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SUMMARY

Tuned mass dampers (TMD), active mass dampers (AMD) and hybrid mass dampers (HMD) have been
widely applied for vibration control of tall buildings and bridges in the past decade. Recently, the author
and his coworkers have developed semiactive or smart tuned mass dampers (STMD) using semiactive
variable stiffness systems. STMD’s are superior than TMD’s in reducing the response of the primary
structure. In case the fundamental frequency of the primary structure changes due to damage or
deterioration, then the TMD will be off-tune; hence, it will lose its effectiveness significantly, whereas the
STMD is robust against such changes as it is always tuned. The author and his coworkers have shown that
STMD can provide performance similar to AMD/HMD, but with an order of magnitude less power
consumption.
In this paper, new adaptive length pendulum STMD’s are introduced. The concept of adaptive passive

tuned mass dampers (APTMD) is introduced. APTMD is a TMD in which a tuning parameter such as
frequency is adjusted passively based on some local mechanical feedback (displacement, velocity, rotation,
etc.), but without associated sensing and computer feedback needed in a STMD. Also, the concept of
STMD is further developed in this paper and practical STMD’s and APTMD’s implementation in USA,
Japan, and China is presented.
Systems with semiactive variable stiffness devices and STMD/APTMD are linear time varying systems

(LTV); hence, algorithms are needed for their identification and control. Recently, the author and his
coworkers have developed instantaneous frequency tracking control algorithms. In this paper new system
identification algorithms based on time frequency methods, such as Empirical Mode Decomposition
(EMD), Hilbert Transform (HT), and short time Fourier transform (STFT), are developed. New real time
tuning algorithms that identify the instantaneous frequency of the LTV system and tune the STMD are
developed based on EMD, HT, and STFT. Systems with STMD subjected to stationary (harmonic,
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sinsweep, and white-noise) and nonstationary (earthquake) excitations are investigated. The effectiveness
of the STMD systems and the new identification and control algorithms is demonstrated by means of
numerical simulations and experimental validation. Copyright r 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Professor Takuji Kobori was a pioneer in developing and implementing structural control

technology [1]. His contributions are numerous: but, his favorite invention was variable stiffness

system [2], which he pioneered. Kobori et al. [3] developed worlds first active variable stiffness

system (AVS). In the AVS system the building stiffness is altered based on the nature of the

earthquake, which results in the non-resonant state. The AVS system has been implemented in a

full-scale structure in Tokyo, Japan [3]. The observed response of the structure with the AVS

system in two earthquakes in Tokyo indicated the potential of such devices; however, abrupt

switching in the AVS system was a limiting factor as observed in one of the earthquakes [4]. The

AVS system was one of the first variable stiffness systems implemented in civil engineering

structures. Another first for active structural control was the implementation of active tuned

mass dampers (ATMD) [5] in a medium rise building in 1989 by Professor Kobori and his

coworkers at Kajima [6]. Then came the implementation of active tendon system and ATMD by

researchers at SUNY Buffalo [7].

Semi-active control of linear and nonlinear structures using innovative devices such as

variable damping systems [8] and variable stiffness systems has gained considerable attention in

the recent years [9]. Practical implementation issues of such systems have been addressed by Chu

et al. [10]. In such systems variation in stiffness or damping of the system is used to control the

response as compared to direct application of control force in fully active systems; hence, these

systems need nominal power. Reliability of the semi-actively controlled systems is an added

advantage, as these can operate as a passive device in extreme cases. Researchers have developed

variable stiffness devices, which are similar in nature to AVS [11,12], but are based on

pneumatic systems, instead of hydraulic systems of AVS. A new semi-active continuously and

independently variable stiffness (SAIVS) device has been developed by the author [13] to

overcome limitations of existing systems. This device can switch the stiffness continuously and

smoothly. Analytical and experimental studies on SAIVS device indicate the potential of the

device in reducing the response [14].

1.1. Smart tuned mass dampers

The Tuned Mass Damper (TMD) is a passive energy-absorbing system [15,16] consisting of a

secondary mass, a spring, and a viscous damper attached to a primary system to reduce

undesirable vibrations. The TMD has many advantages compared with other damping devices:

reliability, efficiency, and low maintenance cost amongst others. Hence in recent years it has

been widely used in civil engineering structures [17,18]. Many researchers have studied the
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advantages and effectiveness of TMD and have proposed various schemes to improve their

robustness and reliability. Tuned liquid dampers have also been developed [19].

Most often, in a structure, the first vibrational frequency and mode of the primary system

plays a dominant role in the dynamic response. To be effective TMD must remain tuned to the

first mode frequency of the original primary system [15,16]. However, as it is well known, the

TMD is very sensitive to even a small change in the tuning, which can be a disadvantage.

The use of more than one TMD i.e. multiple TMD (MTMD) [20–25] with different dynamic

characteristics to improve the robustness has been proposed. However, like a single TMD,MTMD’s

are not robust under variations in both the primary structures natural frequencies and the damping

ratio. The use of an active TMD provides one possibility to overcome these drawbacks [5,6]. ATMD

and active mass dampers (AMD) have also been developed and implemented widely for applications

in response control [5,6,9] of buildings and bridges. Active TMD can be more robust to tuning error

with the appropriate use of feedback and can be effective in reducing response, but with associated

need for application of active forces and substantial power requirement to operate. Semi-active

control of STMD [26–33] and STLD [34] offer an attractive alternative to provide a comparable

performance with an order of magnitude less power requirement [31,35].

The smart tuned mass damper (STMD) and smart multiple tuned mass damper, developed by

the author and his coworkers [31,32,36], is capable of continuously varying its stiffness and

retuning its frequency due to real time control, and is robust to changes in building stiffness and

damping. In comparison, the passive TMD can only be tuned to the first mode frequency of

the building. The building fundamental frequency can change due to damage or other reasons.

The developed STMD overcomes the limitations of the TMD (i.e. detuning) by retuning the

frequency in real time. The device requires an order of magnitude less power [31,35].

1.2. Note on tuning of STMD

STMD can be tuned to the first mode of the primary system or the dominant response frequency

(close to a selected mode–usually the first mode), at which the primary system is responding

[31,36,37], or can be tuned to the dominant excitation frequency [32]. In this paper we tune to

the dominant frequency, at which the primary system is responding, by tracking it using the top

floor displacement response of the building.

Another important aspect is the tuning of the instantaneous frequency of STMD using either

variable stiffness or variable damping. It is more efficient to use variable stiffness to effect the

change in instantaneous frequency rather than variable damping, although it is possible to

develop STMD with variable damping [29]. Researchers who develop such systems seldom

‘retune’ frequency of TMD, they focus more on energy dissipation by using linear quadratic

controllers or similar techniques [29]. The relationship between damped natural frequency of a

TMD, od , and its undamped natural frequency on, and damping ratio, x, is od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

.

The easiest way to change the od of a TMD is by changing its stiffness (since mass remains

constant) or ‘tuning’ on. Alternatively, the damping ratio x can be changed; but to affect even

small changes of od , x needs to change substantially, which defeats the purpose of TMD, as

tuning no longer dominates, but damping does. Additionally, in Section 6 it will be shown that

increasing damping beyond the optimal is not beneficial. Would it be judicious to adjust

damping in light of the requirement of optimal damping and tuning as well? It certainly seems

more desirable to tune using stiffness rather than damping, unless there are other compelling

reasons such as stroke limitations.
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1.3. Adaptive length pendulum TMD and adaptive passive TMD

In this paper, new adaptive length pendulum (ALP) STMD’s are introduced. The concept of

adaptive passive tuned mass dampers (APTMD) is introduced. APTMD is a TMD in which a

tuning parameter such as frequency is adjusted passively based on some local mechanical

feedback (displacement, velocity, rotation, etc.), but without associated sensing and computer

feedback needed in a STMD. Also, the concept of STMD is further developed in this paper and

practical STMD’s and APTMD’s implementation in USA, Japan, and China are presented.

