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Abstract

Parameter-tuning stochastic resonance can effectively use noise to enhance signal energy, whereas its system

parameters are hard to select, and how to combine it with more practical signals needs to be researched. In this

study, the IF (intermediate frequency) digital signal with low SNR (signal-noise ratio) is selected as the research

object, and the measuring function based on SVD (singular value decomposition) that is not dependent on prior

knowledge is proposed as the evaluation function to optimize the parameters of stochastic resonance system. The

nature of the stochastic resonance is first described from the eigenspace of the signal. After the analysis of the

effects of different system parameters, amplitude normalization is employed to optimize only one parameter,

simplifying the algorithm. Finally, an adaptive parameter-tuning stochastic resonance method based on AFSA

(artificial fish swarm algorithm) is developed for three types of modulated signals, achieving an optimum

matching of noisy signals and non-linear systems at fast convergence speed. According to the simulation, the

proposed algorithm is proven effective, efficient, and robust, laying a solid foundation for the subsequent signal

processing work.
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1 Introduction

In the non-cooperative communication system as shown

in Fig. 1, the received digital signals are often weak and

at low SNR. Given that the prior knowledge of the trans-

mitted signals cannot be gained in advance, if the infor-

mation contained in the signals is to be acquired, the

blind signal processing technique must be used to esti-

mate the necessary parameters (e.g., carrier frequency,

symbol rate, modulation mode) before demodulation

and information recovery. Different parameter estima-

tion or modulation recognition algorithms will bring

different performances, whereas the quality of the signal,

as an important factor, will undoubtedly have huge im-

pacts on the algorithm results. Scholars have performed

a lot of research on signal processing at low SNR. The

high-order spectrum method [1–3] can suppress the

additive colored Gaussian noise of unknown power

spectrum. The wavelet transform technique [4, 5] is con-

sidered suitable for the noise removal of transient signals

and can inhibit the interference of high-frequency noise.

The method of calculating high-order cumulant [6] is

insensitive to Gaussian noise. The cyclic spectrum [7, 8]

has certain anti-noise performance, etc. These methods

primarily focus on suppressing noise to the greatest

extent. In recent years, however, with the in-depth study

of non-linear dynamics and statistical physics theory,

stochastic resonance (SR) method has been developed

[9] using a non-linear system to convert part of the

energy of the noise into signal, thereby enhancing the

signal and reducing the noise.

The initial study of SR was limited to periodic signals.

Later, the aperiodic stochastic resonance (ASR) proposed

by Collins et al. [10] and the parameter-tuning stochastic

resonance (PSR) proposed by Xu et al. [11] were broadly

used. On the one hand, ASR breaks through the
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conditional constraints of the input signals, demonstrat-

ing that aperiodic signals can also stimulate stochastic

resonance system. On the other hand, PSR solves the

problem that only the system parameters need to be

adjusted without adjusting the noise can achieve the best

output. Stochastic resonance is applied in a large num-

ber of fields: medicine [12], electromagnetics [13, 14],

mechanical fault detection [15, 16], signal processing

[17], etc. In the field of digital signal processing, Duan

and Abbott [18] explored the detectability of the SR

bistable receiver for detecting binary modulated signals.

Sun and Lei [19] studied the use of ASR processor to

detect the pulse amplitude modulation (PAM) signals

and applied it to the digital watermark. Dalabaev et al.

[20] studied the application of PSR in baseband digital

signals. Liu et al. [21] proposed a PSR receiver to

improve the reception performance of PAM signals.

Liang et al. [22] derived the expression of the bit error

rate of the bistable stochastic resonance system under

the coherent receiver. Zhan and Duan [23] applied PSR

to the parameter estimation of the signals. But all these

studies are carried out under the fixed stochastic re-

sonance system parameter and the fixed type of signal.

For adaptive PSR, the choice of system parameters

plays a critical part in the performance of the output.

This is because only when the signal, noise, and system

are optimally matched, can the noise be weakened, and

can the target signal be enhanced to the greatest extent.

