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Abstract

Purpose: A crowd of pedestrians is a complex system in which individuals exhibit

conflicting behavioural mechanisms leading to self-organisation phenomena.

Computer models for the simulation of crowds represent a consolidated type of

application, employed on a day-to-day basis to support designers and decision makers.

Most state of the art models, however, generally do not consider the explicit

representation of pedestrians aggregations (groups) and their implications on the

overall system dynamics. This work is aimed at discussing a research effort systematically

exploring the potential implication of the presence of groups of pedestrians in different

situations (e.g. changing density, spatial configurations of the environment).

Methods: The paper describes an agent-based model encompassing both traditional

individual motivations (i.e. tendency to stay away from other pedestrians while moving

towards the goal) and an adaptive mechanism representing the influence of group

presence in the simulated population. The mechanism is designed to preserve the

cohesion of specific types of groups (e.g. families and friends) even in high density and

turbulent situations. The model is tested in simplified scenarios to evaluate the

implications of modelling choices and the presence of groups.

Results: The model produces results in tune with available evidences from the

literature, both from the perspective of pedestrian flows and space utilisation, in

scenarios not comprising groups; when groups are present, the model is able to

preserve their cohesion even in challenging situations (i.e. high density, presence of a

counterflow), and it produces interesting results in high density situations that call for

further observations and experiments to gather empirical data.

Conclusions: The introduced adaptive model for group cohesion is effective in

qualitatively reproducing group related phenomena and it stimulates further research

efforts aimed at gathering empirical evidences, on one hand, and modelling efforts

aimed at reproducing additional related phenomena (e.g. leader-follower movement

patterns).

Keywords: Agent-based modelling and simulation, Crowd simulation, Adaptive

behaviours

Background

Crowds of pedestrians are generally recognised as a form of complex system (Batty 2001):

even without making a serious attempt of providing a formal definition of the term crowd,

and adopting a simplistic and common sense intuitive notion of “(too) many people in
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(too) little space” (Kruse 1986), the dynamics that can be identified in a crowded envi-

ronment, in which several pedestrians move towards their own goals, are good indicators

supporting this statement. Pedestrians share the same environment and they generally

compete for the space resource; nonetheless, they can also exhibit collaborative patterns

of interactions, for instance respecting (written or non-written) shared rules like giving

way to passengers getting off a train before getting on board, or even respecting cul-

tural dependant rules (e.g. gallantry). There are evidences of imitation among pedestrians

whenever they need to cross a road (see, e.g., Helbing et al. 1997), but basic proxemic

considerations indicate that normal behaviour includes a tendency to stay at a distance,

to preserve a personal space (Hall 1966). Pedestrians continuously adapt their behaviour

to the contextual conditions, considering the geometry of the environment but also social

aspects. The overall crowd system, whose evolution depends on the individual decisions

of pedestrians, shows several examples of self-organised behaviours, from the formation

of lanes to oscillatory changes in the walking directions at narrow passages.

Computer models for the simulation of crowds are growingly investigated in the aca-

demic context and these efforts led to the implementation of commercial off-the-shelf

simulators often adopted by firms and decision makersa. Models and simulators have

proved their adequacy in supporting architectural designers and urban planners in their

decisions by creating the possibility to envision the behaviour of crowds of pedestrians

in specific actual environments and planned designs, to elaborate what-if scenarios and

evaluate their decisions with reference to specific metrics and criteria.

