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Abstract

Partial Differential Equations (PDEs) have been suc-

cessful in solving many low-level vision tasks. However,

it is a challenging task to directly utilize PDEs for visual

saliency detection due to the difficulty in incorporating hu-

man perception and high-level priors to a PDE system. In-

stead of designing PDEs with fixed formulation and bound-

ary condition, this paper proposes a novel framework for

adaptively learning a PDE system from an image for visual

saliency detection. We assume that the saliency of image el-

ements can be carried out from the relevances to the salien-

cy seeds (i.e., the most representative salient elements). In

this view, a general Linear Elliptic System with Dirichlet

boundary (LESD) is introduced to model the diffusion from

seeds to other relevant points. For a given image, we first

learn a guidance map to fuse human prior knowledge to the

diffusion system. Then by optimizing a discrete submodular

function constrained with this LESD and a uniform matroid,

the saliency seeds (i.e., boundary conditions) can be learn-

t for this image, thus achieving an optimal PDE system to

model the evolution of visual saliency. Experimental results

on various challenging image sets show the superiority of

our proposed learning-based PDEs for visual saliency de-

tection.

1. Introduction

As an important component for many computer vision

problems (e.g., image editing [9], segmentation [18], com-

pression [12], object detection and recognition [32]), salien-

cy detection gains much attention in recent years and nu-

merous saliency detectors have been proposed in the litera-

ture. According to their mechanisms of representing image

saliency, existing work can be roughly divided into two cat-

egories: bottom-up and top-down approaches. The bottom-

up methods [13, 7, 38, 36, 39, 34, 22, 15] are data-driven

and focus more on detecting saliency from image features,

such as contrast, location and texture. As one of the earli-

est work, Itti et al. [13] consider local contrast and define

image saliency using center-surround differences of image

features. Cheng et al. [7] also investigate the global con-

trast prior. Location is another important prior for mod-

eling salient regions. The convex hull of interest points

is employed in [38] to estimate the foreground location.

The work in [39, 36] considers the image boundary as a

background prior. Inspired by recent advances in machine

learning, compressive sensing [34, 22] and operations re-

search [15] are also utilized to detect salient image features.

The work in [34, 22] assumes that a natural image can al-

ways be decomposed into a distinctive salient foreground

and a homogenous background. So one can utilize low-rank

and sparse matrix decomposition methods and their exten-

sions for saliency detection. Very recently, Jiang et al. [15]

formulate saliency detection as a semi-supervised clustering

problem and use the well-studied facility location model to

extract cluster centers for salient regions.

In contrast, the top-down approaches [26, 40] are of-

ten task-driven and incorporate more human perceptions for

saliency detection. For example, Liu et al. [26] propose a

supervised approach to learn to detect a salient region in an

image. Yang et al. [40] use dictionary learning to extract

region features and CRF to generate a saliency map.

In the past decades, Partial Differential Equations

(PDEs) have shown their power of solving many low-level

computer vision problems, such as restoration, smoothing,

inpainting, and multiscale representation (see [5] for a brief

review). This is mainly because theoretical analysis on

these problems has already been accomplished in areas such

as mathematical physics and biological vision. For exam-

ple, scale space theory [23] proves that the multiscale rep-

resentation of images are indeed solutions of heat equation

with different time parameters.

Unfortunately, the existing PDE designing methodology

(i.e., define PDE with fixed formulation and boundary con-

dition from general intuitive considerations) is not suitable

for complex vision tasks, such as visual saliency detection.

This is because saliency is a kind of intrinsic information

contained in the image and its description strongly depends

on human perception. From the bottom-up view (i.e., lo-
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Figure 1. The pipeline of our learning-based LESD for saliency detection on an example image. The orange region illustrates the core

components (i.e., guidance map and saliency seeds) of our PDE saliency detector, which will be formally introduced in Section 2. The blue

region shows how to incorporate both bottom-up and top-down prior knowledge into our PDE system. The details of this PDE learning

process will be presented in Section 3. The bottom row shows the ground truth (GT for short) salient region and saliency maps computed

by some state-of-the-art saliency detection methods.