Thus, Tong et al. [24] studied the adaptive stochastic

resonance method of PSO (particle swarm optimization)

and analyzed the parameters that affect system stability

using the scale-transform stochastic resonance solution

procedure. The adaptive stochastic resonance method

based on artificial fish swarm algorithm (AFSA) [25, 26]

was studied only for sinusoidal signal and cannot be

applied to more complex aperiodic signals, which li-

mited its application [27, 28]. The AFSA is an effective

optimization algorithm, characterized by parallelism,

simplicity, and fastness. However, how to select the best

system parameters for various IF digital signals needs

further studies.

In this work, a weak IF digital signal enhancement

method based on adaptive parameter-tuning stochastic

resonance is proposed. Unlike the traditional stochastic

resonance, the evaluation function based on SVD com-

bined with AFSA is used to make the weak IF signal

tend to achieve the best enhancement by stochastic res-

onance with the most optimal system parameters. The

proposed method has a wider scope of application,

which can be used for three types of modulated signals

and is more suitable for engineering practice.

The rest of the paper is organized as follows. In

Section 2, the definition of IF digital signals, the stochas-

tic resonance theory, and AFSA algorithm are explained.

In Section 3, the method scheme is described, including

SVD evaluation function, system parameter analysis, and

module framework. In Section 4, the simulation results

and analysis are described. Finally, conclusions are given

in Section 5.

2 Background knowledge

2.1 IF digital signal

IF digital signal refers to the digital signal whose carrier

frequency is maintained at a predetermined value which

is between baseband and radio frequency (RF) after

down-conversion processing. There are three types of IF

signals studied in this study:

Frequency

band search

and

monitoring

A/D DDC

Parameter

Estimation

Modulation

recognition

Demodulation

and information

recovery

Fig. 1 Signal processing steps under non-cooperative communication condition
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(1) Multiple amplitude shift keying (MASK) directly

maps the information of the symbol to the carrier

amplitude, and its time domain expression is:

sMASK tð Þ ¼ A
X

n

ang t−nTsð Þ
" #

cos 2πf ct þ θð Þ

ð1Þ

where an∈f2m−1−
ffiffiffiffiffi

M
p

jm ¼ 1; 2;…;Mg.

(2) Multiple phase shift keying (MPSK) uses the phase

change of carrier to transmit digital information,

and its time domain expression is:

sMPSK tð Þ ¼ A
X

n

g t−nTsð Þ
" #

cos 2πf ct þ θ þ φnð Þ

ð2Þ

where φn ∈ {(2m − 1)π/M|m = 1, 2, … ,M}.

(3) Multiple quadrature amplitude modulation

(MQAM) is a method of mixed amplitude and

phase modulation whose time domain expression is:

sMQAM tð Þ ¼ A
X

n

ang t−nTsð Þ
" #

cos 2πf ct þ θð Þ

þ A
X

n

bng t−nTsð Þ
" #

sin 2πf ct þ θð Þ

ð3Þ

where an; bn∈f2m−1−
ffiffiffiffiffi

M
p

jm ¼ 1; 2;…;Mg.
In (1), (2), and (3), A is the amplitude, g(t) is the pulse

shaping function and only rectangular shaping is consid-

ered, Ts is the symbol duration, fc is the carrier fre-

quency, θ is the initial phase of the carrier, and M is the

symbol mapping number(e.g., M = 2, 4, 8…).

2.2 Bistable system and adiabatic approximation theory

The bistable system is a typical type of non-linear system

that can be represented by the Langevin equation [29]:

dx

dt
¼ ax−bx3 þ s tð Þ þ Γ tð Þ ð4Þ

where a and b are the parameters of the system, s(t) is

the input signal, and Γ(t) is the Gaussian white noise

with mean value of 0 and intensity of D, conforming to

〈Γ(t)〉 = 0, 〈Γ(t)Γ(0)〉 = 2Dδ(t) where 〈⋅〉 represents the

time average.

IF digital signal, as the input, can be regarded as the

single frequency signal with the fixed amplitude and

phase in any non-zero symbol interval, which can be

expressed by the following equation:

s tð Þ ¼ A cos 2πf ct þ φð Þ ð5Þ

where kTs ≤ t ≤ (k + 1)Ts, k = 1, 2,… , N, and N is the

number of symbols.