Despite the substantial amount of results and efforts this area is still quite lively and

we are far from a complete understanding of the complex phenomena related to crowds

of pedestrians in the environment: one of the least studied and understood aspects

of crowds of pedestrians is represented by the implications of the presence of groups

(Challenger et al. 2009). Pedestrians, in fact, exhibit a substantially different behaviour

in a given scenario if friends or family members, for instance, are present in the same

environment at the same time: they will try to reach the desired destination but they will

also try to preserve a limited distance from the other group members, also temporarily

neglecting the tendency to move towards their goals, in an interesting form of adaptive

behaviour. In most current models, instead, pedestrians simply interpret the presence of

other individuals as a sort of moving obstacle or simply as openers of a potential route

to follow (in case of imitative behaviours). The research that is summarised in this paper

is aimed at systematically evaluate the impact of the presence of groups in a population

of pedestrians, also considering relatively large groups potentially structured into smaller

sub-groups, performing the most appropriate form of validation (either quantitative or

qualitative) against real data, coming from new observations or already present in the lit-

erature. While, in fact, some of the implications of the presence of groups, for instance

on the walking speed of its members, have already been analysed, at least in low density

situations (Federici et al. 2012; Schultz et al. 2010; Willis et al. 2004), the overall impact

on other observable metrics such as space utilisation is still not clear. As previously sug-

gested, we will talk about simple groups when referring to small sets of pedestrians bound

by a strong relationship (e.g. friends, family members): the agents representing members

of this kind of group are characterised by an adaptive behavioural mechanism aimed at

preserving its cohesion, even in situations of high local density and presence of obstacles

or counter flows of other pedestrians. The model we will introduce also considers larger
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groups, sometimes of “artificial nature” (e.g. groups of tourists), that can in turn be made

up of other smaller groups (either structured or simple) or just by individuals: agents rep-

resenting members of this kind of group are characterised by a tendency to stay close to

other members but this tendency is not as strong as for simple groups and it does not

necessarily prevent the fragmentation of groups.

The paper breaks down as follows: the following section will briefly report the most rel-

evant related works, while a description of the introduced adaptive model for pedestrian

behaviour encompassing the effects of group presence will follow. Section “Simulation

results” will present the scenarios in which the model has been applied and the achieved

results. Conclusions and future developments will end the paper.

Related works

We will not provide here a comprehensive overview of the different approaches and

models for the simulation of pedestrian and crowd dynamics: scientific interdisciplinary

workshops and conferences are in fact specifically devoted to this topic (see, e.g., the pro-

ceedings of the first edition of the International Conference on Pedestrian and Evacuation

Dynamics (Schreckenberg and Sharma 2001) and consider that this event has reached

the sixth edition in 2012) and it would be impossible to summarise all the relevant works

present in the literature. On the other hand, we propose a schema classifying the dif-

ferent current approaches based on the way pedestrians are represented and managed.

From this perspective, pedestrian models can be roughly classified into three main cate-

gories that respectively consider pedestrians as particles subject to forces, particular states

of cells in which the environment is subdivided in Cellular Automata (CA) approaches, or

autonomous agents acting and interacting in an environment.

The most widely adopted particle based approach is represented by the social force

model (Helbing and Molnár 1995), which implicitly employs fundamental proxemic

(Hall 1966) concepts like the tendency of a pedestrian to stay away from other ones while

moving towards his/her goal. Proxemics essentially represents a fundamental assumption

of most modelling approaches, although very few authors actually mention this anthropo-

logical theory (notably CA based models (Ezaki et al. 2012;Was 2010) and an agent-based

model (Manenti et al. 2010)). Recent works also extend the social force model for specific

applications to evacuation scenarios in panic situations (Shiwakoti et al. 2196).

CA based approaches are based on a discrete representation of the simulated environ-

ment. Each cell represents a portion of the space and it can be either vacant, occupied

by an obstacle or a single pedestrian (although there are models relaxing this constraint

which allow more than a single pedestrian to be situated in a given cell at the same time).

The management of system evolution is also based on a discrete representation of time,

discretised in equally sized intervals of time (steps). A uniform transition rule guides the

evolution of the system; the rule determines the next state of each cell considering its

current state and the states of nearby ones (where nearby depends on a specific notion

of neighbourhood, that is a function mapping every cell to a set of “visible” nearby cells).

