solution for quantifying responsiveness to specific
stimulation signals.
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