In this way, the aperiodic IF digital signal can be

analyzed as the periodic signal within a symbol inter-

val. Therefore, it can be treated as a global aperiodic

signal for PSR processing and local periodic signal

for analyzing.

The potential function corresponding to (4) is:

U xð Þ ¼ −

1

2
ax2 þ 1

4
bx4

−x A cos 2πfct þ φð Þ þ Γ tð Þð Þ
ð6Þ

Equation (6) describes the particle’s overdamped mo-

tion in a double potential well driven by external force

and noise simultaneously. When there is no external

force and noise, the potential function curve is shown

in Fig. 2.

It can be seen that the two potential wells x1; 2 ¼ �
ffiffiffiffiffiffiffiffi

a=b
p

are symmetric about the zero point, and the barrier

height is ΔU = a2/4b. When the system is excited by only

external force, as long as A is less than the critical value

Ac (Ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a3=27b
p

), the particle can only perform the

local periodic motion in a certain potential well. When

there is only noise, the particle switches between the two

potential wells according to Kramers’ transition rate rk,

which is expressed as rk ¼ a
ffiffi

2
p

π
expð− ΔU

D
Þ. When the sys-

Fig. 2 Potential function of bistable system
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tem is excited by both signal and noise, the particle can

exceed the barrier with the help of noise even if A <Ac

and periodically flips in the two potential wells according

to the signal frequency. Since the energy of the overstep-

ping barrier is much larger than the energy of the signal

itself, the periodic characteristic of the signal within one

symbol interval is amplified, which means the stochastic

resonance phenomenon occurs. The probability distri-

bution function ρ(x, t) of the variable x follows the

Fokker-Planck equation:

∂ρ x; tð Þ
∂t

¼ −
∂

∂x
ax−bx3 þ A cos 2πf ctð Þ
� �

ρ x; tð Þ
� �

þD
∂
2

∂x2
ρ x; tð Þ

ð7Þ

where the initial condition is ρ(x, t0| x0, t0) = δ(x − x0).

When fc of the signal is small enough and the ampli-

tude and noise intensity are much less than 1 at the

same time, it can be considered that the time taken for

the system to reach the equilibrium state in potential

wells is much smaller than the time taken for the overall

equilibrium of the probability between two potential

wells, and is also much smaller than the time taken by

the system to change along with the input signal, which

is the adiabatic approximation [30, 31].

After analytic derivation [32], the power spectrum of

the system output can be obtained:

G ωð Þ ¼ GN ωð Þ þ GS ωð Þ

¼ 1−
rk

2A2xm
2

2D2 rk2 þ π2 f c2ð Þ

� �

rkxm
2

rk2 þ π2 f c2

þ πA2xm
4rk

2

2D2 rk2 þ π2 f c2ð Þ δ ω−ωcð Þ þ δ ωþ ωcð Þ½ �

ð8Þ

where ωc = 2πfc and xm ¼
ffiffiffiffiffiffiffiffi

a=b
p

.

Equation (8) reflects the energy conversion result

which consists of two parts: noise energy and signal en-

ergy. During the stochastic resonance process, the signal

power spectrum appears amplified peak value, and the

total output power of the system is maintained as 2πxm
2

with no change.

In order to overcome the limitation of adiabatic ap-

proximation theory that the input must satisfy small

parameters, the following variables are introduced to

normalize the input [33]:

z ¼ x

ffiffiffi

b

a

r

; τ ¼ at ð9Þ

So, we can get the final expression as follows:

dz

dτ
¼ z−z3 þ

ffiffiffiffiffi

b

a3

r

A cos
2πf c

a
τ þ φ

� �

þ
ffiffiffiffiffiffiffiffiffi

2Db

a3

r

ξ τð Þ
ð10Þ

The normalization compresses the signal frequency

and scales the amplitude of the signal and the noise so

that the stochastic resonance can be applied to more ac-

tual signals.

