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ABSTRACT: running a genetic algorithm entails setting a number of parameter values. Finding settings that work well 
on one problem is not a trivial task and a genetic algorithm performance can be severely impacted. Moreover we know 
that in natural environments population sizes, reproduction and competition rates, change and tend to stabilise around 
appropriate values according to some environmental factors. This paper deals with a new technique for setting the 
genetic parameters during the course of a run by adapting the population size and the operators rates on the basis of the 
environmental constrain of maximum population size. In addition genetic operators are seen as alternative reproduction 
strategies and fighting among individuals is introduced. Finally benchmarks of the proposed strategy on classical 
optimization problems are shown. The results show that the parameters reach an equilibrium point and that 
performances on the considered problems are very good. 
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INTRODUCTION  

We know, Roughgarden (1979) and Song (1988), that in natural environments population sizes of species, together with 
their reproduction and competition rates, change and tend to stabilise around appropriate values according to some 
factors such as natural resources and carrying capacity of the ecosystem.  
Unfortunately in standard genetic algorithms, Holland (1975), Goldberg (1989), these features, like population size, 
crossover and mutation probabilities, are stuck, from generation to generation, on a priori defined values. It means that 
running such an algorithm entails setting the values of such parameters. Finding settings that work well on one problem 
is not a trivial task; if poor settings are used, a genetic algorithm performance can be severely impacted. It is clear that 
in this situation we actually have to deal with two optimization problems : the problem itself and the setting of the GA 
parameters.  
Furthermore, the reduction of the number of external parameters of a GA can be seen as a first step towards achieving a 
problem-dependent self-adaptation of the algorithm. 
Within this framework the proposed paper deals with a new solution for dynamically setting the parameters of genetic 
algorithms during the course of a run.  
The main feature of our methodology is variable population size based on free interaction among individuals. To 
implement such a feature we reconsidered some basic concepts. 
First we reviewed the traditional concept of selection in GAs versus that of direct competition among individuals.  
Second the two classical genetic operators, crossover and mutation, are viewed not so strictly genetic but, in a little 
more evolutionary way, like two different ways of reproducing.  
In this context, as proposed in Jefferson (1995), the metaphor for crossover, mutation and chromosome moves towards 
bisexual reproduction, mono-sexual reproduction and individual and the general underlying idea is that of moving from 
the genetic level towards that of artificial evolution of societies and artificial life.   
On the base of population size we define reproduction and competition rates. Obviously since population size is 
variable then such rates are variable too. Reproduction probabilities are defined on the basis of the environmental 
availability of finite natural resources. Roughly speaking we say that the higher the population size is and the less the 
resources are. It means that, because of the lack of resources, as the population size increases the competition rate gets 
higher and the reproduction probabilities decrease. 



To test our ideas we used as testbed common instances of the travelling salesman problem (TSP). We wish to underline 
that the aim of our work is not a study of such a problem, we used this benchmark only to provide individuals with a 
fitness criterion and to show the effectiveness of the proposed adaptive parameterisation to solve optimization 
problems. 