cal image structure), it is challenging to exactly define a

PDE system with fixed formulation and boundary condi-

tions to describe all types of saliency due to the complexity

of salient regions in real world images. From the top-down

view (i.e., object-level structure), high-level human percep-

tions (e.g., color [34], center [31], and semantic informa-

tion [16]) are important for saliency detection. But it is

hard to automatically incorporate these priors into conven-

tional PDEs. Moreover, the boundary conditions in most

existing PDE systems are simply defined by some gener-

al understandings on the problem (e.g., well-posed guaran-

tees [5] and initial values [23]), thus cannot handle complex

(e.g., driven by both data and priors) vision tasks. Overall,

traditional PDEs with fixed form and boundary conditions

cannot efficiently describe complex visual saliency patterns

quantitatively, thus may fail to solve the saliency detection

problem.

1.1. Paper Contributions

In this paper, we provide a diffusion viewpoint to under-

stand the mechanism and investigate the physical nature of

saliency detection. Firstly, an adaptive PDE system, named

Linear Elliptic System with Dirichlet boundary (LESD), is

proposed to describe the saliency diffusion. Then we devel-

op efficient techniques to incorporate both bottom-up and

top-down information into saliency diffusion and learn the

specific formulation and boundary condition of LESD from

the given image,. Fig. 1 shows the pipeline of our learning-

based PDE detector with comparisons on an example im-

age. To our best knowledge, this is the first work that in-

corporates learning strategy into PDE technique for visual

saliency detection. We summarize the contributions of this

paper as follows:

• A novel PDE system is learnt to describe the evolution

of visual attention in saliency diffusion. We prove that

visual attention in our system is a monotone submod-

ular function with respect to saliency seeds.

• We develop an efficient method to incorporate both

bottom-up and top-down prior knowledge into the

LESD formulation for saliency diffusion.

• We derive a discrete optimization model with PDE and

matroid constrains to extract saliency seeds for LESD.

By further proving the submodularity of the proposed

model, the performance can be guaranteed.

1.2. Notations

Hereafter, we use lowercase bold letters (e.g., p) to rep-

resent vector points and capital calligraphic ones (e.g., S)

to denote sets of points. |S| is the cardinality of S . 1 is

the all one vector. We denote the neighborhood set of p on

a graph as Np. ‖ · ‖ denotes the ℓ2 norm. Suppose f is a

real-value function on V . For a given point p with neighbor

Np, we denote ∇f as the gradient of f and discretize it as

∇f = [f(p)− f(q1), · · · , f(p)− f(q|Np|)]. Similarly, let

v be a vector field on V and denote vp as the vector at p.



We denote the divergence of v as div(v) and discretize it at

p as div(vp) =
1
2

∑

q∈Np
(vp(q) − vq(p)), where vp(q)

is the vector element corresponding to q1.

2. Saliency Diffusion Using PDE System

This section proposes a diffusion viewpoint to under-

stand visual saliency and establishes a PDE system to model

saliency diffusion on an image. Numerical and theoretical

analysis on our system is also presented accordingly.

2.1. Visual Attention Evolution

For a given visual scene, saliency detection is to find the

regions which are most likely to capture human’s attention.

This paper tackles this task from a diffusion point of view.

That is, we assume that our attention is firstly attracted by

the most representative salient image elements (this paper

names them as saliency seeds) and then the visual attention

will be propagated to all salient regions.

Specifically, let V be the discrete image domain, i.e., a

set of points corresponding to all image elements (e.g., pix-

els or superpixels). Then we define a real-value visual atten-

tion score function f(p) : V → R to measure the saliency

of p ∈ V . Suppose we have known a set of saliency seeds

(denoted as S) and its corresponding scores (i.e., f(p) = sp
for p ∈ S). We can mathematically formulate saliency d-

iffusion as an evolutionary PDE with Dirichelet boundary

condition:

∂f(p, t)

∂t
= F (f,∇f), f(g) = 0, f(p) = sp, p ∈ S,

where g is an environment point with 0 score (outside V)

and F is a function of f and ∇f .