CA approaches can be roughly classified in ad-hoc models, that represent an effective

and efficient solution but just for specific situations (such as the case of bidirectional

flows at intersections described in (Blue and Adler 1999), in which there are specific “lane

direction” rules) and more general models, that can be adopted for representing any kind

of environment and pedestrian movement tendency, whose main representative is the
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floor-field approach (Schadschneider et al. 2002), in which the cells are endowed with a

discretised gradient guiding pedestrians towards potential destinations.

While particle and CA based approaches are mostly aimed at generating quantita-

tive results about pedestrian and crowd movement, agent based models are sometimes

aimed at the generation of effective visualisations of believable crowd dynamics, and

therefore the above approaches do not necessarily share the same notion of realism

and validation. Works like (Bandini et al. 2004; Henein and White 2005) essentially

extend CA approaches, separating the pedestrians from the environment and granting

them a behavioural specification that is generally more complex than what is gener-

ally represented in terms of a simple CA transition rule, but they essentially adopt

similar methodologies. Other approaches like (Musse and Thalmann 2001; Shao and

Terzopoulos 2007) are more aimed at generating visually effective and believable pedes-

trians and crowds in virtual worlds. Finally, works like (Paris and Donikian 2009), employ

cognitive agent models for different goals, but they are not generally aimed at making

predictions about pedestrian movement for sake of decision support.

A relatively small number of recent works represent a relevant effort towards the

modelling of groups, respectively in particle-based (Moussaïd et al. 2010; Xu and

Duh 2010) (extending the social force model), in CA-based (Sarmady et al. 2009) (with

ad-hoc approaches) and in agent-based approaches (Manzoni et al. 2011; Qiu and Hu

2010; Rodrigues et al. 2010; Tsai et al. 2011) (introducing specific behavioural rules for

managing group oriented behaviours). All the above mentioned approaches interpret the

impact of groups bymeans of additional contributions to the overall pedestrian behaviour

representing the tendency to stay close to other group members. However, the above

approaches mostly deal with small groups in relatively low density conditions; those deal-

ing with relatively large groups (tens of pedestrians) were not validated against real data.

The last point is a crucial and critical element of this kind of research effort: compu-

tational models represent a way to formally and precisely define a computable form of

theory of pedestrian and crowd dynamics. These theories must be validated employing

field data, acquired by means of experiments and observations of the modelled phenom-

ena, before the models can actually be used for sake of prediction. The scarcity of data

specifically characterising the behaviour of pedestrians in the presence of groups hin-

ders this validation activity: for the present work we adopted the choice of validating the

model in absence of groups with available data from the literature and exploring the effect

of the introduction of groups with mechanisms and parameters that satisfied a (qualita-

tive) face validation (Klügl 2008) against available video footages of groups of pedestrians

(Federici et al. 2012) and preliminary data from experiments in controlled situations

(Vizzari et al. 2012).

Methods

This section formally introduces a model representing pedestrian behaviour in an envi-

ronment, considering the impact of the presence of simple and structured groups in the

simulated scenario. The model is characterised by a discrete representation of the envi-

ronment and time evolution, essentially based on floor-field CA approaches. Nonetheless,

the pedestrian behavioural specification is so articulated, encompassing even an adap-

tive mechanism for the preservation of group cohesion, to the point that the model is

more properly classified as agent-based. The different elements of the model will now be
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introduced, starting from the adopted representation of the environment and simulation

evolution strategy. Then groups, pedestrians and the mechanism for the evaluation of

available actions will be described. Finally, the adaptive mechanism for the preservation

of group cohesion will be introduced.

Representation of the environment

The physical environment is represented in terms of a discrete grid of square cells: Env =
c0, c1, c2, c3, . . . where ∀ci : ci ∈ Cell. The size of every cell is 40cm × 40cm according

to standard measure used in the literature and derived from empirical observation and

experimental procedure (Fruin 1992;Weidmann 1993). Every cell has a row and a column

index, which indicates its position in the grid: Row(ci),Col(ci) : Cell → N. Consequently,

a cell is also identified by its row and column on the grid, with the following notation:

Envj,k = c : (c ∈ Env) ∧ (Row(c) = j) ∧ (Col(c) = k).