RELATED WORK 

The idea that one should adapt one's genetic algorithm during the course of a run is not a new one.  
Shaefer (1986) has built an approach to numerical optimization around this idea in his ARGOT program. The thing 
adapted in ARGOT is the representation itself, and pursuing this idea has led Shaefer to some interesting results. 
Shaffer (1987) has investigated encoding crossover points on chromosomes, so that information controlling crossover 
locations evolves during run.  
Whitley (1987) has investigated the adaptation of the reproductive fitness of a parent based on performance of its 
offspring. The idea described here is that one adapts the probability that a genetic operator will be applied in 
reproduction based on the performance of the operator's offspring. 
Davis (1989) proposed that an adaptive mechanism should alter the probability of applying an operator in proportion to 
the observed performance of the individuals created by that operator in the course of a run. Such a mechanism rewards 
the operator that produces a good child and the operator setting the stage for this production because purely local 
measures of performance were seen to be not sufficient.  
In Cartwright (1991) the use of information gathered from the problem’s data space, before the algorithm begins, is 
suggested to assist in the choice of parameters.  
Bäck (1992) presented an approach in which a basic idea from Evolution Strategies (ESs) is transferred to GAs. 
Mutation rates, instead of being handled as a global constant external parameters, are changed into endogenous items 
which are adapting during the research process. In this work experimental results indicate that environment-dependent 
self-adaption of appropriate settings for the mutation rate is possible even for GAs. 
One of the widest studies on the topic is that of DeJong (1993) in which the author proposed a classification of the 
control parameter setting strategies. 
Fernandes (1999) presents niGAVaPS, a genetic algorithm that mimics some mechanisms of evolution in natural 
environment populations. niGAVaPS tunes the population size parameter according to the state of the search process 
and adapts the reproduction rate as function of the current population size. Each chromosome has a lifetime, which 
corresponds to the number of generations in which it will remain in the population. This value is calculated according to 
the chromosome fitness and population characteristics at the moment of its creation.  
Other studies can be found in Davis (1991) and Schaffer (1989). 
In this framework it has to be mentioned that the particular subject which has been the most extensively studied is that 
of dynamically adjusting the population size during one EA run.  
In his classical paper DeJong (1975), studied, among other GA aspects, the optimal population size for a set of 
numerical functions, experimenting with values ranging from 50 to 100.  
Grefenstette (1986) used a meta-level GA to control the parameters of another GA, finding population size values 
between 30 and 80, but his results were only slightly better than DeJong’s.  
Goldberg (1989b) stated that a small initial population size can lead to premature convergence, since there are few 
schemata to process in the initial population. On the other hand, a large population results in long computational time to 
get improvements, imposing a large computational cost per generation.  
This assertion was also sustained by an extensive empirical study, Schaffer (1989), on the effects of changes in control 
parameters on the (on-line) performance of genetic algorithms on function minimization problems. The authors 
concluded that a large population can achieve a large sampling of search space, although imposing a large cost per 
generation, and noticing that the search operators can also reach the schemata not present in the initial population.  
Moreover Goldberg (1989b), described a reasoning on the real-time Rate of Schema Processing (how many vs. in how 
much time), which should be maximized. Results suggest that small population sizes should be selected for serial GA 
implementations and large population sizes for perfectly parallel GA implementations. Small populations process fewer 
schemata, faster, and converge faster than large populations, where diversity and slow convergence prevails.  
According to Reeves (1993), the choice for an initial population size should not be a random process, and points to a 
relation with alphabet cardinality. He presents a formula for the probability that at least an allele being present at each 
locus in an initial random generated population, thus indirectly supplying a possible way to estimate initial population 
size, related to desired initial population diversity and search space coverage. 
A technique for dynamically adjusting the population size with respect to probability of selection error, based on 
Goldberg (1991), is presented in Smith (1993).  
Michalewicz (1994) presented a genetic algorithm, GAVaPS – the Genetic Algorithm with Varying Population Size, 
that introduces the concept of age or lifetime of the chromosome, namely the number of generations that a chromosome 