As the purpose of above PDE is to propagate visual at-

tention from saliency seeds to other image elements, we

adopt a linear diffusion term div(Kp∇f(p)) for the score

function, in which Kp is an inhomogeneous metric tensor

to control the local diffusivity at p. To incorporate our per-

ception and/or high-level prior into the diffusion process,

we further introduce a regularization term which is formu-

lated as the difference between f(p) and a guidance map

g(p) (will be discussed in Section 3), leading to the follow-

ing form:

F (f,∇f) = div(Kp∇f(p)) + λ(f(p)− g(p)),

where λ ≥ 0 is a balance parameter.

2.2. Linear Elliptic System with Dirichlet Boundary

For saliency detection purpose, we only consider the sit-

uation when the saliency evolution is stable (i.e., no saliency

1Similar discretization scheme is also used for nonlocal total variation

image processing [8].

attention can be further propagated). At this state, we omit

the time t in our notation and only seek the solution to the

following PDE:

F (f,∇f) = 0, f(g) = 0, f(p) = sp, p ∈ S, (1)

which is a Linear Elliptic System with Dirichlet boundary

(LESD). Thus given an image, the saliency detection task

reduces to the problem of solving an LESD.

Till now, we have established a general PDE system

for saliency diffusion. Fig. 1 shows that our LESD (with

properly learnt g and S) can successfully incorporate im-

age structure and high-level knowledge to model the salien-

cy diffusion, thus achieves better saliency detection results

than state-of-the-art approaches. Therefore, the main prob-

lem left for LESD is to develop an efficient learning frame-

work to incorporate bottom-up image structure information

and top-down human prior knowledge into (1). Before dis-

cussing this issue in Section 3, we first provide necessary

numerical and theoretical analysis on LESD, which will sig-

nificantly reduce the complexity of the learning process.

2.3. Discretization

Suppose Np = {q1, · · · ,q|Np|−1,g} is the neighbor-

hood set of p. Here the first |Np|−1 nodes are in the image

domain V and will be specified in Section 3. The environ-

ment point g is connected to each node [37]. To measure

the variance between p and its neighborhood Np, we de-

fine an inhomogeneous metric tensor Kp as the following

diagonal matrix2:

Kp = diag(k(p,q1), · · · , k(p,q|Np|−1), zg), (2)

where k(p,q) = exp(−β‖h(p)− h(q)‖2) is the Gaussian

similarity (with a strength parameter β) between the fea-

tures of nodes, h(p) is a feature vector at node p, and zg is

a small constant to measure the dissipation conductance at

p. Then we can approximately discretize the LESD formu-

lation as

f(p) =
1

dp + λ
(
∑

q∈Np

Kp(q)f(q) + λg(p)), (3)

where Kp(q) is the diagonal element of Kp correspond-

ing to q and dp =
∑

q∈Np
Kp(q). Based on this discrete

scheme, our LESD can be reformulated as a linear system,

thus can be easily solved.

2.4. Theoretical Analysis

It should be emphasized that the visual attention score f
is indeed a set function on V , i.e., f(S) : 2V → R as f

2By anisotropic diffusion theory [37], Kp can also be chosen as a more

general symmetric semi-positive definite matrix, which may lead to a more

complex discretization scheme.



is the solution to (1) with respect to the saliency seed set

S . This implies that the solution to our LESD is inherently

combinatorial, thus much more difficult to be handled than

the PDEs in conventional low-level computer vision3. This

is because the optimization of a combinatorial f without

knowing any further properties can be extremely difficult

(e.g., trivially worse-case exponential time and moreover i-

napproximable [21]). Fortunately, by proving the follow-

ing theorem we can exploit some good properties, such as

monotonicity (i.e., non-decreasing) and submodularity, of

the solution to LESD. As shown in Section 3, these results

provide good guarantees for our saliency detector.

Theorem 1 4 Let f(p;S) be the visual attention score of

image element p. Suppose the sources {sp ≥ 0} are at-

tached to saliency seed set S , i.e., f(p) = sp for all p ∈ S .

Then f is a monotone submodular function with respect to

S ⊂ V .

