
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 22, 2022

Adaptive Parametrization of Multivariate B-splines for Image Registration

Hansen, Michael Sass; Glocker, Benjamin; Navab, Nassir; Larsen, Rasmus

Published in:
Proceedings of CVPR

Link to article, DOI:
10.1109/CVPR.2008.4587760

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hansen, M. S., Glocker, B., Navab, N., & Larsen, R. (2008). Adaptive Parametrization of Multivariate B-splines
for Image Registration. In Proceedings of CVPR (pp. 1-8). IEEE. https://doi.org/10.1109/CVPR.2008.4587760

https://doi.org/10.1109/CVPR.2008.4587760
https://orbit.dtu.dk/en/publications/79f91c9f-af91-44df-ab68-914c601781a8
https://doi.org/10.1109/CVPR.2008.4587760


Adaptive Parametrization of Multivariate B-splines for Image Registration

Michael Sass Hansen and

Rasmus Larsen

Technical University of Denmark

Lyngby, Denmark

msh@imm.dtu.dk

Ben Glocker and

Nassir Navab

Technische Universität München

München, Germany

Abstract

We present an adaptive parametrization scheme for dy-

namic mesh refinement in the application of parametric im-

age registration. The scheme is based on a refinement mea-

sure ensuring that the control points give an efficient rep-

resentation of the warp fields, in terms of minimizing the

registration cost function. In the current work we introduce

multivariate B-splines as a novel alternative to the widely

used tensor B-splines enabling us to make efficient use of

the derived measure.

The multivariate B-splines of order n are Cn−1 smooth

and are based on Delaunay configurations of arbitrary 2D

or 3D control point sets. Efficient algorithms for finding

the configurations are presented, and B-splines are through

their flexibility shown to feature several advantages over

the tensor B-splines. In spite of efforts to make the tensor

product B-splines more flexible, the knots are still bound

to reside on a regular grid. In contrast, by efficient non-

constrained placement of the knots, the multivariate B-

splines are shown to give a good representation of inho-

mogeneous objects in natural settings.

The wide applicability of the method is illustrated

through its application on medical data and for optical flow

estimation.

1. Introduction

Image alignment is a challenging task due the infe-

rior number of constraints compared to the number of un-

knowns. One approach to overcome this problem is to re-

duce dimensionality of the problem. Hence, parametric im-

age registration has become quite popular and has been suc-

cessfully applied to many applications. The two main ad-

vantages are (i) the reduced number of parameters which

makes the problem tractable from an optimization point of

view and (ii) often the transformation model inherently pro-

vides some smoothness properties on the warping field. In

order to be able to capture the present deformations, hierar-

chical approaches have been considered where the number

(a) Regular B-spline grid (b) Multivariate B-spline knots

Figure 1. In (b) it is seen how the multivariate B-splines can adopt

to the structure in the image.

of parameters is successively increased during the optimiza-

tion process. However, these update schemes often follow

some heuristic approaches, for instance in mesh-based mod-

els by simply reducing the spacing between control points

and thus do not incorporate any quantitative or qualitative

measurement about the state of the registration. One can

claim, that the refinement strategy has a significant influ-

ence on the solution and should be guided by some knowl-

edge obtained directly from the images and/or the optimiza-

tion process. Furthermore, one can claim that the transfor-

mation model should be flexible enough and dynamically

adjustable in order to reflect such extracted knowledge dur-

ing image alignment. Therefore, we propose a framework

for parametric image registration which allows us on one

hand to assess the quality of the current solution locally and

on the other hand we can estimate the potential improve-

ment by a local refinement of the parameter set. Since, one

could expect that such an improvement will spatially vary

over the image domain, there is a need for flexible transfor-

mation models.

B-splines are popular in numerous applications because

of achievable smoothness properties and the local support.

Tensor product B-splines were introduced for modeling free

form deformations (FFD) in the context of computer graph-

ics [13]. The method was improved by using hierarchical

B-splines [5, 16]. The same subdivision scheme was used in

medical image registration [11]. However, the tensor prod-
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uct B-splines are defined uniformly on a grid, and in the

search for a more local control of the representation detail,

the notion of an active set of knots was introduced in [12].

Still, such an simulation approach consists of locally uni-

form grids which cannot represent the imaged objects in an

appropriate way.

Cootes et al. created a minimum description length opti-

mization scheme for the placement of control points of tri-

angular piecewise affine interpolation basis functions [3].