Every cell is linked to other cells, that are considered its neighbours according to

the Moore neighbourhood, that is all the cells surrounding the cell being considered,

even in diagonal directions: it is possible to express Moore neighbourhood as joining of

orthogonal cells, also called Von Neumann neighbourhood, and diagonal cells.

N(Envj,k) = Envj+1,k , S(Envj,k) = Envj−1,k ,

E(Envj,k) = Envj,k+1, W (Envj,k) = Envj,k−1,

NE(Envj,k) = Envj+1,k+1, SE(Envj,k) = Envj−1,k+1,

NW (Envj,k) = Envj+1,k−1, SW (Envj,k) = Envj−1,k−1

VonNeumanNeighbours(c) = {N(c), S(c),E(c),W (c)}
DiagonalNeighbours(c) = {NE(c), SE(c),NW (c), SW (c)}

neighbours(c) = VonNeumanNeighbours(c) ∪ DiagonalNeighbours(c)

Every cell in the environment can be in three possible states: free, occupied by an obsta-

cle, or occupied by a pedestrian. In the third case the cell contains also a reference to the

specific pedestrian occupying it: State(c) = s : s ∈ FREE,OBSTACLE,PEDESTRIANi.

In addition to the potential presence of physical objects (pedestrians and obstacles) each

cell is also linked to additional structures that contain information useful to support

pedestrian movement.

Definition of spatial markers

Space can be annotated at design-time with different markers, a set of cells that play

particular roles in the simulation. Three kinds of marker are defined in the model:

• start areas, places (sets of cells) were pedestrians are generated: they contain

information for pedestrian generation both related to the type of pedestrians and to

the frequency of generation. In particular, a start area can generate different kinds of

pedestrians according to two approaches: (i) frequency-based generation, in which

pedestrians are generated during all the simulation according to a frequency

distribution; (ii) en-bloc generation, in which a set of pedestrians is generated at once

in the start area when the simulation starts;

• destination areas, final places where pedestrians want to go;

• obstacles, non-walkable cells defining obstacles and non-accessible areas.
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Space annotation allows the definition of virtual grids on the environment, as containers

of information for agents.

Definition of floor fields

Adopting the approach of the floor fieldmodel (Nishinari et al. 2004), the environment of

the basic model is composed also of a set of superimposed virtual grids, structurally iden-

tical to the environment grid, that contains different floor fields that influence pedestrian

behaviour.

The goal of these grids is to support long range interactions by representing the state

of the environment (namely, the presence of pedestrians and their capability to be per-

ceived from nearby cells) in terms of field modifications. In this way, a local perception for

pedestrians actually simply consists in gathering the necessary information in the relevant

cells of the floor field grids. In other works, the concept of perception and its practical

implementation is more sophysticated, starting from the definition of the field of view

mechanism in humans: in (Paris and Donikian 2009) pedestrian’s perception is investi-

gated from a cognitive point of view, while a more physical approach is adopted in (Shao

and Terzopoulos 2007). Nonetheless, in CA based approaches such a precise perception

model is rarely employed and still the achieved results are often extremely interesting,

therefore we decided to employ a simple perception model and evaluate its adequacy.

Some of the floor fields are static (created at the beginning and not changing dur-

ing the simulation) or dynamic (changing during the simulation). Three floor fields are

considered in the model:

• the path field assigned to each destination area, that indicates for every cell the

distance from the destination, acting thus as a potential field that drives pedestrians

towards it (static floor field);

• the obstacles field, that indicates for every cell the distance from an obstacle or a wall

(static floor field);

• the density field that indicates for each cell the pedestrian density in the

surroundings at the current time-step (dynamic floor field).

All these fields can be seen as grids identical to the environment grid: a function that

extracts the values of the fields for the given cell is defined as follows:

Val(f , c) : Field × Cell → R

The following notation will be used to indicate these grids, assuming that pedestrians

know only the path field associated to their own destination:

PathFj,k = Val(PathF , c) : ((c ∈ Env) ∧ (Envj,k = c))

ObsFj,k = Val(ObsF , c) : ((c ∈ Env) ∧ (Envj,k = c))

DensFj,k = Val(DensF , c) : ((c ∈ Env) ∧ (Envj,k = c))

The definition of every type of floor field is now illustrated.