3. Learning LESD for Saliency Detection

This section discusses how to adaptively learn a specif-

ic LESD for saliency diffusion on a given image. For the

given image, we first construct an undirected graph in the

image feature space to model the neighborhood connection-

s among image elements. Then we incorporate different

types of human priors to establish the diffusion formulation

(i.e., guidance map g). Based on the submodularity of the

system, we also provide a discrete optimization model for

boundary condition (i.e., saliency seeds S) learning.

3.1. Feature Extraction and Graph Construction

For a given image, we generate superpixels to build the

image elements set V = {p1, · · · ,p|V|}. Here any edge-

preserving superpixel methods can be used and SLIC algo-

rithm [3] is adopted in this paper. Then we define feature

vectors {h(p),p ∈ V} as the means of the superpixels in

the CIE LAB color space.

The image structure information is extracted as follows.

Suppose the image domain V consists of two parts: the

candidate foreground Fc (salient regions, may also con-

tain some promiscuous image elements) and the pure back-

ground Bc (non-salient regions). We utilize a shift convex

hull strategy to approximately estimate these two subsets

from the input image. Specifically, we use Harris operator

[35] to roughly detect the corners and contour points and es-

timate a convex hull C based on these points [38]. Then Fc

can be obtained by collecting nodes inside C. To further i-

dentify pure background nodes, we define an expended hull

C′ by adding adjacent nodes to C. Then Bc is obtained by

3In general, the solutions to PDEs with fixed formulation and boundary

condition are continuous functions of space and/or time variables only, thus

they are much easier to be handled.
4See supplemental materials for all proofs in this paper.

(a) (b) (c)
Figure 2. Illustration of the shift convex hull strategy in (a) and

connection relationship in (b)-(c). The red and yellow polygons in

(a) denote C and C
′, respectively. The red and yellow regions in

(b)-(c) represent Fc and Bc, respectively. Lines in (c) indicate that

all nodes in Bc are connected to each other.

collecting all nodes outside C′. Please see Fig. 2 (a) for an

example of C and C′.
Now we construct an undirected graph G = (V, E) to

reveal the connection relationships (i.e., Np for each p) in

the image domain, where E is a set of undirected edges cor-

responding to the nodes set V5. We first define a k-regular

graph structure to exploit local spatial relationship (Fig. 2

(b)). Then all the nodes in Bc are connected to each other to

enforce the smoothness of background (Fig. 2 (c)). As there

may exist promiscuous image elements, we do not further

connect nodes in Fc. Finally, all the nodes are connected to

an environment node g.

3.2. Learning Guidance Map Using Priors

This subsection shows how to incorporate different types

of prior knowledge into the PDE system. For a given im-

age, we first define a background diffusion to estimate the

background prior. That is, we assume that the distribution

of background is significantly different from that of fore-

ground. Thus we perform a simplified LESD with λ = 0 to

compute a background diffusion score fb, i.e.,

div(Kp∇fb(p)) = 0, s.t. fb(g) = 0, fb(p) = 1, p ∈ Bc.

Here the boundary condition is defined by considering Bc
as the background seed set with score 1 and adding an en-

vironment point g with score 0. It is easy to check that the

solution to the background diffusion is a harmonic function,

thus fb(p) ∈ [0, 1]6. So the elements in fb can be viewed as

probabilities of nodes belonging to the background. In this

view, we have the probability of a node belonging to the

foreground as ff (p) = 1−fb(p). By further incorporating

high level prior knowledge (e.g., the color prior map fc and

the center prior map fl
7, we define guidance map g(p) as

g(p) = ff (p)× fc(p)× fl(p), (4)

and its value is normalized. To provide good boundary con-

ditions for LESD, we also use g to define the scores of

saliency seeds, i.e., sp = g(p), for p ∈ S .

5As discussed in Section 2.3, the discretization of LESD is based on

this connection relationship.
6Based on the maximum/minimum principles of harmonic functions.
7Please refer to [34] for detailed analysis on these two prior maps.



(a) (b) (c) (d) (e)
Figure 3. Saliency diffusion with different guidance maps. (a) in-

put image and GT salient region. (b)-(e) center prior fl, color prior

fc, background diffusion prior ff , final guidance map g (top) and

their corresponding saliency maps (bottom), respectively.