stays “alive”, which in turn replace a need for a selection mechanism. Population size increase is obtained only by 
reproduction events, in which all individuals have equal chance of being chosen. The algorithm proceeds in a 
generational manner increasing at each time step each individual’s age. When an individual’s age exceeds its 
(previously fixed) lifetime, it is removed from the population. This concept of age replaces the selection concept, in the 
sense that there is no replacement of individuals other that their lifetime limit imposes.  
In Schlierkamp-Voosen (1996), a mechanism of competing sub-populations with variable size is presented, which is 
dynamically adjusted according to certain criteria. There is a quality criterion for each group, as well as a gain criterion, 
which dictates the amount of change in the group’s size. The mechanism is conceived making all groups, except the 
best, to have its size decreased at each size change by the same percentage. The size of the best group is the only one to 
increase.  
In Hinterding (1996) an experiment with a self-adaptive (with respect to mutation probability), steady-state GA is 
presented, in which three sub-populations have their sizes adjusted at regular intervals - epochs, defined in terms of 
number of genome evaluations - according to the current state of the search. The idea is to maintain the three groups 
apart in their sizes, so that each of the groups may search with different strategies, and also to maximize the 
performance of the group with the midmost size. The criteria used for varying the sizes is (best of sub-population) 
fitness diversity. 
Costa (1999) proposed an empirical comparative study of evolutionary algorithms in which a classification framework 
for dynamical control of population size in EAs is proposed. In this work the authors showed that, when no previous 
information exists, choosing a dynamic random variation control strategy for the population size is a reasonable choice, 
outperforming blind choices for the fixed settings. 
Although it has been recognized by the evolutionary computation community that population size plays an important 
role in the success of the problem solving process, there is still limited understanding of the effects and merits of 
dynamically adapting this parameter DeJong (1993) and this subject is still an open research topic (see, for instance, 
Grefenstette (1986), Schlierkamp-Voosen (1996), Balazs (1999) ). 

THE ADAPTIVE EVOLUTIONARY ALGORITHM : FROM GENETICS TOWARDS 
ARTIFICIAL EVOLUTION  OF POPULATIONS 

Life and evolution in nature are organised at least into four fundamental levels of structure, Jefferson (1995) : the 
molecular level, the cellular level, the organism level and the population level. At present the tendency is to study the 
molecular level through wet-bench lab techniques (wetware), the cellular and population levels with software 
simulations and the organism level with hardware (robotic) experiments. 
What we propose is a population level based evolutionary algorithm for optimization problems. The aim underlying our 
approach is not to recreate nature as it is, but it is to move from classical genetic algorithms towards artificial evolution 
of populations composed by individuals able to meet and interact.  
In this context when two individuals meet then they can interact in two ways : by reproducing (bisexual reproduction) 
or by fighting for natural resources (the stronger kills the weaker), otherwise the current individual can differentiate 
(mono-sexual reproduction). Like in standard GAs all these features are probabilistic, the difference is that probabilities 
are adaptive instead of being a priori fixed.  
The main environmental constrain driving the adaptation mechanism is the maximum population size, namely the 
resources of the ecosystem, and it is the only parameter to be set. 

Procedure AdaptiveEA { 

 Initialize()  

 While( not termination condition ) { 

  evaluate() 

  getTwoIndividuals(); 
  if(meeting){ 
   if(reproduction) 
    biSexsualReproduction(); //Xover 
   else 
    fight(); // the weaker is removed from population 
  } 
  else  
   monoSexsualReproduction(); // mutation 

 } 

} 

Figure 1: Algorithm 



ADAPTATION RULES 

The main feature of our algorithm is the adaptability of the parameters. Population size is limited by the environmental 
limit and its dynamics are determined by the reproduction and competition rules among individuals. These two adaptive 
rates are defined as :   

Pr = 1 - 
Mp
Cp

            [1] 

where Pr is the reproduction rate, Cp is the current population size and Mp is the maximum population size. 
 
Pc = 1 – Pr             [2] 
where Pc is the competition rate and Pr is the reproduction rate. 
 
Roughly speaking we are imposing the rule that if the population density is low then the reproduction rate is high and 
the competition rate is low. Vice versa, because of the lack of environmental resources, the competition rate gets higher 
and the reproduction rate decreases. 

INITIALIZATION 

Traditionally in GAs the initialisation of the population is performed on an a priori fixed number of individuals and it is 
totally random. In this strategy the initial size of the population is a random number, limited by the maximum size, of 
individuals and a few of them are initialized with a greedy strategy which depends on the fitness criterion. This is done 
because small rates of the population initialised in such a way improve speed convergence towards good solutions 
keeping at the same time good diversity. 