2.3 Artificial fish swarm algorithm

Artificial fish (AF) is the virtual entity of the real fish,

which simulates four instinctive behaviors of fish: preying,

swarming, following, and moving to survive in the

surrounding environment. Through each evaluation, it

selects a current optimal behavior to carry out, obtaining

higher food concentration.

As shown in Fig. 3, the current state of an AF is X,

Visual is its visual distance, and the state XV is the po-

sition in Visual at a certain moment. The AF compares

the X with the XV, thereby deciding to move forward or

continue to patrol other locations within the Visual. The

greater the number of patrols, the more comprehensive

the understanding about the states of the Visual, which

helps to make correspondingly intelligent judgments and

decisions to maintain colonies. Of course, it is not ne-

cessary to traverse the environment with multiple or in-

finite states, which allows AF to have local optimization

with some uncertainty and it is helpful for finding the

global optimum.

The variable part includes M (number of AF), GEN

(number of reproductions), X (state of the AF, which

Fig. 3 Visual concept map of artificial fish
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is a vector of the variable to be optimized), Step

(maximum step size of movement), Visual (visual

distance of AF), T (maximum number of attempts), δ

(crowd factor), dij = |Xi −Xj| (distance between AF

individuals i and j), and Y (food concentration).

AF reaches the highest concentration of food through

the following four behaviors.

1. Prey: Suppose the artificial fish i has a current state

Xi and selects a state Xj within its Visual randomly:

X j ¼ Xiþ Visual � Randð Þ ð11Þ

If Yj < Yi, then goes forward a step in that direction;

otherwise, if the condition is still not satisfied after T

times, it moves a step randomly.

X
tþ1
i ¼ X

t
i þ

X j−X
t
i

X j−X
t
i

	

	

	

	

� Step � Randð Þ ð12Þ

2. Swarm: Suppose nf is the number of its partners in

the current neighborhood and Xc is the center

position of them, if Yc/nf > δYi, then moves one step

towards Xc, otherwise executes the preying.

3. Follow: Let Xj has the maximum value Yj among

partners, if Yj/nf > δYi, then moves one step towards

Xj, otherwise preys.

4. Move: Default behavior of preying.

3 Methods

Since the signal is received without any prior knowledge,

it is not possible to be processed only in one symbol

duration. The target signal contains a large unknown

number of symbols, so it is aperiodic with a certain

bandwidth. Therefore, the stochastic resonance result

cannot be measured by the signal-to-noise ratio of the

single-frequency signal, which is defined as the ratio of

the amplitude at the signal frequency in the power

spectrum of the output signal to the same-frequency

background noise [32]. Later, scholars proposed the

cross-correlation function as a measurement for

aperiodic signals [34], but it is based on the simple

waveform matching of input and output signals. There is

also a measurement of bit error rate for digital signals

[35], but in fact, it cannot be measured based on the

received signals without knowing the correct sequence

of symbols. Therefore, we need a measuring function that

does not require any prior knowledge.

In this section, singular value decomposition (SVD) is

used to measure the effect of the stochastic resonance

output and is combined with AFSA as evaluation

function to find the optimal system parameters for weak

IF digital signals.

3.1 Evaluation function based on SVD

There is an important parameter in AFSA: food con-

centration Y, which is the evaluation function in the

optimization process.

SVD can be used to estimate the signal-to-noise ratio

in digital communications [36]. As a measuring function

of ASR, it does not need accurate estimation and is just

a relative quantity. In other words, the value of the func-

tion itself is not important, and it is significant that it

can vary with the system parameters and reach the peak

at the optimum situation.