However, the method is defined as a groupwise method, and

it relies heavily on the calculation of the inverse deforma-

tion. Recently Chandrashekara et al. proposed a parame-

terization based on a subdivision scheme, also to obtain a

limited number of parameters [10].

We instead propose to use the multivariate B-splines as

presented by Neamtu, to obtain a flexible and smooth warp

interpolation function with local support[7]. They are capa-

ble of representing fields more densely in some areas, while

keeping the number of degrees of freedoms small for an ef-

ficient optimiation.

Dahmen et al. [4] introduced the so called DMS-splines

or triangular B-splines based on the multivariate simplex

splines and auxiliary knots. Franssen et al. [6] described a

new method for efficient calculation of triangular B-splines

using an evaluation graph. Recently, Wang et al. [15] intro-

duced DMS-splines in computer vision for nonrigid regis-

tration with rigid parts that defined by manual landmarks.

The most recent multivariate B-splines were introduced by

Neamtu [7], and they rely heavily on the new concept of

Delaunay configurations [8].

The remainder of this paper is organized as follows:

first we will present the general framework for paramet-

ric image registration. Based on this, we derive our adap-

tive parametrization scheme. In Section 4 we present the

concept behind multivariate B-splines and their use in our

framework for image registration. Experimental results are

shown in Section 5 while the last Section concludes our pa-

per.

2. Parametric Image Registration

The image registration problem can be formulated as the

minimization of the functional J given by

J [I, R,ϕ] = D [I, R;ϕ] + S[ϕ] (1)

where I is an s-dimensional deformable image, R is the

target/reference image, ϕ is the mapping from R into cor-

responding points in I . In the present work we are focus-

ing on parametric image registration, which means that the

warps can formally be represented by

ϕ : RM → (f : Rs → Rs) (2)

which means that the parameters of ϕ determines what the

warp will look like. We will think of ϕ as being represented

as

ϕ =
∑

i

ciKi(x) , (3)

where Ki are the basis functions, and the vectors ci =
[ci1...cis]

T are the parameters associated with the basis

function.

D[I, R;ϕ] is a similarity measure and S[ϕ] is a regular-

ization measure, and we will discuss these functionals in the

context of parametric warp representation, in the following

sections.

2.1. Similarity Measures

As a similarity measure the sum of squared distances

(SSD) is used, but this could be exchanged with any other

common similarity measures.

D[I, R;ϕ] =

∫

Ω

[I ◦ϕ(x)−R(x)]
2
dx (4)

For the subsequent analysis we shall need some of the

derivatives of D[I, R;ϕ]. The Gâteaux derivative of D is

given by

dϕ,vD[I, R;ϕ] =

∫

Ω

〈f(x,ϕ),v〉Rs dx (5)

where f can be perceived as registration forces in the image,

and is given by

f(x,ϕ(x)) = (I ◦ϕ(x)−R(x)) · ∇I ◦ϕ(x) , (6)

which is also denoted as the driving force of the registration

process.

The variation v(x) is restricted to the subspace spanned

by the basis functions. The derivative with respect to a warp

parameter cij is given by

∂D
∂cij

= d
ϕ, ∂ϕ

∂cij

D[I, R;ϕ] =

∫

Ω

〈

f(x,ϕ),
∂ϕ

∂cij

〉

Rs

dx

2.2. Regularization

Often some prior knowledge is available about the pre-

sented image registration problem. This prior knowledge

can generally be expressed as a differential regularizer B,

and some Sobolev norm.

S[ϕ] =

∫

Ω

〈B[u],B[u]〉Rs dx , (7)

where ϕ = Id + u. This norm has a Gâteaux derivative

given by

du;vS[u] =

∫

Ω

〈A[u](x),v(x)〉Rd dx , (8)
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where A = B∗B. For the present work the commonly used

elastic regularizer is chosen, which can be represented by

B[u] =

[ √
µ 0

0
√

2µ + λ

] [

∇× u

∇ · u

]

(9)

from which A = µ∆u + (λ + µ)∇(∇ · u). We can again

form the derivative with respect to the parameter

∂S[u]

∂cij
=

∫

Ω

〈

A[u],
∂u

∂cij

〉

dx (10)

3. Adaptive Parametrization

After minimizing (7) the following equation must hold

for the reached optimum.