SELECTION AND MEETING 

In classic Genetic Algorithms, before crossover, the selection stage is performed, Holland (1975). This step is meant to 
model the natural feature that the fitter an individual is and the higher the probability to survive is. In the traditional 
approach this is implemented as a roulette wheel with slots weighted in proportion to the fitness values of the 
individuals. Through such a wheel a linear search is performed Goldberg (1989) or an intermediate population Whitley 
(1993) is created.  
In our evolutionary algorithm we replaced this stage with the meeting concept. At each iteration we pick the ith 
individual of the population, for i from 1 to population size, up and then we randomly look for a second individual.  
The meeting probability is thus defined as the population density  

Pm = 
Mp
Cp

             [3] 

where Cp is the current population size and Mp is the maximum population size. 
If someone is met then interaction will start, else mono-sexual reproduction of the current individual might occur. 
In this way everyone has a chance of mating and bio-diversity is enhanced, computational time is reduced because the 
O(n), where n is the population size, selection routine based on roulette wheel is removed and memory is saved because 
the intermediate population is not needed anymore.  

CROSSOVER AND BISEXUAL REPRODUCTION 

Crossover is that operator which allows two chromosomes to mutually exchange their genetic equipment giving rise to 
new sons. In traditional Genetic Algorithms when two chromosome meet then mating is performed with a probability a 
priori defined. If it happened then the two offsprings resulting from the crossover operator would replace their parents, 
for instance if they were fitter, in the population, else nothing happens and both originals individuals would survive in 
the population. This mechanism insures the population size to be constant. 
The modification we introduce moves towards bisexual reproduction: mating is performed according to the adaptive 
rate Pr [1], and if it occurred then the resulting sons would not replace their parents, they would simply be added to the 
population. In this situation population increases of two new elements.  
This is much more natural than the genetic crossover because when two individuals mate and have sons these, 
generally, do not kill their parents as they bear.  
When the population reaches its maximum limit then reproduction gets destructive in the sense that sons will replace 
their parents if fitter. This ensures, although this limit, the evolution of the specie. 



COMPETITION 

Competition starts according to the adaptive rate Pc [2]. It means that when two individuals meet and they do not mate 
then they fight for survival, the stronger kills the weaker and this one is kicked from the population off. This is essential 
to let the population not to explode in size because in this way the population size decreases of one unit.  
This simple strategy mimics in a more nature-like way than the “roulette wheel selection” the evolutionary concept of 
the survival of the fittest because we leave the environment to determine the survivals. 

MUTATION AND MONO-SEXUAL REPRODUCTION 

Traditionally mutation is that operator which gets one chromosome and randomly changes the alleles of one or more 
genes. Generally this operator is performed with a probability a priori defined and if it occurred then the mutated 
chromosome would replace the original one. In this case the population size is preserved because the new solution 
destroys the original one. 
Another point of view is that of considering mutation as non-destructive moving towards the concept of mono-sexual 
reproduction. It is performed according to the adaptive reproduction rate Pr [1] and when it occurs an individual first 
clones itself and then mutates. The mutated individual doesn’t replace the original one, it is simply added to the 
population and the population size increases of one unit.   
Like bisexual reproduction when population reaches its maximum value then we perform mutation by replacing the 
original individual with the mutated one if fitter. 

TERMINATION 

The algorithm ends when a maximum number of iterations are reached.  

GLOBAL POPULATION DYNAMICS 

The formula underlying our algorithm which describes the population grow rate is defined in such a way : 
 
N(t+1) = N(t) + 2PmPrN(t) – Pm(1-Pr)N(t) + (1 – Pm)N(t)Pr       [4] 
 
Where N(t+1), N(t) are the population size at time t+1, t, Pm is the meeting probability [3], Pr is the reproduction 
probability [1]. The term 2PmPrN(t) refers to the bisexual reproduction step, Pm(1-Pr)N(t) refers to the competition stage 
and (1 – Pm)N(t)Pr refers to mono-sexual reproduction case. By developing the calculations then [4] reduces to   

N(t+1) = 2N(t)(1 - 
2

)(
???
?