Systems with semiactive variable stiffness devices and STMD/APTMD are linear time

varying systems (LTV); hence, algorithms are needed for their identification and control.

Recently, the author and his coworkers have developed instantaneous frequency tracking

control algorithms. In this paper new system identification algorithms based on time frequency

methods, such as Empirical Mode Decomposition (EMD), Hilbert Transform (HT) and short

time Fourier transform (STFT), are developed. New real time tuning algorithms that identify

the instantaneous frequency of the LTV system and tune the STMD are developed based on

EMD, HT, and STFT. Systems with STMD subjected to stationary (harmonic, sinsweep, and

white-noise) and non-stationary (earthquake) excitations are investigated. The effectiveness of

the STMD systems and the new identification and control algorithms is demonstrated by means

of numerical simulations and experimental validation.

The outline of the paper is as follows: Section 2 presents time frequency techniques, such as

HT, STFT, EMD; Section 3 presents new system identification using EMD/HT; Section 4

presents the SAIVS device; Section 5 presents the mathematical formulation of LTV with

STMD; Section 6 presents the new real time tuning control algorithms for tuning STMD and

the numerical results; Section 7 presents a new ALP STMD and its experimental validation;

Section 8 presents practical STMD and APTMD concepts and their implementation; and

Section 9 presents the conclusions.

2. TIME-FREQUENCY TECHNIQUES: HT, STFT, AND EMD

2.1. Analytical signal and HT

Signals in nature are real valued but for analysis it is often more convenient to deal with

complex signals. One wants the real part, sðtÞ, of the complex signal, saðtÞ, to be the actual signal

under consideration. How does one fix the imaginary part, sðtÞ, to form the complex signal? In

particular if one wants to write a complex signal, how does one choose sðtÞ? The standard

method is to form the ‘analytic’ signal, saðtÞ,

saðtÞ ¼ sðtÞ þ j�sðtÞ ð1Þ

where j ¼
ffiffiffiffiffiffiffi

�1
p

.

This can be achieved by taking the spectrum of the actual signal, sðoÞ, deleting the negative

part of the spectrum, retaining only the positive part of the spectrum, multiply it by a factor

of 2, and then form the new (complex) signal by Fourier inversion. More specifically if one has a

real signal, sðtÞ, calculate sðoÞ. Form the complex signal with the positive part of sðoÞ only,

saðtÞ ¼ 2
1
ffiffiffiffiffiffi

2p
p

Z 1

0

sðoÞe jotdo ð2Þ
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The factor of two is inserted so that the real part of the complex signal will be equal to the

real signal one started out with. Therefore substituting for sðoÞ

saðtÞ ¼
1

p

Z 1

0

Z

sðt0Þe�jot0e jotdt0do ð3Þ

Using the fact that
Z 1

0

e joxdo ¼ pdðxÞ þ
j

x
ð4Þ

One has
Z 1

0

e joðt�t0Þdo ¼ pdðt� t0Þ þ
j

t� t0
ð5Þ

Hence

saðtÞ ¼
1

p

Z

sðt0Þ pdðt� t0Þ þ
j

t� t0

� �

dt0 ð6Þ

Or

saðtÞ ¼ sðtÞ þ
j

p

Z 1

�1

sðt0Þ

t� t0
dt0 ð7Þ

The imaginary part turns out to be the HT:

�s ¼ H½sðtÞ� ¼
1

p

Z 1

�1

sðt0Þ

t� t0
dt0 ð8Þ

Hence,

saðtÞ ¼ sðtÞ þ jH½sðtÞ� ¼ sðtÞ þ j�s ð9Þ

The complex signal thus formed, saðtÞ, is called the analytic signal. Note that by definition

analytic signals are signals whose spectrum consists only of positive frequencies. That is, the

spectrum is zero for negative frequencies.

As per Equations (1)–(9), the analytic signal can be obtained by: (1) taking the Fourier

transform of sðtÞ; (2) zeroing the amplitude for negative frequencies and doubling the amplitude

for positive frequencies; and (3) taking the inverse Fourier transform. The analytic signal saðtÞ

can also be expressed as

saðtÞ ¼ AðtÞe jjðtÞ ð10Þ

where AðtÞ5 instantaneous amplitude and jðtÞ 5 instantaneous phase.

2.2. Instantaneous frequency

In the analytic signal given by Equations (1) and (10), AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2ðtÞ þ �s 2ðtÞ
p

and jðtÞ ¼

arctan sðtÞ
sðtÞ

� �

, the instantaneous frequency oiðtÞ is given by

oiðtÞ ¼ _jðtÞ ¼
d

dt
arctan

sðtÞ

sðtÞ

� �� �

ð11Þ
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where

dj

dt
¼

1

1þ
�s2ðtÞ

s2ðtÞ

� �2

d
�sðtÞ

sðtÞ

dt
ð12Þ

and

d

dt

�sðtÞ

sðtÞ
¼

sðtÞ_�sðtÞ � �sðtÞ_sðtÞ

s2ðtÞ
ð13Þ

From Equations (12) and (13) one gets

oiðtÞ ¼
djðtÞ

dt
¼

ðsðtÞ_�sðtÞ � �sðtÞ_sðtÞÞ

s2ðtÞ þ �s2ðtÞ
ð14Þ

2.3. Short-time Fourier transform and spectrogram

The Fourier transform (FT) of a signal sðtÞ is given by sðoÞ ¼
1
ffiffiffiffiffiffi

2p
p sðtÞe�jot dt. The short-time

Fourier transform (STFT), the first tool devised for analyzing a signal in both time and

frequency, is based on FT of a short portion of signal shðtÞ sampled by a moving window

hðt� tÞ. The running time is t and the fixed time is t. Since time interval is short compared to the

whole signal this process is called taking the STFT.

StðoÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

shðtÞe
�jotdt ð15Þ

where shðtÞ is defined as follows:

shðtÞ ¼ sðtÞhðt� tÞ ð16Þ

in which hðt� tÞ is an appropriately chosen window function that emphasizes the signal around

the time t, and is a function t� t i.e. shðtÞ ¼ sðtÞ for t near t and shðtÞ ¼ 0 for t far away from t.

Considering this signal as a function of t one can ask for the spectrum of it. Since the window

has been chosen to emphasize signal at t the spectrum will emphasize the frequencies at that time

and hence give an indication of the frequencies at that time. In particular the spectrum is,

StðoÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

sðtÞhðt� tÞe�jotdt ð17Þ

which is the STFT.

Summarizing, the basic idea is that if one wants to know the frequency content of the signal

at a particular time, t, then take a small piece shðtÞ of the signal around that time and Fourier

analyze it, neglecting the rest of the signal, obtaining a spectrum at that time. Next take another

small piece, of equal length of the signal, at the next time instant and get another spectrum.

Keep marching forward till the entire signal is sampled. The collection of all these spectrum (or

slices at every time instant) gives a time-frequency spectrogram, which covers the entire signal,

and captures the localized time varying frequency content of the signal. If one performs a FT

then the localized variations of frequency content are lost, since FT is performed on the whole

signal; one gets an average spectrum of all those obtained by STFT.
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The energy density of the modified signal and the spectrogram is given by,

Pðt;oÞ ¼ jStðoÞj
2 ð18aÞ

or

PSPðt;oÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

sðtÞhðt� tÞe�jot dt

�

�

�

�

�

�

�

�

�

�

2

ð18bÞ

By analogy with the previous discussion it can be used to study the behavior of the signal

around the frequency point o. This is done by choosing a window function whose transform is

weighed relatively higher at the frequency o.

HðoÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

hðtÞe�jotdt ð19aÞ

soðtÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

Sðo0ÞHðo� o0Þe jo0tdo0 ð19bÞ

shðtÞ ¼ sðtÞhðt� tÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

StðoÞe
jotdo ð19cÞ

where o0 is running frequency and fixed frequency is o. The spectrogram is given by

PSPðt;oÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z 1

�1

sðo0ÞHðo� o0Þe jo0tdo0

�

�

�

�

�

�

�

�

�

�

2

ð20Þ

The limitation of STFT is its fixed resolution, which can be overcome multiresolution analysis

using wavelets [38,39]. In STFT the length of the signal segment chosen or the length of the

windowing function hðtÞ determines the resolution: broad window results in better frequency

resolution but poor time resolution, and narrow window results in good time resolution but poor

frequency resolution, due to the time-bandwidth relation (uncertainty principle [40]). Note hðtÞ and

HðoÞ are Fourier transform pairs (Equation (19a)), i.e. if hðtÞ is narrow, more time resolution is

obtained; however, HðoÞ becomes broad resulting in poor frequency resolution and vice versa.

2.4. STFT implementation procedure

The implementation procedure for the STFT in the discrete domain is carried out by extracting

time windows of the original nonstationary signal sðtÞ. After zero padding and convolving the

signal with Hamming window, the DFT is computed for each windowed signal to obtain STFT,

StðoÞ, of signal shðtÞ . If the window width is n:Dt (where n is number of points in the window,

and Dt is the sampling rate of the signal), the k-th element in StðoÞ is the Fourier coefficient that

corresponds to the frequency,

ok ¼
2pk

n:Dt
ðfor window width n:DtÞ ð21Þ

To illustrate the STFT method is applied to the acceleration time history of the 1994

Northridge Sylmar earthquake (fault parallel component 901) as an example. Figure 1 shows the

time history (upper left), frequency spectrum (lower right), the time-frequency distribution of

the spectrogram (upper right), and spectrogram (lower left) of the Sylmar earthquake

ADAPTIVE PASSIVE, SEMIACTIVE, SMART TUNED MASS DAMPERS

Copyright r 2009 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2009)

DOI: 10.1002/stc



acceleration signal. The evolution of the frequency content of the Sylmar signal as a function of

time can be seen in the spectrogram shown in Figure 1 (lower left), and from time-frequency

distribution (upper right). If one examines the time history alone (upper left) or the frequency

spectrum (lower right) alone, the localized nature of the time varying frequency content is not

evident.

2.5. Empirical mode decomposition

For a multicomponent signal—as in a multimodal or multidegree of freedom (MDOF)

response—the procedure described in the previous section to obtain analytic signal and

instantaneous frequency cannot be applied directly, as it is meant for monocomponent signals.

The EMD technique, developed by Huang [41], adaptively decomposes a signal into ‘intrinsic

mode functions’ (IMF), which can then be converted to analytical signal using HT. The

time-frequency representation and instantaneous frequency can be obtained from the intrinsic

modes extracted from the decomposition, using HT. The principle technique is to decompose a

signal into a sum of functions that (1) have the same numbers of zero crossings and

extrema, and (2) are symmetric with respect to the local mean. The first condition is similar to

the narrow-band requirement for a stationary Gaussian process. The second condition modifies

a global requirement to a local one, and is necessary to ensure that the instantaneous

frequency will not have unwanted fluctuations as induced by asymmetric waveforms. These

functions are called IMF (denoted by imf i) obtained iteratively (Huang et al. 1998 [41]). The

Figure 1. Time–frequency analysis of Sylmar earthquake.
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signal, xjðtÞ, for example, jth degree of freedom displacement of a MDOF system, can be

decomposed as follows

xjðtÞ ¼
X

n

i¼1

imf iðtÞ þ rnðtÞ ð22Þ

where imf iðtÞ are the ‘IMF’ (note: dominant IMFs are equivalent to individual modal

contributions to xjðtÞ, which will be demonstrated in a later section) and rnðtÞ is the residue of the

decomposition. The IMF are obtained using the following algorithm (Figure 2):

1. Initialize; r0 ¼ xjðtÞ; i ¼ 1

2. Extract the imf i as follows:

(a) Initialize: h0ðtÞ ¼ ri�1ðtÞ; j ¼ 1

(b) Extract the local minima and maxima of hj�1ðtÞ

(c) Interpolate the local maxima and the local minima by a spline to form upper and

lower envelopes of hj�1ðtÞ, emaxðtÞ and eminðtÞ respectively.

(d) Calculate the mean mj�1 of the upper and lower envelopes ¼ ðemaxðtÞ þ eminðtÞÞ=2
(e) hjðtÞ ¼ hj�1ðtÞ �mj�1ðtÞ

(f) If stopping criterion is satisfied then set imf iðtÞ ¼ hjðtÞ else go to (b) with j ¼ j þ 1

3. riðtÞ ¼ ri�1ðtÞ � imf iðtÞ

4. If riðtÞ still has at least 2 extrema then go to 2 with i ¼ i þ 1 else the decomposition is

finished and riðtÞ is the residue.
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Figure 2. EMD of double harmonic signal.
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The analytical signal, saðtÞ, and the instantaneous frequencies oiðtÞ, associated with

each imf iðtÞ component, can be obtained using Equations (1)–(14) by letting sðtÞ ¼ imf iðtÞ

and saðtÞ ¼ sðtÞ þ jHðsðtÞÞ for each IMF component.

To ensure that the IMF components retain the amplitude and frequency modulations of the

actual signal, a satisfactory stopping criteria for the sifting process are defined [42]. A criteria for

stopping are accomplished by limiting the standard deviation, SD [41], of hðtÞ, obtained from

consecutive sifting results as

SD ¼
X

l

k¼0

jðhj�1ðkDtÞ � hjðkDtÞÞj
2

h2j�1ðkDtÞ

" #

ð23Þ

where l ¼ T=Dt and T ¼ total time. A typical value for SD is set between 0:2 and 0:3 [42]. An

improvement over this criterion is based on two thresholds y1 and y2, aimed at globally small

fluctuations in the mean while taking into account locally large excursions. This amounts to

introducing a mode amplitude aðtÞ and an evaluation function sðtÞ:

aðtÞ ¼
emaxðtÞ � eminðtÞ

2

� �

ð24Þ

sðtÞ ¼
mðtÞ

aðtÞ

�

�

�

�

�

�

�

�

ð25Þ

Sifting is iterated until sðtÞoy1 for a fraction of the total duration while sðtÞoy2 for the

remaining fraction. Typically y1 � 0:05 and y2 � 10y1 [42].

3. SYSTEM IDENTIFICATION USING EMD/HT

EMD can be used to decompose a signal into its multimodal components (1 residual IMF

components 1 residue). In a lightly damped system with distinct modes, EMD can extract the

multicomponent modal contributions [or IMFs] from the jth DOF displacement response of a

MDOF system. Each of these IMF components can then be analyzed separately to obtain the

instantaneous frequency and damping ratios. If the displacement of MDOF system is

represented by vector x ¼ Fq, where F5modal matrix, q 5 modal displacement vector, then

combining it with Equation (22) leads to the following equation for xjðtÞ, the jth degree of

freedom displacement of a MDOF system,

xjðtÞ ¼
X

n

i¼1

imf iðtÞ þ rnðtÞ ¼
X

m

i¼1

FjiqiðtÞ þ
X

n

i¼m

imf iðtÞ þ rnðtÞ ð26Þ

where m 5 number of modes of a MDOF system and IMF’s from m to n are treated as residual

terms along with the actual residual and discarded.