∂J [I, R;ϕ]

∂cij
=

∂D[I, R;ϕ]

∂cij
+

∂S[u]

∂cij
= 0 . (11)

This is the parameterized version of the variational optimum

f(x) +A[u] = 0 , x ∈ Ω (12)

Now observe that (11) can be interpreted as an averaged

projection of the variational optimum (12)

∂D
∂cij

+
∂S[u]

∂cij
=

∫

Ω

〈

f(x, ϕ) +A[u],
∂u

∂cij

〉

dx = 0

where the projection is performed on to the support of the

warp parameter. This projection, derived from (3), is given

by
∂u

∂cij
(x) = ejKi(x), x ∈ Ω ,

where ej denotes the unit vector along the jth dimension

and Ki is the basis function associated with the parameter

cij . In popular terms, each of our parameters is designed

to achieve the variational optimum (12) in average only,

and for this reason it seems obvious to pose the question;

how well is the variational optimum achieved? We pro-

pose to measure this fitness of a basis function in terms of

the improvement we could achieve by replacing the basis

function with several more local basis functions. We will

assume that the basis function can be refined into several

similar basis functions, only with a smaller support, and

the response of these local basis functions can be mod-

elled by applying a Gaussian filter on the force residues
〈

f(x, ϕ) +A[u], ∂u
∂cij

〉

. The filter response will model the

changes that can be achieved with a basis function refine-

ment, when we choose the kernel size to be close to that of

the refined basis functions.

Let 1 = e1 + ... + es then the above consideration lead

us to define a refinement measure F by

F [BI ] =

∫

Ω

FσI
∗ (〈f(x, ϕ) +A[u],1BI(x)〉)2 dx , (13)

where FσI
∗ denotes convolution with a Gaussian of a ker-

nel width σI which should be chosen in the order of σI =
[vol[BI ]]

1/s
/4, where vol[BI ] is the volume of the convex

hull of the basis function support. A perfect fit would mean

that the only way (12) was not satisfied would be noise, and

F [BI ] would then be 0. However, if there is spatial co-

herency in the forces, f(x, ϕ)+A[u], then F [BI ] will give

an output suggesting to do a refinement of the mesh. This

criteria should guide the refinement.

In order to make efficient use of the proposed adapta-

tion scheme, we need a set of basis functions with spatially

varying local support.

4. Multivariate B-splines

The multivariate B-splines presented in this paper are us-

ing a basis of simplex splines. These splines are smooth

functions with local support. Several ways exist for com-

posing sets of simplex splines to form a partition of unity,

the most recent one, and the one presented in the current

work, being multivariate B-splines based on Delaunay con-

figurations [7]. Simplex splines and Delaunay configura-

tions are briefly discussed here. Throughout the dimension

is still denoted by s and the degree of the splines by n.

4.1. Simplex Splines

Simplex splines are defined iteratively with the zeroth

order spline defined on the simplex of s + 1 knots, e.g. a

triangle in 2D.

M(x|{x1, ...,xs+1}) =
{

1/vol[{x1, ...,xs+1}], x ∈ int[{x1, ...,xs+1]
0 x /∈ int[{x1, ...,xs+1]

where M denotes the spline value, x is a point we wish to

evaluate, xi are the knot points of the simplex spline, int

refers to the convex hull of the set of points, and vol is the

volume of the convex hull.

The recurrence relation of the higher order simplex

splines is given by

M(x|X) =
∑

xi∈X

λiM(x|X\{xi}) , where

∑

xi∈X

λi = 1,
∑

xi∈X

λixi = x . (14)

Here X is a set of n + s + 1 knots (corresponding to a sim-

plex spline M of order n, and λ is seen to be the barycentric

coordinates of the points.

The simplex splines are n− 1 smooth on the convex hull

of the knots, when none three of the simplex splines are

collinear [7]. Examples of 2D simplex splines of different

orders are illustrated in Figure 2.
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(a) Linear simplex spline (b) Quadratic simplex spline (c) Cubic simplex spline

(d) 4 knots for linear simplex (e) 5 knots for quadratic simplex (f) 6 knots for cubic simplex

Figure 2. Simplex splines of increasing order and smoothness.

For the elastic regularization discussed in Section B the

directional derivatives are needed, and the two first direc-

tional derivatives of the simplex splines are

dvM(x|X) = n
s

∑

i=0

µi(v)M(x|X\{xi})

dv2
dv1

M(x|X) = n
s

∑

i=0

µi(v2)dx,v1
M(x|X\{xi}) ,

where

s
∑

i=0

µi = 0,

s
∑

i=0

µixi = x

Complexity The complexity of the multivariate B-splines

can be expressed in terms of the number of M0 nodes vis-

ited, and this is ns+1 if a naive implementation is chosen.

However, through fingerprinting visited nodes, this graph

can be reduced considerably [6]. When calculating the in-

terpolation values, the derivatives can be calculated simul-

taneously.