It is assumed that the signal s(t) passes through the

additive white Gaussian noise channel and is expressed

as y(n) = s(n) +w(n) after sampling, where w(n) is the

noise with zero mean and σ2w variance. The distributions

of the signal and noise are independent. The autocorre-

lation matrix of the signal is:

Ryy ¼ E y nð ÞyΗ nð Þ
� �

¼ E s nð Þ þ w nð Þ½ � s nð Þ þ w nð Þ½ �Η
n o

¼ Ef s nð ÞsΗ nð Þ
� �

þ Ef w nð ÞwΗ nð Þ
� �

¼ Rssþ Rww

ð13Þ

Since the matrices Ryy, Rss, and Rww in (13) are

symmetric, SVD can be diagonalized as:

Ryy ¼ Rssþ Rww ¼ VΛyVΗ

¼ V Λsþ Λwð ÞVΗ
ð14Þ

where V is an orthogonal matrix and

Λs ¼ diag λ1;⋯; λp; 0;⋯0ð Þm�m

Λw¼ diag σ2
w; σ

2
w;⋯σ2w

� �

m�m

Λy¼ diagðλ1þ σ2w; λ2þ σ2
w;⋯;

λpþ σ2w; σ
2
w;⋯σ2

wÞm�m

λ1 > λ2 > ⋯ > λpð Þ
ð15Þ

for which m is the order and λi, i = 1, 2,… p are

singular values.

Taking the BPSK signal as an example, we use two

different sets of stochastic resonance system parameters

including a and b to process it, and then perform SVD

with an order of 10 on the original signal and two out-

put signals to observe the effect of stochastic resonance

from the perspective of the eigenspace. The singular

values of all signals are compared from large to small, as

shown in Fig. 4.

For the original signal, λ1 = 0.349, λ2 = 0.111, λ3 =

0.043, …, λ10 = 0.037; after stochastic resonance
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processing under the first set of system parameters (here-

after called SR output1), λ
0

1 ¼ 1:095, λ
0

2 ¼ 0:280, λ
0

3 ¼ 0:02

8, …, λ
0

10 ¼ 0:001, and under the second set of system pa-

rameters (hereafter called SR output2), λ
00

1 ¼ 0:580, λ
00

2 ¼ 0:

216, λ
00

3 ¼ 0:061, …, λ
00

10 ¼ 0:003. Comparing the original

signal with the SR output 1, we can conclude that the sto-

chastic resonance causes the first three singular values’ in-

crease and the latter seven values’ decrease, which proves

that the enhancement of signal energy is related to the vari-

ation of the singular values. Furthermore, comparing the

SR output 1 with the SR output 2, we can infer that the de-

gree of the singular value change varies with the different

system parameters. In addition, it shows that the stochastic

resonance can indeed use the noise energy to enhance the

signal, and at the same time, the noise energy is suppressed,

which demonstrates some of the noise energy is transferred

to signal after processing. To sum up, this experiment

proves that it is feasible to find the optimal system parame-

ters to achieve the maximum energy conversion by using

SVD.

In the application of SNR estimation, the minimum

description distance (MDL) [37] is needed to determine

the dimension of the signal space. However, the measu-

ring function represents the relative meaning rather than

the absolute, so it is unnecessary to determine the opti-

mal dimension p. There are two advantages: one is the

invalidation of the MDL in the case of weak signals is

avoided and the other is the simplicity of the algo-

rithm is guaranteed. p is fixed to 3 in this paper; thus,

we define the measuring function (SRIF stands for

stochastic resonance of IF digital signals), which is

expressed by:

YSRIF ¼ 10� log

X

p

k¼1

λk−σ2w
� �

m� σ2w
ð16Þ

3.2 Analysis of the parameters of the stochastic

resonance system

Research shows that the system parameters play a

crucial part in Kramers’ transition rate rk of the sys-

tem. The adjustment of the parameter a can adapt to

the input signals with different changing speeds. It is

known from (10) that the normalization stretches the

signal for a times in time domain, which is also

equivalent to 1/a time compression in the frequency

domain. Also, the amplitude scale of the input is nor-

malized by
ffiffiffiffiffiffiffiffiffiffi

b=a3
p

. Above conclusions demonstrate

that the parameter a mainly determines whether

stochastic resonance can occur, and both a and b

affect the amplitude. In order to prove the effect of

different system parameters, we take BPSK as an example,

as shown in Fig. 5.