???
?

Mp
tN

)          [5] 

Where Mp is the maximum population size. 
Dividing [5] with Mp then we get 
 
X(t+1) = 2X(t)(1 – X(t)2)           [6] 

Figure 2: Theoretical behaviour of population dynamics according to equation [6] 
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Finally we wish to close this section remarking the main differences with the related work of the last fifteen years.  
The introduction of competition is maybe the most relevant one. In fact it allows us to replace the classic genetic 
selection stage with the new meeting concept and selection is left to the environmental dynamics. Individuals die 
because of fighting.  
Population size is not constrained by any resizing scheme, it is freely determined by the balance of the underlying 
environmental interactions (reproduction and competition).  
Adaptation rules of the operators are driven by population density within an environment with finite natural resources.  

APPLICATION TO OPTIM IZATION PROBLEMS : THE TRAVELLING SALESMAN 
PROBLEM 

The Travelling Salesman Problem (TSP) is one of the most famous and studied problems. Its formulation is: “given n 
towns find the minimal tour such that each town, except the first, is visited exactly once”. It is known to be a NP hard 
problem and it is often used as benchmark for algorithms and approaches. In the following paragr aphs we describe how 
the genetic features of our algorithm have been customized to solve TSP. We wish to underline that we did not use the 
best operators for this problem because our task is not that of studying this specific problem, we are only interested in 
demonstrating the effectiveness of our approach to solve optimization problems and in providing a fitness criterion to 
allow us to analyse the dynamics of the algorithm. 

CODING 

We enumerate the n towns with integer numbers so that one possible solution is a permutation of n numbers. This 
represents the sequence to follow considering the first gene as the following of the last. In this way we define the length 
of the genotype as n, the number of towns, and we code the i-th gene as an integer j, between 1 and n, representing that 
at the i-th step town j is visited.  

1  2  3 

 

 
6  5  4 

Figure 3: Example of tsp coding for 123456 

INITIALIZATION  

Given n the initial population size and m the number of towns then n-m individuals are initialized randomly while m are 
initialized according this simple greedy strategy : start from each of the different towns and then choose the nearest 
town not visited yet until all towns are visited. 

BISEXUAL REPRODUCTION 

The crossover operator is implemented in a very simple way. We ta ke one, randomly chosen, crossover point p, with 
0<p<n-1,  then two new individuals are generated. Each inherits the genes from 0 to p-1 directly from one of the two 
parents and then the remaining genes are filled with the towns not visited yet in the orde r of the other parent.  

12|3456  ?  65|1234 
 
 

65|4321  ?  12|6543 

Figure 4: Bisexual reproduction example 



MONO-SEXUAL REPRODUCTION 

Because of the integer coding of the solution and to preserve the constrain that each town must be visited exactly once 
we simply implemented the mutation operator by swapping the alleles of two randomly chosen genes (ex. 423156 ?  
? 123456) 

FITNESS 

As fitness function we adopted the sum of the Euclidean distance between the connected towns. 

EXPERIMENTAL RESULTS 

In the following part we rep ort the experimental results we curried out on three classical problems, see Reinelt, Oliver 
(1987), Eilon (1969), : Oliver30 (30 towns), Eilon51(50 towns) and Eilon76(75 towns).  
The following tables compare the experimental results of best known real and integer, in brackets, solutions with 
different techniques and show results on the average behaviour of the adaptive parameters.  
 

TOWNS GREEDY SIMPLE G.A. ADAPTIVE E.A. 
 

BEST KNOWN 

30 473.32 (469) 425.94 (423) 423.74 (420) 423.74 (420) 
50 505.77 (503) 443.98 (441) 428.98 (427) 427.86 (425) 
75 612.65 (605) 568.95 (563) 553.16 (546) 542.31 (535) 

Table I:. Comparisons of the best results among different strategies 

From this table it is possible to notice that the Adaptive EA performs pretty well. The solutions found are very close to 
the best ones, the worst performance is that of 75 towns in which it is achieved a result which is about 4% worse than 
the best. Moreover we wish to remark the comparison with the simple genetic algorithm because it has been curried out 
using the same implementation of the operators used for the adaptive strategy. From this comparison it is clear the 
improvement of the solutions found.  
 