4.2. Delaunay Configurations

For choosing appropriate sets of knots for simplex

splines, the Delaunay configuration is needed. The Delau-

nay configuration is a generalization of the Delaunay trian-

gulation, where the circumscribed sphere contains exactly

n points. Denote a given Delaunay configuration of nth

order by ∆n. Let the set of all interior point sets, with

n points in each be denoted by I. Then a set of interior

points I ∈ I is associated with a set of boundary point sets

B(I) = {B|(B, I) ∈ ∆n}. We now define the multivariate

B-spline associated with n interior points I as [7]

BI =
∑

B∈B(I)

vol[B]M(.|B ∪ I) (15)

This normalization ensures a partition of unity, i.e.
∑

I∈I

BI(x) = 1, x ∈ Rs (16)

Using these multivariate B-splines as a basis for describing

the deformation field, the field can be defined as

ϕ(x) = x +
∑

I∈I

cIBI(x), cI ,x ∈ Rs (17)

Silveira et al. have shown a strategy for efficient computa-

tion of the Delaunay configurations [14].

4.3. Mesh Layout and Refinement

For deriving an initial guess for placement of the knots,

it can be noted that (13) seems most likely to yield big val-

ues, in areas where the forces f(x,ϕ) attain big values. In

terms, we expect the most changes to our deformation field

to happen where the gradient is bigger, since the force and

the gradient are proportional, (6). For the initial coarse dis-

tribution of knots, we propose to distribute them randomly,

with a prior density based on the image gradient of the ref-

erence. Additionally, we add knots sequentially, according

to the following update scheme

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 04:20 from IEEE Xplore.  Restrictions apply. 



(a) Multivariate B-spline

(b) Tensor product B-spline

Figure 3. Illustration of the flexible kernel of Multivariate B-

splines compared to the tensor product B-spline.

1

2

3

4

5

6

(a) A cell

1

2

3

4

5

6

(b) The Delaunay configurations

Figure 4. Illustration of a cell of a first order Delaunay config-

uration. Notice how point 1 is inside the 3 triangles circum-

scribed spheres forming the Delaunay triangulation of its con-

nected points. They constitute the whole cell with 1 as an inside

point.

f(xj+1|R, {x1, ...,xj}) ≈ f(xj+1|R)

j
∏

i=1

f(xj+1|xi)

∝ (∇R)T∇R

‖∇R‖2
j

∏

i=1

[

1− exp

{

− (x− xi)
T (x− xi)

2σ

}]

,

where ∇R is the gradient of the reference, and σ is a ker-

nel diameter, where the kernel in effect limits the chance of

a second point being place in the immediate vicinity of a

knot. This function can be perceived as a prior probability

for placing knots, and they can be placed either according

to the maximum, or according to a random sampling. This

did not seem to have big effect on results though, due to the

subsequent mesh refinement.

We propose to make the mesh refinement based on sub-

division of the grid of the knots, where the B-splines are

expected to give most improvement in the cost function,

when subdivided, according to the refinement measure de-

rived in Section 3. To increase the resolution around a given

B-spline, we subdivide the inner points and their triangu-

lated neighbors. To enforce better subdivision, the subdi-

vided knots are tracked to a nearby gradient, using a lo-

calized version of f(xj+1|R, {x1, ...,xj}), localized by a

Gaussian. The process of subdivision can be performed re-

peatedly until a sufficiently good resolution is obtained.

The local forces, as well as the effect of smoothing is il-

lustrated in Figure 5. In Figure 5 (b), the forces are seen to

be directed towards the corpus callosum both upwards and

downwards. In average they even out, so there is no net

force on the parameter. In Figure 5(a) the differences are

seen to be intact after the smoothing. Therefore the refine-

ment function has an output, and the B-spline is selected for

subdivision.

5. Evaluation and Results

To support the methodological considerations presented

in the previous section, we applied our implemented method

on two data sets, both quite different in nature. Our image

registration algorithm is implemented for 2D images, due to

the 2D nature of our applications, but all observations and

equations stated in the current work are equally valid for

three dimensional data.

5.1. Groupwise Corpus Callosa Registration

To demonstrate the presented method, we did a group-

wise registration of 62 mid-sagittal cross-section MR im-

ages of the corpus callosum brain structure. To apply the

refinement measure (13) to a group of images, instead of on

a single image, we calculate the sum over the whole data set

for each B-spline, in order to ensure that our mesh refine-

ment yields the biggest groupwise improvement in terms of

minimization of the sum of squared differences.