As shown in Fig. 5, when a = b = fc, the BPSK signal is

enhanced by stochastic resonance to some extent; how-

ever, when a = 50fc, b = fc, waveform distortion occurs in

the output signal, which proves that the parameter a

affects the quality of the output. On the contrary, if a =

fc, b = 50fc, the enhancement level of the output does

not change, but the amplitude is increased by about 10

times, which proves that the parameter b mainly affects

the amplitude of the output. According to this feature,

the influence of the parameter b can be neglected by

normalizing the amplitude of the stochastic resonance

output, so that the complexity of the optimization can

be reduced by half. In the optimization process, b and a

remain the same size specifically.

The previously defined SVD-based measuring func-

tion YSRIF is used as the evaluation function in

parameter optimization. As shown in Fig. 6, YSRIF

has an optimal value within a certain range of the

parameter a, which means that the system and the

signal and noise are optimally matched and the noise

triggers the maximum transfer of power to the signal

in the system with optimal parameters.

3.3 Module framework

Design the stochastic resonance module as Fig. 7.

Step 1: Normalize the amplitude of the input to pre-

vent the amplitude from being too large or too small.

Step 2: Determine the system parameters. Make b = a

and h = 1/fs, which is the iteration step for step 3. How

to choose a adaptively will be discussed later.

Step 3: Use the fourth-order Runge-Kutta method [33]

to iterate and calculate the output.

Step 4: Pass the signal through the moving average

filter. As shown in Fig. 8, the direct output signal has

an amplitude drift phenomenon in which the ampli-

tude of the symbol is unstable. The moving average

filter can be expressed as:

Fig. 4 Comparison of signal singular values before and after

stochastic resonance processing
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S
0
kð Þ ¼ S kð Þ− 1

2K þ 1

X

K

i¼−K

S k þ ið Þ ð17Þ

where S and S' represent the signals before and after the

filter, respectively, and K is the sliding length.

Step 5: Normalize the amplitude of the output to

remove the influence of the parameter b, and finally ob-

tain the processed signal.

The stochastic resonance module is embedded into

the whole algorithm framework which is shown in Fig. 9

to complete the weak IF digital signal enhancement

based on AFSA.

The overall structure is divided into three parts,

namely the input module, the AFSA module, and the

output module.

(1) Input module: The received signal is usually the RF

signal. It is sampled with being roughly measured

the carrier frequency, then moved to the

intermediate frequency, and intercepted as the

input of the next module. The specific value of the

intermediate frequency can be unknown, except for

the order of magnitude, e.g., 1 K Hz, 10MHz, etc.

(2) The AFSA module is the core part, and the specific

steps of which are as follows:

First, initialize the parameters. Assuming the IF is on the

order of 1 × 10mHz, the initial optimization range of a is

set as [1 × 10m ‐ 1, 1 × 10m + 1], the Visual is set as 0.5 ×

10m ‐ 1, and the settings of the remaining parameters T, δ,

GEN, and M can be properly set regardless of the

magnitude order.

Fig. 5 Effect of different system parameters on the stochastic resonance output

Fig. 6 Effect of a on YSRIF
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Second, the stochastic resonance module is used to

calculate the food concentration, and YSRIF is used

to evaluate and select the current optimal

parameter.

Third, AF performs behavior functions sequentially,

iterated, updated, and recorded generation after

generation;

At last, when the number of iterations reaches the preset

value, the current optimal parameter is the output.

(3) Output module: The received signal is passed

through the stochastic resonance module under the

optimal parameters to obtain the enhanced signal.

4 Results and discussion

4.1 Experiment 1: Effectiveness validation

First, the IF digital signals are simulated, including seven

kinds: 2ASK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, and

64QAM. The parameters of the signals are uniformly set

as amplitude A = 1, symbol rate Rs = 1000 Bd, carrier fre-

quency fc = 1 × 104 Hz, number of symbols N = 20, sam-

pling rate fs = 1 × 106 Hz, and SNR = 0 dB. The AFSA

parameters are set as M = 50, GEN = 10, T = 20, Visual =

1000, Step = 500, and δ = 0.5, and the initial optimization

range is [1 × 103, 1 × 105].

The AFSA module is used to acquire the optimal system

parameter, and the optimal values and the maximum food

Fig. 7 Stochastic resonance module

Fig. 8 Comparison before and after moving average filtering
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concentration are recorded with the increasement of the

iteration number, as shown in Fig. 10.