The equation of motion of a MDOF is given by

M €xþ C _xþ Kx ¼ MRf ð27Þ

substituting x ¼ Fq,

U
TMU€qþUTCU_qþUTKUq ¼ UTMRf ð28Þ
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Proportional damped system with orthonormal F leads to m uncoupled equations of motion

with

diag½Lc� ¼

2x1o1 0 : : : 0

0 2x2o2 : : : 0

: : : : : :

: : : : : :

: : : : : :

0 0 0 0 0 2xnon

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; diag½Lk� ¼

o2
1 0 : : : 0

0 o2
2 : : : 0

: : : : : :

: : : : : :

: : : : : :

0 0 0 0 0 o2
n

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

€qk þ2xkok _qk þo2
kqk ¼ Gkf ð29Þ

where Gk ¼ F
T
kMR. With f as input and qk as output, taking Laplace transform

ðs2 þ 2xkoksþ o2
kÞqkðsÞ ¼ Gk f ðsÞ ð30Þ

Dropping Gk for generality, the transfer function is then given by

HkðsÞ ¼
1

s2 þ 2xkoksþ o2
k

ð31Þ

and the frequency response function (FRF) is given by

HkðjoÞ ¼
1

�o2 þ j2xkokoþ o2
k

ð32Þ

Noting xk ¼ Fkqk and xjk as the jth component of the displacement contributed by the kth

mode, and with f as input and xjk as output, the transfer function

HjkðjoÞ ¼
1

ðo2
k � o2Þ þ j2xkoko

fjk ð33Þ

If the structure is lightly damped, the peak transfer function occurs at o ¼ ok with amplitude

jHjkðjoÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2k

q

2xk
fjk ð34Þ

From Equation (34) it is seen that magnitudes of the peaks of FRF at o ¼ ok are proportional

to the components of the kth modal vector. The sign of these components can be determined by

phases associated with the FRF’s: if two modal components are in phase, they are of the same

sign and if the two modal components are out-of-phase, they are of opposite sign. With the

knowledge of magnitude of peaks, the damping factor, xk can be solved from Equation (34).

From Equation (33) summing over all modes gives

HijðjoÞ ¼
X

n

k¼1

fikfjk

ðo2
k � o2Þ þ j2xkoko

ð35Þ
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which can be written as

HijðjoÞ ¼
X

n

k¼1

kAij

ðo2
k � o2Þ þ j2xkoko

ð36Þ

where kAij ¼ fikfjk being the residues or modal components. Taking the inverse transform of

Equation (36) gives the general form of the impulse response function (IRF)

hijðtÞ ¼
X

n

k¼1

kAij

odk

e�xkokt sinðodktÞ ð37Þ

where odk ¼ ok

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2k

q

¼ damped frequency of the kth mode. It follows from Equation (36)

that MDOF linear time invariant system frequency responses are the sum of n single degree of

freedom frequency responses, provided that well separated modes and light proportional

damping are valid, and the residues and the modes are real. For non proportional damped

systems the residues and modes become complex.

Consider the function e�skþjokt with sk ¼ xkonk and ok ¼ odk, and for a lightly damped

asymptotically stable system with (xko10%) s40, we can rewrite the Equation (33) for mode k

by taking inverse Fourier transform

hjkðtÞ ¼ Ajke
�skt sinðodktÞ ð38aÞ

hjk ðtÞ ¼ Ajke
�skt cosðodktÞ ð38bÞ

where Ajk ¼
Fjk

odk

leading to the analytical signal

hjka ðtÞ ¼ hjkðtÞ þ j hjk ðtÞ ð39Þ

that can be written as

hjka ðtÞ ¼
�Ajke

jjt ð40Þ

The magnitude of this analytical signal is given by

jhjkaðtÞj ¼ jAjk j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2jka ðtÞ þ h
2

jka
ðtÞ

q

ð41Þ

Substituting Equation (38a) and (38b) and simplifying results in

jAjk j ¼ Ajke
�skt ð42Þ

Taking the natural logarithm of this expression yields

log jAjk j ¼ �sktþ logðAjkÞ ¼ �xkontþ logðAjkÞ ð43Þ

The author and coworkers originally developed the EMD/HT system identification approach

for tuning STMD in 2001 [37], based on their earlier work [43] on variable stiffness systems. The

advantage of this approach is that it is signal based; hence, measured response at any one DOF

can be used to make useful estimates of instantaneous frequency and damping ratio. However,

to estimate mode shapes response signals at more degrees of freedom will be needed. Each

significant IMF component represents one modal component with unique instantaneous

frequency and damping ratio.

Individual mode FRF and corresponding IRF can be extracted when band pass filters [44]

are applied to the system FRF. Equation (42) can be used to estimate damping in the kth mode,

as suggested originally by Thrane [44] in 1984 and adopted by Agneni [45] in 1989. In 2003 Yang

and coworkers [46,47] have extended this approach by using EMD/HT to decompose and

S. NAGARAJAIAH

Copyright r 2009 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2009)

DOI: 10.1002/stc



obtain IMFs that are modal responses; they analytically obtained modal-free vibration response

and then obtained the instantaneous frequency and damping ratios based on the idea of Thrane

[44]. In case when the inputs are white noise excitation (WNE) and the output accelerations at a

certain floor are available then they [47] obtain the free vibration response from the stationary

response to white noise using the random decrement technique followed by instantaneous

frequency and damping calculations. The procedure outlined below was developed

independently by the author and coworkers [37].

The EMD/HT system identification procedure [37] is as follows:

1. Obtain signal xjðtÞ, jth degree of freedom displacement of a MDOF system, from the

feedback response.

2. Decompose the signal xjðtÞ into its IMF components as described in Equations (26)

and (22).

3. Construct the analytical signal for each IMF/modal component using HT method

described in Equation (9).

4. Obtain the phase angle of the analytic signal and then obtain the instantaneous frequency

from Equation (14).

5. Obtain the log amplitude function of the analytic signal; perform least squares line fit

to the function (which will be a decreasing function fluctuating about a line and

not necessarily linear at all times). Then using Equation (43) compute the slope and

damping ratio.

As described in earlier sections the ability of the EMD/HT method to identify the

instantaneous frequency in real time is used for controlling and tuning the STMD [37] in

Section 6. Next the experimental results from model tests of a three-story model with STMD are

presented and analyzed using proposed EMD/HT method.

3.1. System identification tests of scaled three-story model with STMD

The 1:10 scale three-story model with a total weight of 1000 lbs, shown in Figure 3, is used

for system identification study based on the proposed EMD/HT algorithm. Time axis is

scaled by
ffiffiffiffiffi

10
p

from the prototype scale for this study. The identified frequencies of the

model 3DOF structure (without the STMD) are 4.9, 18.8, and 33.9Hz for the three

modes, respectively. The first mode frequency of the original model was 5.5Hz and was

reduced to 4.9Hz due to damage during testing, the other two modal frequencies remained

nearly the same. At the prototype scale the three modal frequencies are 1.75, 5.9, and 10.7Hz,

respectively.

The model was subjected to white noise base excitation using a shaking table. The table and

floor accelerations, and floor displacements were recorded. The identified displacement transfer

function (TF) of 3DOF (without the STMD) is shown in Figure 5. The identified frequencies of

the 3DOF are 4.9, 18.8, and 33.9Hz and the identified damping ratios are approximately 1.9,

1.7, and 1.1% in the three modes, respectively. The recorded TF of the 3DOF is also shown in

Figure 5 in comparison with the TF of the 4DOF (with STMD) obtained by an analytical

model. The STMD is tuned perfectly to the first mode frequency of 4.9Hz. The computed

frequencies of the 4DOF analytical model with STMD are 4.5, 5.5, 18.8, and 33.9Hz and the

damping ratios are 1.9, 1.7, 1.0, and 1.1% in the four modes, respectively. The recorded and

computed acceleration TF of the 4DOF with STMD is shown in Figure 6. Attempts to identify
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the closely spaced first two modes of the 4DOF system using either the displacement or

acceleration TF were not successful due to noise and averaging in the Welch’s method used to

identify the TF. The recorded TF of the 4DOF system shown in Figure 6 has two sharp peaks at

4.5 and 5.5Hz. These two closely spaced modes average to approximately 4.9Hz and appear as

a single peak in the identified 4DOF TF, similar to the identified 3DOF TF shown in Figure 5,

due to averaging in Welch’s method used for estimating the TF. This problem is overcome by

using the EMD/HT system identification technique that can identify the closely spaced modes,

which is described next.