Path field

Each destination is associated to a path field indicating the shortest path between each

cell in the environment and their destination. These floor fields act as a potential, driving

pedestrian towards the destination (one floor field exists for every destination): start-

ing from every destination defined in the scenario, the information are spread into the
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environment according to a particular method. In (Kretz et al. 2010) authors analysed

different methods for the calculation of the distance potential field: starting from the con-

siderations in this work, we decided to apply the chessboard metric to manage the Moore

neighbourhood using the
√
2 variation over corners.

For every path field and for every cell, the value of the distance is calculated with this

metric and it is associated to every cell: value increases if the distance increases.

Figure 1 proposes a graphical representation of the floor fields used in the model in

a simple corridor scenario: in Figure 1a and 1b the path fields associated to destination

areas (in blue) are proposed: darker tonalities indicate the approaching to the destination.

Obstacle field

This floor field contains all the information related to the position of obstacles in the

scenario: just one grid exists for all the non-walkable areas in the environment. Chess-

board metric with
√
2 variation over corners is used also to produce the spreading of the

information in the obstacle field: a particular radius rob is considered as the border of

propagation of information about the presence of the obstacle.

The algorithm works as follows: after the initialisation of all the cell with a null value,

the chessboard metric with
√
2 variation for all the cells that lie under the radius rob from

the obstacle is calculated; rob represents therefore the maximum distance for which an

obstacle generates a repulsive effect. A non-null value is then associated to these cells (i.e.

higher values represent cells nearest to the obstacles) according to the following functions:

Val(ObsF , c) = max{0, rob − dist(cobs, c)}

Figure 1 Graphical representation of different floor fields in a simple corridor scenario: Figures 1a

and 1b represent two path fields associated to different destination areas. Figure 1c represents the

obstacle fields provided by walls. Figure 1d and 1e show the density field with the related pedestrian

position at a precise time step.
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Figure 1c represents obstacle field in which lightest values indicate the approaching to

the obstacles (in red).

Density field

The grid associated to this field contains information necessary to the management of

interaction between pedestrians and to the calculation of statistics related to the local

densities in the environment.

In general, the concept of density is usually related to the number of persons in a fixed

portion of space: despite that, density can be measured in different ways and the concept

of mean density in a particular cell of the scenario has to be analysed more in detail. In

the pedestrian dynamics literature, the concept of cumulative mean density (CMD) indi-

cates the density experienced by pedestrians in a cell: the concept was first introduced in

(Still 2000), where the author defined that CMD is measured only when a pedestrian

passes over there, by counting the number of people in the surroundings of the pedes-

trian (given a distance range). At the end of simulation, average on all the measurements

is computed for each of the cells of the space. It is a local and pedestrian-based concept

of density, that gives information about how pedestrian experiences the nearby space,

ignoring the time periods in which a portion of space has been empty.

In (Castle et al. 2011), CMD evaluation in LEGIONb and STEPSc software is analysed

and compared: in LEGION, the surrounding of a pedestrian is identified into a radius

r = 1.5 m with an aread of Area = r2 ∗ π = 7.07m2. STEPS adopts a similar approach

calculating the density in a discrete way using the cells that fall within r = 1.25 m of each

persons: the area considered is Area = r2 = 6.25m2.

In our model, the management of density field is a bit more complicated with respect to

previous cases. It is modified according to the following mechanism: when a pedestrian

p moves in a cell c, the density field is modified in the grid adding 1 to the cell in which

he/she moves, and subtracting 1 from the cell he/she just left. The modification is applied

also to neighbour cells in a range given by a radius r = 2 m (equal to five cells from c, con-

sidering the proposed scale of discretisation), but the value added/subtracted decreases

with the inverse of the square of the distance between the cell and p:

v =
1

d2

Figures 1d and 1e represent the density field (in which lightest values that indicate

highest values of the density) and an instant position of agents, respectively.