Taking the convergence curve of the 64QAM as an ex-

ample, the optimum parameter of the first AF generation

is about 1.45 × 104 with the food concentration of 3.408,

indicating that the food concentration under this value

is the highest among these 50 AFs in the initial search-

ing stage. Next, the second generation continues to go

ahead in a large step, and the food concentration reaches

6.641. In the third generation, it is close to arrive at the

optimal parameter position with the highest food con-

centration with a small step. Finally, it reaches the opti-

mal position in the fifth generation. The curves illustrate

that in the early reproduction stage, the AF can optimize

Fig. 9 System composition block diagram

a

b

c

d

e

f

g

Fig. 10 Convergence curve. a 2ASK. b 4ASK. c BPSK. d QPSK. e 8PSK.

f 16QAM. g 64QAM
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with a fast speed and approach the optimal position

gradually with a small step in the later stage, thus

achieving an ideal convergence result. The results mani-

fest that under the preset condition of signal and noise,

the optimal parameter a found by AFSA is 9792. If the

parameter is used for stochastic resonance processing,

the evaluation function of the output signal can reach

the maximum value of 8.53.

To sum up, for the seven different signals, the algo-

rithm reaches the convergence state with the fastest

three generations and the slowest six generations, and

the optimal system parameters that maximize the evalu-

ation function are obtained, which proves the effective-

ness of the algorithm.

Taking 2ASK, BPSK, and 16QAM as examples, the in-

put and output waveforms are compared in Fig. 11,

which prove PSR can strengthen the signal and remove

the noise efficiently.

4.2 Experiment 2: Robustness test

In a real environment, the parameters of the signal are

various. Therefore, the 16QAM with high universality,

which is often used in satellite communication, will be

set as an example with different parameters and repeated

tests to verify the robustness of the algorithm. In the

process of enlarging the symbol rate from 1 × 103 to

1.6 × 104 Bd, the carrier frequency is set to 4, 6, 8, 10,

and 12 times, respectively, and the sampling rate is uni-

formly set as fs = 100fc. Because the oversampling rate

(fs/Rs)varies, the signal length is different under the

same number of symbols, so the signal is uniformly

intercepted by 1 × 104 points with SNR = 0 dB. The

experiments are repeated 100 times for each parameter,

and the parameters of AFSA keep the same as ex-

periment 1. Finally, the average convergence times

were recorded.

The data in Table 1 indicate that the average conver-

gence times remain stable when the symbol rate and car-

rier frequency change, which can prove two points: first,

the convergence speed of the algorithm is not affected

by the signal parameters; second, the algorithm can con-

verge to the signals with different parameters and obtain

the optimal system parameters adaptively. The robust-

ness of the algorithm under different signal parameters

is significant because the target signal is unknown. Ex-

periment 2 shows that the proposed method is robust.

4.3 Experiment 3: Quality improvement test

The purpose of this study is to find the optimal stochas-

tic resonance parameters so that the signal quality can

be improved. In order to quantitatively measure the sig-

nal enhancement effect, we employ the measuring func-

tion YSRIF to test the signals under different SNR.

Define YI (YSRIF improvement) as follows:

YI ¼ YSRIF out‐YSRIF in ð18Þ

YSRIF _ in and YSRIF _ out are the measuring func-

tions of the input and output signals, respectively. It is

actually a relative signal-to-noise ratio gain measuring

method, which can reflect the improvement of signal

quality by stochastic resonance processing. In order to

clearly present the results, we take 2ASK, BPSK, and

16QAM as examples. Let the SNR of the signals be ex-

panded from − 15 to 10 dB at intervals of 1 dB. The rest

of the signal parameters are the same as experiment 1.

Draw the curve of YI as SNR grows as Fig. 12.