(a) (b) (c) (d) (e) (f)
Figure 4. Saliency diffusion with different seeds. (a) input image

and GT salient region. (b) Fc (inside red polygon) and g. (c)-(e)

diffusion results using one candidate seed in Fc: (c) background

(L = 10.6175), (d) bad foreground (L = 1.6818) and (e) good

foreground (L = 31.7404). (f) optimal seeds (L = 43.8589) and

final saliency map. Here we report L values using the original

saliency maps but normalize them for visual comparison.

3.3. Optimizing Saliency Seeds via Submodularity

Due to the following two reasons, we cannot choose all

nodes in Fc as seeds for saliency diffusion. First, the con-

vex hull may not adequately suppress background nodes in

Fc (Fig. 4 (c)). Second and more importantly, it is observed

that the seed with extremely high local contrast to its neigh-

bors (e.g., nodes near object boundary and bright or dark

nodes on the object) may also lead to a bad saliency map

(Fig. 4 (d)). Therefore, it is necessary to search for the most

representative foreground nodes in Fc to define boundary

conditions for LESD. Note that the goal of LESD is to prop-

agate the visual attention scores of seeds S to the whole im-

age domain V . So we would like to maximize the sum of

scores f with respect to all image elements in V when the

saliency diffusion is stable, that is, we solve the following

discrete optimization problem:

max
S∈Mn

L(S),

s.t.

{

f(p) = 1
dp+λ (

∑

q∈N (p) Kp(q)f(q) + λg(p)),

f(g) = 0, f(p) = sp, p ∈ S,
(5)

where L(S) =
∑

p∈V f(p;S) and M
n = {S|S ⊂

Fc, |S| ≤ n} is a uniform matroid [4] to enforce that the

cardinality of S is no more than n. As visual attention s-

cores can be considered as the relevances between nodes

and the seeds, the above maximum criterion naturally tend-

s to choose seeds in relatively larger connected subgraph

(thus is more representative). Therefore, the nodes in Fc

with high local contrast (i.e., less connections and paths to

other nodes) will be removed from S . One may concern that

background nodes will also have a large L as they may con-

nect to nodes outside Fc. Fortunately, by learning a proper

guidance map g, we can enforce very small saliency scores

(in most case near zero) in background regions (g in Fig. 4

(b)). So background nodes in Fc still have a relatively small

L value and cannot be included in S (Fig. 4 (c)).

In general, the performance of (5) is dependent on the

maximum number of saliency seeds n (Fig. 5 (a)). Here

we provide an adaptive way to identify n and further sup-

press background nodes in Fc. We first define a back-

ground confidence function w(p) = 1/(1 + g(p)2) on Fc,

in which larger w(p) implies that p has a higher proba-

bility of belonging to the background and should be sup-

pressed. Therefore, we maximize another cost function

L̂(S) = L(S) −
∑

p∈S w(p) in (5). Based on Theorem 1,

we can prove the following corollary for L and L̂.

Corollary 2 Both L(S) and L̂(S) are submodular func-

tions. Furthermore, L(S) is monotone with respect to S .

The monotonicity and submodularity of L together with the

uniform matroid constraint in (5) imply that using a greedy

algorithm to solve (5) yields a (1−1/e)-approximation [29].

Due to the non-monotone nature, we cannot have the same

theoretical guarantee for L̂. But in practice, by adding the

stopping criterion L̂(S ∪ {p}) ≤ L̂(S), the maximization

process for L̂ can be automatically stopped and then the

optimal seed set is obtained accordingly. We have exper-

imentally found that a greedy algorithm with this stopping

criterion is efficient for maximizing L̂ in our saliency detec-

tor.

At the end of this section, we summarize the details for

the learning-based LESD in Algorithm 1. The complete

pipeline of our saliency detector on a test image is also il-

lustrated in Fig. 1.

4. Discussions

In this section, we would like to discuss and highlight

some aspects of our proposed PDE-based saliency detector.

4.1. Comparison to Existing Learning-Based PDE

Recently, Liu et al. [24, 25] utilize an optimal control

technique to train PDEs for image processing. Although

both [24, 25] and our work aim at learning PDEs for image

analysis, the learning strategy in our work is different from

theirs. In [24, 25], they adopt a nonlinear PDE formulation



Algorithm 1 Learning LESD for Saliency Detection

Input: Given an image I and necessary parameters.