Figure 3. Three-story Building with SAIVS-TMD or STMD.

Figure 4. STMD based on SAIVS device.
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3.2. Free vibration test results

The three-story scaled model with the STMD, tuned to the first mode frequency of 4.9Hz, is

subjected to free vibration tests. The third floor of the model is pulled and released suddenly and

the third floor displacement and acceleration responses are measured. The acceleration data is
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Figure 5. Displacement transfer function.
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Figure 6. Acceleration transfer function.
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then analyzed using EMD/HT to extract instantaneous frequency and damping ratios of the

four modes as per the procedure described earlier in this section. The free vibration acceleration

response of the third floor is shown in Figure 7(a) and the Fourier spectrum is shown in

Figure 7(b). The first three modes are not evident in the Fourier spectrum; however, the fourth

mode at 33.7Hz is evident as its acceleration dominates the free vibration.

The third floor acceleration response is decomposed into its IMF components using EMD.

The EMD method is capable of extracting all the four vibration frequencies and damping ratios

from a single measurement of the acceleration response time history based on the procedure

outlined before. The signal is decomposed into totally 6 IMFs; the first four are shown in

Figure 8 and the rest of discarded as they are small and below the threshold. Based on the

system identification procedure presented earlier, modal frequencies and damping ratios are

identified using linear least squares fit as shown in Figure 9. The modal frequencies and

damping ratios obtained are shown in Table I. The EMD/HT results match with the analysis

results, except for the damping in the first two modes, wherein the damping due to friction in

STMD that exists in the actual system and observed in the experiments is not accounted for in

the linear analytical model presented in this section, while calculating the damping ratios. This

additional frictional damping of approximately 3% is accounted for separately in the nonlinear

time-varying analytical model to be outlined in Sections 4, 5, and 6.

3.3. White noise test results

The three-story structure with the STMD is subjected to white noise excitation (WNE) using a

shaking table. The measured third floor acceleration response is shown in Figure 10(a). EMD/

HT analysis is performed on the measured response and the IMF components extracted are
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Figure 7. Free vibration third floor acceleration and FFT.

S. NAGARAJAIAH

Copyright r 2009 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2009)

DOI: 10.1002/stc



shown in Figures 10(b)–(e). The instantaneous frequencies and damping ratios obtained are

summarized in Table I. The log and phase curves for the white noise case fluctuate and are not

as linear as in the free vibration case, shown in Figure 9; however, the least squares fit results in

a linear estimate. It is interesting to note that counting of cycles both in free vibration (Figure 8)

and white noise case (Figure 10) reveals that the estimated frequencies are reasonably accurate.

The frequency and damping ratio estimates for the white noise case, shown in Table I, are the

same as in the free vibration case. The estimated instantaneous frequencies are used for tune the

STMD in Section 6.

4. SAIVS

SAIVS has been developed by the author and studied analytically and experimentally [13,14]. The

novelty of the SAIVS system lies in its continuous and smooth switching of stiffness. The SAIVS

system has been integrated into a (1) single degree of freedom system [14], STMD [31,32,35], and

(3) base isolated building [48,49], studied in detail analytically and experimentally.

The SAIVS device, shown in Figure 11, consists of four spring elements arranged in a plane

rhombus configuration with pivot joints at the vertices. A linear electromechanical actuator

configures the aspect ratio of the rhombus configuration of SAIVS device. The aspect ratio

changes between the fully closed (joint 1 and 2 are in closest position) and open configurations
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Figure 8. IMF components of the third floor acceleration.
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(joint 3 and 4 are in closest position), leading to maximum and minimum stiffness, respectively.

A control algorithm and controller are used to regulate the linear electromechanical actuator.

The power required by the actuator to change the aspect ratio of the device is nominal. The

variable stiffness of the SAIVS device is described by:

kðtÞ ¼ ke cos
2 ðyðtÞÞ ð44Þ

where kðtÞ ¼ time varying stiffness of the device, ke ¼ the constant spring stiffness of each spring

element, and yðtÞ ¼ time varying angle of the spring elements with the horizontal in any position

of the device. The SAIVS device has maximum stiffness in its fully closed (yðtÞ ¼ 0) and

minimum stiffness in its fully open position (yðtÞ � p=2). The device can be positioned in any

configuration, changing its stiffness continuously, independently and smoothly between

maximum and minimum stiffness, as shown in force-displacement loops in Figure 12.
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Figure 9. Log amplitude of IMF3 and phase angle (rad).

Table I. Frequencies and damping ratios of scaled three-story model with STMD.

Free vibration tests White noise tests

Identified Identified Identified Identified

Mode frequency (Hz) damping ratio (%) frequency (Hz) damping ratio (%)

1 4.5 4.6 4.5 4.6
2 5.5 4.4 5.5 4.4
3 18.7 1.0 18.7 1.0
4 33.7 1.1 33.7 1.0
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Figure 10. Third floor acceleration and its IMF components.

Figure 11. SAIVS device.
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The device also develops friction forces in the springs’ arms, which are telescopic, and at

joints 1–4. The analytical model can be formulated to represent these forces. The force fsvðtÞ

developed by the SAIVS device at any time, for a specific device position, is given as:

fsvðtÞ ¼ frðtÞ þ ff ðt; _uÞ ð45Þ

where fr is the restoring force due to spring deformation and ff is the frictional force in the

telescoping tubes; uðtÞ is the displacement at joint 2 in the X direction. The restoring force fr is

given as

frðtÞ ¼ fke cos
2 yðtÞguðtÞ ð46Þ

where ke is the constant stiffness of single spring element, yðtÞ is the time varying angle of the

spring elements with the horizontal for any given device position

yðtÞ ¼ sin�1 a�
yðtÞ

b

� �

ð47Þ

with a being a non-dimensional constant a4 yðtÞ
b

� �

and b ¼ 4 in is the dimension of an

individual spring element and yðtÞ is the displacement of joint 1 or the linear electro-mechanical

actuator, which is controlled to be less than b [48].

5. MATHEMATICAL FORMULATION OF LTV SYSTEMS WITH STMD

Consider a MDOF primary system with an attached secondary mass connected at the top, by a

variable stiffness spring and dashopt (i.e. SAIVS device), with an STMD as shown in Figure 3.

The primary structure has a mass matrix,Mp, a stiffness matrix, Kp, and a damping, Cp, whereas

the STMD is composed of a secondary mass, ms, which is connected to the primary system by a

Figure 12. Force–displacement behavior of SAIVS device.
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spring of stiffness, ks þ ksvðtÞ, and a dashpot of viscous damping coefficient, cs þ csvðtÞ, as shown

in Figure 3.

The equations of motions of a MDOF system with a STMD connected at the top are as

follows,

Mp
€Up þCp

_Up þKpUp ¼ �RfsvðtÞ þ Fp þ Rðcs _ur þksurÞ ð48Þ

where fsvðtÞ ¼ csvðtÞ _ur þ ksvðtÞur and R ¼ ½1 0 � � � 0�T.