In the change of the SNR from low to high, YI is firstly

increased and then gradually decreased. The overall

values of YI are positive, meaning that the algorithm im-

proves the signal energy to different degrees. When SNR

is − 10 dB, YI is most significant. When the SNR is high,

the degree of the enhancement is little, which is because

the signal energy is already strong and the noise energy

is already weak on the contrary. It can be deduced from

experiment 3 that stochastic resonance can highlight the

excellent performance at low signal-to-noise ratio and is

suitable for weak IF signal enhancement.

Fig. 11 Signal enhancement result after PSR. a 2ASK. b BPSK. c 16QAM

Table 1 Average convergence times under different signal

parameters

Rs ¼
1� 103

Rs ¼
2� 103

Rs ¼
4� 103

Rs ¼
8� 103

Rs ¼
1:6� 104

fc = 4Rs 4.5 5.1 4.6 4.8 4.7

fc = 6Rs 5.4 4.3 4.7 5.4 4.5

fc = 8Rs 4.8 4.7 4.9 4.3 5.0

fc = 10Rs 5.0 4.4 4.4 4.7 5.0

fc = 12Rs 4.6 4.3 4.8 4.8 4.9
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4.4 Experiment 4: Contrast test

The previous three experiments can prove that the

proposed method is feasible and applicable from the

aspect of algorithm performance. In order to justify it

more comprehensively, we need to compare it with

existing methods. However, before this study, no one

deals IF digital signals with adaptive parameter-tuning

stochastic resonance. Therefore, we use the fixed par-

ameter which is set according to the lower limit of

the optimization range as the contrast and the opti-

mal parameter obtained from the proposed method,

to process the noisy signals respectively and compare

them by YI. Take 2ASK, BPSK, and 16QAM as exam-

ples and keep the signal parameters as same as ex-

periment 1 except from SNR. The optimal parameter

is obtained from the average value after 100 experi-

ments. ΔYI is the increasement of YI.

From Table 2, we can see that compared with the

stochastic resonance under fixed system parameter,

this method can get the optimal system parameter for

noisy signals to achieve the best enhancement. For

example, we can get the optimum parameter of 5545

for 2ASK with − 5 SNR. Compared with the fixed

parameter 1000, ΔYI can reach positive 8.2 dB, which

means the enhancement effect of the weak signal

reaches the highest level under the optimum

parameter.

5 Conclusions

An adaptive parameter-tuning stochastic resonance

method for three types of weak IF digital signals

(MASK, MPSK, and MQAM) is proposed, and a

frame of signal enhancement preprocessing is pre-

sented here. The method is capable of adaptively

adjusting the SR system parameters in accordance

with different noisy signals, enhancing the characteris-

tics and improving the quality of signals by AFSA.

According to the theoretical analysis and simulation

experiments, the algorithm is proven effective. It has

the following advantages: First, the method of SVD

with fixed order is employed to build the evaluation

function of the output signal, effectively measuring

the aperiodic signals from non-cooperative recipient.

Second, the effects of different system parameters on

the signal are investigated, and the optimization pa-

rameters are reduced by half, significantly increasing

the efficiency of calculation. Third, the algorithm does

not require accurate prior knowledge and can adap-

tively deal with the large-parameter digital communi-

cation signals in non-cooperative environment, which

is of practical importance. Fourth, the application of

stochastic resonance is expanded, and some innova-

tive ideas for signal processing are provided.

In the meantime, there are undoubtedly many other

types of signals in digital communication. The subse-

quent step will focus on expanding the applicable signal

types to make it a more complete receiver architecture.

Fig. 12 The change curve of YI with SNR growth

Table 2 Contrast experiment results

Signal SNR
(dB)

Traditional method Proposed method ΔYI
(dB)

Fixed parameter YI (dB) Optimal parameter YI (dB)

2ASK − 5 1000 5.44 5545 13.64 + 8.2

− 10 7.26 6976 15.13 + 7.87

− 15 3.37 6037 10.55 + 7.18

BPSK − 5 1000 5.03 8329 13.34 + 8.31

− 10 6.98 8003 14.65 + 7.67

− 15 4.86 8536 10.68 + 5.82

16QAM − 5 1000 5.03 5067 12.53 + 7.5

− 10 6.64 6543 14.36 + 7.72

− 15 3.94 5500 10.44 + 6.5
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