Simulation time and update strategy

Simulation time ismodelled in a discrete way by dividing time into steps of equal duration:

we assume that a pedestrian moves exactly 1 cell per time step. The average velocity of a

pedestrian, which can be estimated through observations or experiments (Fruin 1992) in

about 1.2 ms−1, will thus determine the duration of the each time step: considering that

the size of the cell is 40cm × 40cm, the duration of each time step is thus 0.33s.

Note that in this way, the maximum of velocity allowed in this model is 1.2ms−1: dif-

ferent works (Kirchner et al. 2004; Weng et al. 2006) investigated how variations in the

pedestrian velocity (1.0ms−1 and 1.5ms−1) can be modelled with CA approach and how

these choices influence simulation results. It must be emphasised that, however, this
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parameter is not strictly embedded in the model and it could be changed, essentially

modifying only the analysis and results interpretation phases.

When running a CA-based pedestrian model, three update strategies are possi-

ble (Klüpfel ):

• parallel update, in which cells are updated all together;

• sequential update, in which cells are updated one after the other, always in the same

order;

• shuffled sequential update, in which cells are updated one after the other, but with a

different order every time.

The second and third update strategies lead to the definition of asynchronous CAmod-

els (see (Bandini et al. 2012) for a more thorough discussion on types of a-synchronicity

in CA models).

In crowd simulation CA models, parallel update is generally preferred (Schadschneider

et al. 2009), even if this strategy can lead to conflicts that must be solved. Some works

(Kirchner et al. 2003) claim even that simulations are more realistic if the conflicts that

arise are not solved, but to prevent the movement of all pedestrians involved in a conflict

with a certain probability.

In their pioneering work, (Gipps and Marksjö 1985) used a sequential update, despite

that (Blue et al. 1999) point out that “with sequential updates the order of each move

becomes unrealistically important, since as each entity moves, the next entity re-positions

in relation to the previous entity. Thus, the first entity would act the position of all entities

over the whole lattice”.

Nonetheless, we chose to investigate the effects of allowing the possibility of this form

of micro coordinated movements and therefore we adopted a shuffled sequential update

scheme for the activation of agent behaviours according to the fact that one of the ele-

ments involved in the prediction of movement is the previous position of the pedestrian

in the environment and that conflicts may be represented by proxemic separation, rather

than space exclusion.

Please note that the structure of the model and the defined mechanisms remain valid

in case of a parallel update scheme: the model would only need the definition of a mech-

anism and strategy to manage conflicts to support this schema. Of course, this different

choice would have an impact on the simulation results and thus on the calibration phases

and a comparison among these different approaches can be pointed out.

Groups

As suggested in the introduction, we focus on two types of group: simple and structured.

Simple or informal groups are generally made up of friends or family members and they

are characterised by a high cohesion level, moving all together towards the same goal

due to shared goals and to a continuous mechanism of adaptation of the chosen paths

to try to preserve the possibility of performing non-verbal communication (Costa 2010).

Structured groups, instead, are more complex entities, usually larger than simple groups

(more than 4 individuals) and they can be considered as being composed of sub-groups

that can be, in turn, either simple or structured. Structured groups are often artificially

defined with the goal of organising and managing the movement (or some kind of other

operation) of a set of pedestrians.
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Groups can be formally described as:

Groupj =
〈

Id, [Group1, . . . ,Groupm] , [Ped1, . . . ,Pedn]
〉

Structured groups include at least one subgroup, while simple groups only comprise

individual pedestrians. We will refer to the group an agent a directly belongs to as Ga,

that is also the smallest group he belongs to; the largest group an agent a belongs to will

instead be referred to as Ḡa. It must be noted that Ḡa = Ga only when the agent a is

member of a simple group that is not included in any structured group.