This data set is part of the LADIS (Leukoaraiosis and

DISability) study [9], a pan-European study involving 12

hospitals and more than 700 patients. Each corpus callosum

has been manually segmented by a clinical expert. We used

these segmentations for further assessment of the method

(see Table 1).
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(a) Dimetrodon image with knot mesh (b) Estimated Dimetrodon flow field (c) True Dimetrodon flow field

(d) Venus image with knot mesh (e) Estimated Venus flow field (f) True Venus flow field

(g) Yosemite with knot mesh (h) Estimated Yosemite flow field (i) True Yosemite flow field

Figure 8. One image of the optical data sets, and the estimated and true flow fields are shown.

Method Dimetrodon Venus Yosemite

Av. End point Avg. Angular Agv. End point Avg. Angular Avg. End point Avg. Angular

Current Method 0.20 4.09 0.72 10.74 0.16 3.10

Bruhn et al. 0.43 10.99 0.51 8.73 0.08 1.69

Black and Anandan 0.35 9.26 0.55 7.64 0.15 2.65

Pyramid LK 0.37 10.27 1.03 14.61 0.20 5.22

Zitnick et al. 0.94 15.82 0.85 15.48 0.68 11.09

MediaplayerTM 0.55 30.10 1.08 11.42 0.47 18.50

Table 2. Optical flow evaluation results compared to other contemporary methods

With an offset in variational optimization theory, we

have derived the parametric version of the elastic potential

regularization and in effect illustrating how the whole class

of differential operator derived regularizers, i.e. curvature

and bending energy, can be easily implemented in a para-

metric setting.

With the same methodology we have analyzed the inher-

ent smoothing or averaging cost, of selecting warp parame-

terizations at a specific kernel resolution, in comparison to

choosing a finer resolution of the warp kernels. Based on

these observations we have proposed a refinement measure,

which is shown to be efficient for guiding the local mesh

layout.

Though both previous results are useful in their own mer-

its, we have introduced the recently emerged multivariate

B-splines based on Delaunay configurations, to the field

of image registration. With the combination of our refine-

ment measure and the local flexibility of the multivariate

B-splines, we are able to automatically refine the warp field

in areas where it results in the minimization of the regis-

tration cost function. In effect we get something close to

a segmentation of objects allowing for better local control,

even where very inhomogeneous areas share a border.

A. Implementation

The inverse compositional optimization approach by

Baker et al. was used in our implementation to achieve a

fast optimization [1]. We obtain a minimum by iteratively

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 04:20 from IEEE Xplore.  Restrictions apply. 



minimizing

Jic(c) =
∑

x

(R(ϕ(x,∆c))− I(ϕ(x, c))2

+
∑

i

F 2
i (ct− ∂c′

∂∆c
∆c) (18)

with respect to ∆c, and the regularizer is expressed as

F 2
i (c) as derived in Appendix B. The parameter updating

of c is done according to

ϕ(x, c′)← ϕ(x, c) ◦ϕ−1(x,∆c). (19)

B. Elastic regularization on Multivariate B-

splines

In this section the elastic regularizer and the Lamé op-

erator are derived for the multivariate B-splines, as. To use

the inverse compositional algorithm for the image registra-

tion, we formulate the regularizer as a sum of functions on

the parameters

S[u] =

∫

Ω

λ

2
(∇ · u)2 +

µ

4

s
∑

i,j=1

[

∂ui

∂xj
+

∂uj

∂xi

]2

d x (20)

Using the basis representation (17) of u, we can represent

the elastic operator A = µ∆u + (λ + µ)∇(∇ · u) by the

following parameterizations

∆u =

s
∑

i=1

∑

I∈I

cI
∂2

∂x2
i

BI =
∑

I∈I

cI

s
∑

i=1

∂2

∂x2
i

BI

∇(∇ · u) =
s

∑

i,j=1

∑

I∈I

eicIj
∂2

∂xi∂xj
BI (21)

For the inverse compositional optimization the regulariza-

tion term must be formulated as S[u] =
∑

i F 2
i (c). We

parameterize the terms ∇ · u and ∂ui

∂xj
+

∂uj

∂xi
by

∇ · u =
∑

I∈I,j∈{1,...,s}

cIj
∂

∂xj
BI (22)

[

∂ui

∂xj
+

∂uj

∂xi

]

=
∑

I∈I

cIi
∂

∂xj
BI + cIj

∂

∂xi
BI . (23)

It is clear that both terms are linear in c , which yields the
representation of F 2

i , when the integral is discretized.
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