Max Pop. Size 1000 3000 5000 7000 10000 
Average pop. size 730 2189 3643 5087 7293 

density 0.73 0.729 0.729 0.727 0.729 

Table II:.  Average results on population size 

Max Pop. Size 1000 3000 5000 7000 10000 
Bisexual rate (%) 30.43 30.4 31.03 31.7 30.96 
Monosex rate (%) 9.68 9.67 9.52 9.28 9.58 
Compet rate (%) 40.07 40.06 40.53 40.98 40.52 

Table III:.  Average results of the adaptive rates as function of the max population size 

From these two tables one remark is needed. From table II we can notice that the population density, defined as the ratio 
between the average and the maximum population size, is almost constant and it ra nges in the interval 0.727-0.73. This 
value can be considered, see also figure 5, the equilibrium point around which the population oscillates. This result is of 
particular interest because it represents the natural constant balance of the different interactions, reproduction and 
competition, of individuals dealing with finite environmental resources. Moreover the equilibrium point tends to the 
average, as in the theoretical case of equation [6], and the experimental dynamics are very similar to those expec ted in 
figure 2. The slight differences can be ascribed to the random generator.  
From table III and the following figures we can notice the same behaviour. All the parameters tend to stabilize near an 
equilibrium point, the average value, around which they  oscillate.      



 

Figure 5:  Example of density population dynamics  

Figure 6: Example of mono-sexual rate dynamics  

Figure 7: Example of competition rate dynamics  
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Figure 8: Example of bisexual rate dynamics  

Finally we have to say that the equilibrium points around which the parameters te nd to stabilize are not dependent on 
the initial population size which is randomly chosen.  

CONCLUSIONS AND FUTURE WORK 

In this paper an adaptive evolutionary algorithm is proposed with the aim of moving towards simulations of natural 
evolution without external parameter settings. The key idea of the proposed strategy is the concept of adaptive 
parameterisation driven by reproduction, competition and dynamic population.  
To achieve this task the classic genetic operators, crossover and mutation, are seen as  two different ways of generating 
new sons, without replacing the parents, and real competition among individuals is introduced.  
Dynamic population, obviously, removes the constrain of population size. This is important because such a parameter is 
the most studied and the one that mainly affects the result of traditional genetic algorithms. In the proposed approach 
population size is determined at each generation by the balance between reproduction and competition.  
The main environmental constrain driving the adaptation mechanism is the maximum population size, namely the 
resources of the ecosystem, it is the only parameter to be set and reproduction and competition rates are defined as 
function of it.  
To study the parameters dynamics and to test the effectiveness of the adaptive EA to solve optimization problems we 
applied our methodology to classic benchmarks: the 30, 50 and 75 towns travelling salesman problems. The 
experimental results have shown a great capability to find very good solutions, at most 4% worse than the best known 
solutions. However our main task is not that of studying such a particular problem. The most interesting results are 
those concerning the parameters dynamics. In fact such a study shows that the algorithm finds itself the parame ters 
values out by, as result of the underlying interactions, oscillating around equilibrium points which are independent on 
the starting conditions (initial population size). Moreover it is of particular interest that all the parameters tend to 
stabilize around almost the same values which does not depend on the maximum population size.  
In this situation we achieved our main task : to curry out an adaptive evolutionary algorithm which does not depend on 
external parameter settings.  
The line of research for  future work is that which stresses the simulation of natural evolution. For example sex and age 
may be introduced in the individuals, new reproduction and competition strategies can be developed and different 
adaptive rules can be studied. Moreover it is possible to go further by introducing artificial life concepts. For instance 
physical space can be introduced and adaptive rates, instead of being global environmental parameters, can be defined 
inside the individuals as endogenous features.  
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