Pedestrians

In this model, a pedestrian is defined as an utility-based agent with state. Functions are

defined for utility calculation and action choice, and rules are defined for state-change.

Pedestrians are characterised as:

Pedestrian : 〈Id,GroupId, State,Actions,Destination〉

where:

1. Id ∈ N is the agent identification number;

2. GroupId ∈ N is the identification number of the group to which the pedestrian

belong to; for pedestrians that are not member of any group this value is null.

3. State that represents the state of the agent related to its position in the space and to

its attitude with respect to the simulated scenario. It is defined as:

State : 〈Position,PrevDirection〉

where Position indicates the current cell in which the agent is located, and

PrevDirection is the direction followed in the last movement;

4. Actions is the set of possible actions that the agent can perform. Possible actions

are movements in one of the eight neighbor cells (indicated as cardinal points),

plus the action of remaining in the same cell (indicated by an ‘X ’):

Actions = {N , S,W ,E,NE, SE,NW , SW ,X}

Admissible actions AdmActp (⊆ Actions) are all the actions that move the

pedestrian p from cell c in cells that are free at the moment it is updated:

AdmActp = {a : a ∈ Actions ∧ State(a(c)) = FREE}

The effect of each action is to move the pedestrian p in the direction indicated.

This means that when an action a is chosen (for example, N ), the new cell is

calculated as follows:

newCell = a(oldCell)

When the movement is completed, the cell is marked as occupied, and the old cell

is marked as free:

State(newCell) = PEDESTRIANp

State(oldCell) = FREE

The last effect of an action is to update the density field by reducing density in the

surroundings of oldCell and increasing it in the surroundings of newCell ;
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5. Destination is the goal of the agent in terms of destination area. This term

identifies the current destination of the pedestrian: in particular, every destination

overlaps with a set of cells that are defined as destination areas by means of the

appropriate spatial marker. Destination is used to identify which path field is

relevant for the agent:

currentPathField = PathField(Destination)

where PathField is the precise path field associated to Destination and

currentPathField is the path field relevant for the agent.

All these elements take part in the mechanism that manages the movement of pedes-

trians: as previously introduced, they are essentially utility-based agents. To every move-

ment in the cell neighbourhood a value of utility is associated, according to a set of factors

that concur in the overall dynamics.

Mechanism of action evaluation

In Algorithm 1 the agent life-cycle during all the simulation time is proposed: every time

step, every pedestrian perceives the values of path field, obstacle field and density field for

all the cells that are in its neighbourhood. On the basis of these values and according to

different factors, the agent evaluates the different cells around him, associating an utility

value to every cell and selects the action for moving into a specific cell.

Algorithm 1 Agent life-cycle

for all timestep ∈ SimulationTime do

for all p ∈ Pedestrian do

Utility[ ]

for all c ∈ neighbours(Position) do

pf ← Val(PathF , c)

of ← Val(ObsF , c)

df ← Val(DensF , c)

Utility[ c]← Evaluation(pf , of , df )

end for

a = Choice(Utility[ ] )

Move(a)

end for

end for

As previously suggested, the action selection strategy starts gathering the value of floor

fields in cells included in the neighbourhood of agent’s current position. The obtained

values will be used in the evaluation of the movement towards the related cell.

After acquiring the perceived information from the environment, the agent elaborates

a desirability value for each of the admissible actions (movements), according to several

factors and more precisely:

• the desire to move towards a goal, a destination in the environment;

• the tendency to stay at a distance from the obstacles (e.g. walls, columns), that are

perceived as repulsive;
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• the desire to stay at a distance from other individuals, especially those that are not

members of the same simple group, an effect of proxemic separation ;

• a direction inertia factor, increasing the desirability of performing straight forms of

movement;

• the penalisation of those movements that cause an overlapping event, the temporary

sharing of the same cell by two distinct pedestrians;

• two contributions related to the tendency to preserve group cohesion, respectively

devoted to simple and structured groups.