Output: Saliency map for the given image.

1: Construct an image graph G on superpixels of I .

2: Calculate guidance map g using (4).

3: Initialize saliency seed set S ← ∅.
4: while |S| ≤ n do

5: for p ∈ Fc/S do

6: Solve (3) with saliency seeds S ∪ {p} for f .

7: Obtain the gain ∆L(p) = L(S ∪ {p})− L(S),
or ∆L̂(p) = L̂(S ∪ {p})− L̂(S).

8: end for

9: p∗ = arg max
p∈Fc/S

∆L(p) or arg max
p∈Fc/S

∆L̂(p).

10: if L̂(S ∪ {p∗}) ≤ L̂(S) (only for L̂) then

11: Break.

12: end if

13: S ← S ∪ {p∗}.
14: end while

15: Solve (3) with optimal g∗ and S∗ to obtain f∗.

16: Construct the final saliency map from f∗.

and learn the combination coefficients (i.e., the PDE for-

m) from training image pairs (collected by hands). While

our framework considers a linear elliptic system and learns

both the PDE form and its boundary conditions to incorpo-

rate both bottom-up image structure and top-down human

perception into our PDE system. Therefore, we can suc-

cessfully handle the more complex saliency detection task.

4.2. Submodularity in Previous Vision Models

Submodularity is an important property for discrete set

functions and has farreaching applications in operations re-

search and machine learning [20]. It has also been ap-

plied to computer vision problems [19, 17, 15]. Although

the work in [15] mentioned submodularity in their salien-

cy detector, the mechanism of our work is very different

from theirs. Specifically, the submodular optimization mod-

el in [15] is used to extract cluster centers8 and graph clus-

tering and saliency map computation steps are required in

their framework. In contrast, we design a submodular op-

timization model to learn the Dirichlet boundary condition

of the PDE system and directly extract the saliency map by

solving the learnt PDE system (no further postprocessing

is needed). Experimental results in the following section

also show that our method achieves more accurate salient

regions than [15].

8Similar clustering-based idea is also used in [17].

5. Experimental Results

Experiments are performed on three image sets which

are generated from two databases, i.e., MSRA [26] and

Berkeley [28]. Firstly, we use a subset of MSRA with 1000

images provided by [2] (MRSA-1000). Then the compari-

son is performed on the whole MSRA database with 5000

images (MSRA-5000). Finally, we test algorithms on 300

more challenging images in the Berkeley image set. We

set the number of superpixels as 200 for all the test im-

ages. We compare our methods (denoted as “PDE” in the

comparisons) with seventeen state-of-the-art saliency detec-

tors, such as IT [13], AC [1], CA [9], CB [14], FT [2],

GB [10], GS [36], LC [41], LR [34], MZ [27], RC [7], S-

ER [33], SF [30], SR [11], SM [15], SVO [6], and XIE [38].

For quantitative comparison, we report the precision, recall

and F-measure values for the three image sets, respective-

ly. We also present ground truth (GT) salient regions and

the saliency maps for compared methods. For our method,

we experimentally set β = 10 in the Gaussian similarity

k(p,q) and λ = 0.01 in F for all test images.

5.1. Quantitative Comparisons

The quantitative comparisons between our method and

other state-of-the-art approaches are performed on MSRA-

1000, MSRA-5000, and Berkeley, respectively. The aver-

age precision, recall, and F-measure values are computed in

the same way as in [2, 7, 38, 15].

We first compare the performance of our two objective

functions (i.e., L and L̂) on the MSRA-1000 image set

and show the results in Fig. 5 (a). It can be seen that

the L̂-strategy performs well (red curve) because this non-

monotonic model can adaptively determine the optimal S .

When we properly define a seed number (n = 10 in this

case) for L, this monotone model can also achieve good

performance (black curve). But it can be seen that the re-

sults of L-based strategy are dependent on the number of

saliency seeds (blue and green curves). This is because a

too small n may lead to insufficient diffusion, while a too

large n may introduce incorrect nodes to the seed set. Based

on this observation, we always utilize the L̂-strategy in the

following experiments.