€Up ¼ �M�1
p KpUp �M�1

p Cp
_Up �M�1

p RfsvðtÞ þM�1
p Fp þM�1

p Rðcs _ur þksurÞ ð49Þ

ms €us ¼ fsvðtÞ þ Fs ð50Þ

msð €upn þ €urÞ ¼ fsvðtÞ þ Fs ð51Þ

€ur ¼
1

ms

fsv þ
1

ms

Fs � €upn ð52Þ

€ur ¼
1

ms

fsv þ
1

ms

Fs þ RTM�1
p Kpup þ RTM�1

p Cp _up

þ RTM�1
p Rfsv þ RTM�1

p Rðcs _ur þksurÞ � RTM�1
P Fp ð53Þ

In state space form

_X ¼ AXþ BFsv ðtÞ þ EF ð54Þ

where

X ¼

up

ur

_up

_ur

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

; A ¼

Onn On1 Inn On1

O1n O11 O1n I11

�M�1
p Kp �M�1

p Rks �M�1
p Cp �M�1

p Rcs

RTM�1
p Kp RTM�1

p Rks RTM�1
p Cp RTM�1

p Rcs

2

6

6

6

6

6

4

3

7

7

7

7

7

5

B ¼

Onn On1

O1n O11

Onn �M�1
p R

�RTM�1
p RTM�1

p Rþ
1

ms

2

6

6

6

6

6

6
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7

7

7

7

7

5

; Fsv ¼
On1

fsvðtÞ

" #

; E ¼

Onn On1

O1n O11

M�1
p On1

�RTM�1
p

1

ms

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

F ¼
Fp

Fs

" #

It is the previous section it was shown in Equation (45) that the SAIVS device force

fsvðtÞ ¼ frðtÞ þ ff ðt; _uÞ ð55Þ

where frðtÞ ¼ ke cos
2 yðtÞuðtÞ with ke being the stiffness of one of the four springs, yðtÞ is a time-

varying angle of the spring elements with the horizontal, and ff being the frictional forces in the

device [48].

ADAPTIVE PASSIVE, SEMIACTIVE, SMART TUNED MASS DAMPERS

Copyright r 2009 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2009)

DOI: 10.1002/stc



The equations are solved using a predictor-corrector solution algorithm, which is a modified

form of method of successive approximation.

6. NEW CONTROL ALGORITHMS FOR MDOF WITH STMD

STMD consists of the variable stiffness spring or SAIVS device connected to a mass on top of

the three-story structure as shown in Figure 4. The mass ratio m of the TMD and the STMD is

chosen to be 1%. The simulated frequency response curves (showing the dynamic magnification

factor [DMF], which is the dynamic displacement normalized with respect to static displacement

of the primary mass, as a function of excitation frequency normalized by first mode frequency)

in the case of TMD and STMD (where the frequency of the STMD is tuned to the excitation

frequency; interested reader can find further details in Nagarajaiah and Sonmez [32]) are shown

in Figure 13, for different damping ratios. It is clearly evident that the STMD is more effective

than a TMD especially for lower damping ratios—smaller the damping the superior the

performance of the STMD. In Figure 14 DMF as a function of damping ratio of the TMD/

STMD is shown; the optimal damping is nearly seven percent and when the STMD damping

approaches approximately 8% the response is similar to TMD. In Figure 13(d) with damping

ratio 10% the effectiveness of both the TMD and STMD is reduced; the DMF is clearly above

the case with damping ratio of 7% in Figure 13(c) and above the case with damping ratio of 4%
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Figure 13. Frequency response curves for TMD/STMD for various damping.
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in Figure 13(b). In essence, increasing damping beyond the optimal is not be beneficial in this

case. Recall our discussion regarding use of variable damping for tuning STMD’s in Section 1.2?

Would it be judicious to adjust damping in light of the requirement of optimal damping and

tuning as well? It certainly seems more desirable to tune using stiffness rather than damping,

unless there are other compelling reasons such as stroke restrictions, etc.

From Figure 13 it is also seen that the effectiveness of the STMD is maximized when the

frequency of the STMD is between 0:7fp1 and 1:3fp1, where fp1 is the fundamental frequency of

mode p1 of the MDOF primary system. The frequency variation of the STMD, therefore, is

chosen to be 0:7fp1ofso1:3fp1. In the fully open position the frequency of the STMD is 0:7fp1.
When the device is fully closed the frequency of the STMD is 1:3fp1.

Next, new control algorithms based on EMD/HT technique and STFT are developed for

selecting the stiffness of the STMD when the structure is subjected to sine sweep or white noise

or ground excitations.

6.1. New algorithm using empirical mode decomposition

The new EMD/HT control algorithm block diagram is shown in Figure 15. The stiffness of the

SAIVS device is varied continuously to tune the STMD. The instantaneous frequency is

identified based on EMD and HT algorithm described earlier (Equations (22)–(43)). The

displacement of the top floor is the only feedback used in the instantaneous frequency

algorithm. Once the dominant instantaneous frequency at which the system with STMD is

responding is identified based on the procedure outlined earlier, the stiffness of the STMD is

adapted to tune to the dominant frequency and maximize the response reduction.
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The EMD/HT control algorithm developed to choose the stiffness of the STMD from the

frequency, fSTMD, is as the follows:

1. A moving window of 512 time steps, Dt ¼ 0:005 s; or 2.56 s is chosen to determine the

EMD intrinsic mode components, imf i, from the top floor displacement; only the first

three components, imf1;2;3, are used, since they represent the first three dominant modal

frequencies that the structure with STMD is responding at.

2. The instantaneous frequency of each component, imf1;2;3, is identified and updated at

every DtEMD ¼ 0:02 s using HT.

3. The dominant frequency, f dimf , in each window is identified from imf1;2;3.

4. If the dominant frequency of f dimf is in the range 0:7fp1of dimfo1:3fp1, then fSTMD ¼ f dimf ,

else go to next step.

5. Set fSTMD to the optimum value fTMD.

6.2. New algorithm using STFT

The control algorithm block diagram is shown in Figure 15, except that the EMD/HT block is

replaced by STFT block. A new STFT control algorithm is developed to retune the STMD.

STFT controller is effective in both monocomponent sine-sweep excitations, as well as in

multicomponent non-stationary earthquake excitations. The instantaneous frequency is

identified based on STFT algorithm described earlier (Equations (15)–(21)). The displacement

of the top floor is the only feedback used in the instantaneous frequency algorithm. Once the

dominant instantaneous frequency at which the system with STMD is responding is identified

Figure 15. EMD/HT control algorithm.
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based on the procedure outlined earlier, the stiffness of the STMD is adapted to tune to the

dominant frequency and maximize the response reduction.

The STFT control algorithm developed to choose the stiffness of the STMD is as follows:

1. A moving window of 128 time steps, Dt ¼ 0:005 s, is chosen to determine the STFT

dominant frequency from the top floor displacement feedback.

2. The dominant frequency, fd , in each window is identified.

3. If the dominant frequency of fd is in the range 0:7fp1ofdo1:3fp1, then fSTMD ¼ fd , else go

to next step.

4. Set fSTMD to the optimum value fTMD.

6.3. Numerical example: prototype 3 story building with STMD

The numerical example considered in this section is the prototype of three-story building,

described earlier in Section 3.1, shown in Figure 3. The natural frequencies of the 3DOF system

(without STMD) at prototype scale are 1.75, 5.9, and 10.7Hz. The proportional damping ratios

for all the three modes are assumed to be 1%. In addition, the frictional damping in the SAIVS

device of STMD, equivalent to approximately 3%, is accounted for using the SAIVS analytical

model in Equations (45) and (55). The linear TF of the 4DOF system with STMD is computed.