The precision-recall curves of all seventeen methods on

MSRA-1000 are presented in Fig. 5 (b) and (c). The aver-

age precision, recall and F-measure values using an adap-

tive threshold [2] are shown in Fig. 5 (d). We also perfor-

m experiments on all 5000 images in the MSRA database.

To achieve more reasonable comparison results, here we

use accurate human-labeled masks rather than the bound-

ing boxes used in the previous work to evaluate the salien-

cy detection results. The results are presented in Fig. 6.

The Berkeley image set is more challenging than MSRA as

many images in this set contain multiple foreground objects

with different sizes and locations. We report the comparison
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Figure 5. Results on the MSRA-1000 image set. (a) Precision-recall curves of our method with different design options. (b)-(c) Precision-

recall curves of all test methods. (d) Average precision, recall, and F-measure values.

results in Fig. 7.
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Figure 6. Results on the MSRA-5000 image set. (a) Precision-

recall curves. (b) Average precision, recall, and F-measure values.
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Figure 7. Results on the Berkeley image set. (a) Precision-recall

curves. (b) Average precision, recall, and F-measure values.

The center-surround contrast based methods, such as

IT [13], GB [10] and CA [9], can only detect parts of bound-

aries of salient objects. Using superpixels, recent approach-

es, such as CB [14] and RC [7], are capable of detecting

salient objects. But they usually fail to suppress background

regions and also lead to lower precision-recall curves. In

Fig. 5 (b), we observe that GS [36] shares a similar preci-

sion with ours when the recall is larger than 0.96. However,

the geodesic distance to boundary strategy in that method

tends to recognize background parts as salient regions when

their colors are significantly different from the boundary.

So in most cases, their precision is much lower than ours at

the same recall level. It can be seen that overall our PDE

saliency detector achieves the best performance on all the

three challenging image sets. These results also verify that

the proposed learning strategy can successfully incorporate

both bottom-up and top-down information into saliency d-

iffusion.

5.2. Qualitative Comparisons

We show example saliency maps computed by some typ-

ical saliency detectors in Fig. 8. As an eye fixation pre-

diction based method, IT [13] can only identify center-

surround differences but misses most of the object infor-

mation. The simple low-rank assumption in LR [34] may

be invalid when images contain complex structures. RC [7]

explores superpixels to highlight the object more uniformly,

but the complex background always challenges such meth-

ods [9, 10, 7]. In SM [15], regions inside a salient ob-

ject which share a similar color with the background will

be regarded as part of the background. As a result, they

may share the same saliency value with the background re-

gion. In contrast, our method can successfully highlight the

salient regions and preserve the boundaries of objects, thus

producing results that are much closer to the ground truth.

6. Conclusions

This paper develops a PDE system for saliency detection.

We define a Linear Elliptic System with Dirichlet bound-

ary (LESD) to model the saliency diffusion on an image

and prove the submodularity of its solution. We then solve

a submodular maximization model to optimize the bound-

ary condition and incorporate high-level priors to learn the

PDE formulation. We evaluate our PDE on various chal-

lenging image sets and compare with many state-of-the-art

techniques to show its superiority in saliency detection. In

the future, we plan to extend the submodular PDE learn-

ing technique to incorporate more complex human percep-

tion and high-level priors for other challenging problems in

computer vision.

Acknowledgements

Risheng Liu would like to thank Gunhee Kim and

Guangyu Zhong for useful discussions. Risheng Liu is

supported by the NSFC (Nos. 61300086, 61173103,



Image GT PDE CA [9] GB [10] IT [13] LR [34] RC [7] SM [15]
Figure 8. Qualitative comparisons of different approaches. The top three rows are examples in MSRA and the bottom is in Berkeley.

U0935004) and the China Postdoctoral Science Founda-

tion. Junjie Cao is supported by the NSFC (No. 61363048).

Zhouchen Lin is supported by the NSFC (Nos. 61272341,

61231002, 61121002). Shiguang Shan is supported by the

NSFC (No. 61222211).

References

[1] R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk. Salient region detection and
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