The frequencies of the 4DOF system are 1.6, 1.96, 5.9, and 10.7Hz in the four modes,

respectively. The TF of the first two modes of the prototype structure considered is shown in

Figure 16.
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Figure 16. TF of three-story prototype structure.
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6.4. Results for sine-sweep ground excitation

The effectiveness of the STMD with the new EMD/HT control algorithm is evaluated by

exciting the three-story building with a monocomponent sine-sweep ground excitation (SSE) in

the range 1.25–2.2Hz, to excite the 4DOF system in the range of 0:7fp1ofso1:3fp1, as shown in

Figure 19. Simulations are carried out with the TMD tuned optimally and with 7% optimal

damping. The comparison of the normalized third story displacement for TMD and STMD

cases is shown in Figure 17(a) and the normalized acceleration is shown in Figure 17(b). It is

evident that the STMD reduces the response, when compared to TMD case. Additionally, the

peaks of the time history plots nearly match with the DMF curves in Figure 13(c). In Figure 17,

in the TMD case the first peak (DMF � 11) occurs at �63 s, when the excitation frequency

crosses the first mode frequency of 1.6Hz and second peak (DMF �11) occurs at � 72 s when

the excitation frequency crosses the second mode frequency of 1.95Hz; in the STMD case the

only peak (DMF �10) occurs at �67 s.

Next we show the response of a perfectly tuned TMD system with 4% damping (the damping

observed in Table I); henceforth, all simulations are performed for 4% nominal damping in

TMD/STMD. The comparison of the normalized third story displacement and acceleration is

shown in Figure 18. The effectiveness of the controller in retuning STMD and achieving

response reduction is clearly evident in Figure 18. In Figure 18, in the TMD case the first peak

(DMF �13) occurs at �63 s, when the excitation frequency crosses the first mode frequency of

1.6Hz and second peak (DMF �13) occurs at �72 s when the excitation frequency crosses the

second mode frequency of 1.95Hz; in the STMD case the only peak (DMF �6.5) occurs at

�67 s. The STMD reduces the primary system response by nearly 50%.

Figure 19 shows the effectiveness of the new control algorithm in tracking the dominant

response instantaneous frequency due to sinsweep excitation, which is used for adjusting the
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stiffness of SAIVS continuously to tune the STMD. Figure 20 shows the force-displacement of

the STMD adapting its stiffness to the changing instantaneous frequency of response; whereas,

the TMD stiffness remains fixed. The force-displacement in Figure 20 is nonlinear due to friction

0

10

20

T
h
ir
d
 F

lo
o
r 

D
is

p
./

S
ta

ti
c
 D

is
p
.

50 55 60 65 70 75 80

0

1

2

Time (s)

T
h
ir
d
 F

lo
o
r 

A
c
c
n
. 
(g

)

ξt=0.04

TMD
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in the SAIVS device (Equations (45) and (55)). Figure 21 shows the response of the TMD and

STMD; it is evident that the STMD is able to achieve the response reduction without increasing

its displacement as compared to the TMD. Hence, the EMD/HT controller presented is effective.
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The STFT control algorithm yields similar results as the EMD/HT control algorithm and is

equally effectiveness; thus, not repeated in the interest of space.

As discussed earlier, the TMD is sensitive to tuning ratio; its effectiveness is reduced when it

is mistuned even just by 5%. To demonstrate the sensitivity we present the results of 5%

mistuned case in Figure 22. The normalized third floor response for 5% mistuning, shown in

Figure 22, confirms that the STMD is still effective as it is able to retune and reduce the

response, whereas the TMD is unable to reduce the response as much as the case with optimal

tuning. In Figure 22 the TMD case has only one peak (DMF � 15) that occurs at �70 s, when

the excitation frequency crosses the frequency of �1.75Hz (indicating a single peak instead of

the two peaks in the TF because the system behaves like the case without STMD) and in the

STMD case the only peak (DMF �6.5) occurs at �70 s; the STMD continues to reduce the

response in excess of 50% due to retuning.

6.5. Results for white noise ground excitation

The three-story building with the STMD described earlier is excited by a multi-component

WNE to evaluate the effectiveness of the new EMD/HT and STFT algorithms. Comparison of

the simulated normalized third floor displacement and acceleration in Figures 23 indicate the

effectiveness of the STMD in reducing the response. Comparison of the power spectral density

(PSD) of the third floor acceleration in Figure 24 shows that the STMD reduces the response

when compared to the TMD case over wide frequency range; particularly, if the response due to

the excitation is near the natural fundamental frequency of the primary structure, then the

STMD is able to adaptively reduce the response significantly.

The response to WNE (broadband excitation) is shown in Figure 25 for the case with 5%

mistuning. The normalized displacement and acceleration response shown in Figure 25 indicate

that the response is still reduced in the STMD case, due to retuning, when compared to the

TMD case. The PSD of the third floor acceleration due to multicomponent WNE, in Figure 26,
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indicates the sensitivity of the response to the mistuning of the TMD. STMD reduces the

response by nearly 40%. The results confirm the robustness of the STMD.

The STFT control algorithm yields similar results as the EMD/HT control algorithm and is

equally effectiveness; thus, not repeated in the interest of space.
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6.6. Results for El centro ground motion

The three-story building with the STMD described earlier is excited by El Centro (El-CE)

earthquake excitation to evaluate the effectiveness of the new STFT algorithm under
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nonstationary excitation. Comparison of the simulated normalized third floor displacement and

acceleration in Figures 27 indicates the effectiveness of the STMD in reducing the response.

Comparison of the PSD of the third floor acceleration in Figure 28 shows that the response of

the STMD is better than the TMD over wide frequency range; particularly, if the response due

to the excitation is near the natural fundamental frequency of the primary structure, then the

STMD is able to adaptively reduce the response by nearly 50%.
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7. ALP STMD AND APTMD

The instantaneous natural frequency of the pendulum, o ¼
ffiffiffiffiffiffiffiffiffi

g=L
p

, (where g is the acceleration

due to gravity and L is the length of the pendulum) can easily be adjusted by changing the length

of the pendulum, thus the name ALP STMD and ALP-TMD (or ALP APTMD), depending on

whether length is controlled using feedback or adjusted passively. In this section we present a

simple experimental evaluation of this new idea using 2DOF with ALP attached to its second

floor as shown in Figure 29. The ALP is controlled using STFT algorithm to track the frequency

and setting the length of the pendulum to the optimal once steady state vibration is reached. The

response of the 2DOF primary structure with STMD is compared to the structure with ALP-

TMD or ALP-APTMD whose length is not optimal; the lengths are set in two stages (1) non-

optimal length, and (2) optimal length. It is worth noting that this is not meant to be an

exhaustive study, which is beyond the scope of this paper due to space restrictions (authors will

present more detailed work on ALP in a separate paper); but the demonstration of the key idea,

which is very practical and easy to implement.

The candidate two story building model with ALP attached to the second floor is shown in

Figure 29. The acceleration transfer function of the 2DOF is shown in Figure 30; in this case

TMD mass is attached rigidly to the second floor. The natural frequencies are 2.5 and 7.0Hz in

the two modes, respectively, and the damping ratio is less than 1% in the first mode and nearly

2% in the second mode. The length of the pendulum can be adjusted by means of a servomotor

shown in Figure 29(c); the shorter length ALP STMD is shown in Figure 29(a) and the longer

length ALP is shown in Figure 29(b).

The optimal length of the ALP is 1.5 in (ALP frequency5 2.5Hz), if it has to match the first

mode frequency of the primary system of the 2DOF. Results of three experiments carried out

under harmonic excitation of frequency 2.5Hz are shown in Figure 31. The normalized (maximum

response of one) second floor displacement response is shown in Figure 31 for three cases: (1)

TMD mass fixed rigidly to the top of the structure (dotted line), (2) ALP-STMD optimally tuned

at 13 s when steady-state vibration is reached (dashed line), and (3) ALP’s length is adjusted
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Figure 29. ALP TMD: (a) ALP with shorter length; (b) ALP with longer length; and (c) close up of ALP.
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non-optimally (1.3 in at 25 s) in the first stage and then optimally (1.5 in at 50 s) in the second stage

(full line). From the responses shown in Figure 31 it is evident that the ALP-STMD can clearly

retune itself and reduce the response significantly as compared to the fixed and ALP-TMD or

ALP-APTMD case; also the change in length of 0.2 in can reduce the effectiveness of the ALP-

TMD. However, ALP-TMD has an advantage over a fixed length pendulum TMD, in that its

length can be adjusted passively, if necessary (say when a change in primary structure frequency is

detected). We present the idea APTMD next to further elaborate this idea.

7.1. Practical adaptive radius and adaptive length ALP and APTMD

A practical ALP STMD or APTMD is shown in Figure 32. Similarly an adaptive radius

pendulum STMD or APTMD is shown in Figure 33, wherein the radius can be adapted either

semiactively if the connector is servocontrolled or passively if the connector is mechanical and

can be adjusted manually.

Another adaptive passive TMD (APTMD) developed using SAIVS device is one in which the

stiffness can be adjusted passively by using a simple screw jack to change the angle of the SAIVS

device, instead of the linear electro-mechanical actuator as shown in Figure 11. Such a device is

fully passive and the stiffness can be changed by manually adjusting the screw jack, which does

not need feedback control.

A possible adaptive radius APTMD is shown in Figure 34, wherein the concave surface on

which the middle roller moves can be shaped/tuned to provide the necessary change in radius

from R1 to R2. Also a fail safe limiting stop can be added at the end of the concave surface

preventing excessive stroke.

A possible adaptive passive TMD is shown in Figure 35(a), wherein the stiffness and damping

changes once the pendulum contacts the adaptive fluid spring and damper (ASD)—similar to

ASD studied by the author and coworkers [50]—then further adaptation is possible. The ASD has

mechanical valves that allow manual adjustment of fluid spring stiffness and damping. Another

Figure 32. ALP STMD or APTMD.
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Figure 34. Adaptive radius based APTMD.

Figure 33. Adaptive radius APTMD or STMD.

Figure 35. Displacement based APTMD.
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possible adaptive passive TMD is shown in 35(b), wherein the concave surfaces on which the

support rollers move can be shaped/tuned and in addition once the mass contacts the ASD device

further adaptation is possible (by adjustment of the valves in the ASD device).

8. PRACTICAL STMD AND APTMD CONCEPTS AND THEIR IMPLEMENTATION

In this section we present implementation of STMD’s and APTMD’s in USA, Japan, and

China, either based on the concepts and ideas presented in this paper or developed

independently by others, but similar in nature.

8.1. Citicorp building TMD: STMD

The Citicorp center building in New York city [18] has a passive TMD with an active control

component, which is auxiliary in nature. The author was aware of the TMD [17], but was not

aware of the specifics of its implementation. One of the anonymous reviewers of this paper

alerted the author regarding the paper by Peterson [18], for which the author is grateful to the

reviewer.

The details of the implementation in Citicorp building presented by Peterson [18] are that the

building has a first mode frequency of 6.9 s in the North–South direction and 7.2 s in the

East–West direction, with nearly 1% damping in each direction. The 820 kip TMD is supported

on low friction (0.003 coefficient of friction) hydraulic pressure balanced bearings. The TMD is

attached to nitrogen springs of stiffness 3.2 kips/in, shown in Figure 36, in both N-S and E-W

directions. In addition, the mass is also attached to servo-controlled hydraulic actuators (both in

the N-S and E-W directions) that are used to adjust the stiffness or frequency and damping of

the TMD.

Figure 36. Citi Corp TMD nitrogen springs.
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The nitrogen gas spring consists of two opposed pneumatically pre-charged cylinders that are

trunnion mounted with piston rods connected as shown in Figure 36; when the cylinders deflect

perpendicular to their axis, as shown in Figure 37, the inherent nonlinearity of the adiabatic gas

compression in a closed vessel is almost exactly compensated by the geometric nonlinearity due

to the angle y. This leads to essentially a linear pneumatic spring. A further advantage of the gas

spring is that only simple adjustment of the precharge pressure in the nitrogen cylinder is

necessary to vary the spring rate, thus, the spring stiffness.

The primary restoring force/stiffness to tune the TMD is provided by the pneumatic nitrogen

springs and only finer adjustments are made using the active control. The active hydraulic

actuators are also used to overcome the friction in bearings (very nominal because of low

friction) that support the TMD. The actuators play an auxiliary role; hence, the system is

primarily a passive TMD with an auxiliary active component. As implemented this is an STMD;

since, the active control part is used primarily to fine tune the stiffness and damping of the TMD

as in an STMD, the rest of the work is done by the passive TMD. This strategy is used to keep

the active part auxiliary and keep the associated power requirements to a minimum. Recall this

was described—in the introduction—as one of the primary advantages of the STMD when

compared to an active TMD. Also, to save energy, triggers based on acceleration threshold

(3mg for two cycles) are used to turn the active part on and then after 30min to return it to

standby mode, if the acceleration does not exceed 0.75mg.

It is worth noting that a possible APTMD is based on passive version of SAIVS with nitrogen

gas springs replacing the mechanical springs, and a screw jack replacing the linear

electromechanical actuator. This would allow easy adjustment of stiffness to tune the TMD,

when necessary, as in Citicorp building TMD.

8.2. Tokyo towers adaptive radius TMD: APTMD

Another idea similar to the pendulum is a TMD with a radius of oscillation. This is precisely

what has been accomplished in developing the V-shaped Hybrid Mass Damper (HMD) by

Ishikawajima Heavy industries, because the radius L is adjusted by changing the angle of the

V-shaped rail. Tokyo Park Tower is equipped with three HMD’s of this type (Koike et al. [51]).

The change in V-shaped rail radius is accomplished using motors and servo-controllers, not in

real time, but offline, making this an APTMD (Figure 38).

Figure 37. Citi Corp TMD nitrogen springs.
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Figure 38. Adaptive radius APTMD—Tokyo Park Tower.

Figure 39. APTMD: ShenZhen WuTong TV Tower.
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8.3. ShenZhen WuTong TV tower and Guangzhou New TV tower: APTMD

The ShenZhen WuTong mountain TV tower, in China, near Hong Kong, with a total height of

198m was completed recently. The TV tower has a series of adaptive passive TMD or ALP in

which the length of the pendulum is mechanically adapted [52], as shown in Figure 39 (Teng and

Ou [53]). The adaptation occurs passively and no servo-control is used in this application,

making it an APTMD. The Guangzhou New TV tower, Guangzhou, China, with a total height

of 610m was completed recently. It consists of two APTMD’s in the TV tower [54, 55].

9. CONCLUSIONS

The effectiveness of the developed time-frequency algorithms for system identification and

control the response of MDOF systems with STMD has been demonstrated by simulated and

experimental results. The EMD/HT and STFT algorithms applied to MDOF with STMD

produce real time retuning to reduce the response under harmonic, sine-sweep and white-noise

(stationary) and earthquake (non-stationary) excitations. It is found that the TMD loses its

effectiveness even with just 5% mistuning, where as, STMD retunes and reduces the response

effectively. The algorithms presented in this paper demonstrate the powerful capabilities of

time-frequency methods for structural control and system identification.

The new ALP STMD and the adaptive passive APTMD proposed in this study have a great

deal of promise for practical implementation. APTMD is a TMD in which the frequency is

adjusted by either changing the length of pendulum or by changing the radius of surface on

which the mass oscillates; but without associated sensing and computer feedback needed in a

STMD.

Additionally, a number of practical STMD and APTMD concepts and their implementation

in USA, Japan, China has been presented. STMD and APTMD offer a number of new

possibilities for response control of flexible structures, such as tall buildings and long span

bridges, under wind and earthquake loading.
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