All the above contributions, which will be more thoroughly described in the following

part of this section, are considered by the overall utility functionUa(c) of a destination cell

c which corresponds to an action/direction for agent a, that takes the form of a weighted

sum of components associated to the above factors:

Ua(c) =
κgG(c) + κobOb(c) + κsS(c) + κdD(c) + κovOv(c) + κcCa(c) + κiIa(c)

d

where d is the distance of the new cell from the current position, that is 1 for cells in

the Von Neumann neighbourhood (vertically and horizontally neighbour cells) and
√
2

for diagonal cells: the factor is introduced to penalise the diagonal movements. Note that

κg , κob, κs, κd, κov, κc, κi ∈[ 0, 100]: the use of these parameters, in addition to allowing the

calibration and the fine tuning of the model, also supports the possibility of describing

andmanaging different types of pedestrian, or even different states of the same pedestrian

in different moments of a single simulated scenario.

Given the list of possible actions and associated utilities, an action is chosenwith a prob-

ability proportional to its utility. In particular, the probability for an agent a of choosing

an action associated to the movement towards a cell c is given by the exponential of the

utility, normalised on all the possible actions the pedestrian can take in the current turn:

pa(c) = N · eUa(c)

where N is the normalisation factor and c is the currently considered destination cell.

Every element that contributes to the utility calculation will now be formally described.

Goal attraction

Agents are driven towards their goal using information derived from the related path field,

calculating the distance between their current cell and the destination area. The function

that manages the goal attraction evaluates the reduction of distance moving from cell

Position in cell c where x = Row(Position), y = Col(Position), i = Row(c) and j = Col(c):

G(c) =
PathFx,y − PathFi,j√

2

where ∀c ∈ Cells,G(c) ∈[−1, 1].

Obstacle repulsion

The interaction between agents and obstacles and non-accessible areas in the environ-

ment has negative impact towards the movement, because of the tendency of pedestrians

to manage the available space without walking too close to obstacles and walls: for

instance, considering the scenario of a corridor, pedestrians tend to stay in the centre

instead of close to the walls. Information for the location and influence of obstacle are

associated to the obstacle field introduced in Section “Obstacle field”. Considering a cell c
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with i = Row(c) and j = Col(c),

Ob(c) = −
ObsFi,j

rob

where ∀c ∈ Cells,Ob(c) ∈[−1, 0] and rob is the maximum distance for which an obstacle

generates a repulsive effect.

Proxemic separation

All the interactions among pedestrians are subjected to the proxemic separation rela-

tionship, stating that all the persons tend to maintain a certain distance with respect to

others and according to the local density calculated, stored and maintained into the grid

of the density field. According to Proxemic theory (Hall 1966) the public distance among

pedestrians is between 3.0 m and 6.0 m. Considering a cell c with c = Envi,j:

S(c) = −
DensFi,j

MaxDensity

where DensFi,j is the value of the density field for the cell c and MaxDensity is the max-

imum global density value that the density field can assume, according to the radius r

used in its definition. Output of S function are in the [−1, 0] range. In our case, the value

of MaxDensity that can be reached with a discretisation of 40 cm × 40 cm is equal to

6.25m−2 with r = 1.

Direction inertia

This factor represents the fact that pedestrians tend to maintain the direction during

movement towards a destination. Unexpected changes of direction are usually avoided

by pedestrians: for this reason, a value is added in the case that cell c is located in the

same direction with respect to the previous movement (except the case in which agent

remained in the same cell, i.e. PrevDirection = X):

D(c) =

{

1 if PrevDirection = D(c)

0 otherwise

where D(c) is the direction in which the agent must move to reach cell c from the current

position.

Overlapping extension

CA-based models are characterised by a limit to the maximum manageable density that

also limits their possibility to effectively represent highly crowded situations. A relaxation

to the non-interpenetration principle, allowing the overlapping of two pedestrians in a

single cell, was investigated as a means to overcome this limit in a controlled and system-

atic way (Klüpfel ). We adopted this approach, allowing pedestrians to transiently overlap

with a small probability: at each time step (a maximum of) two pedestrians are allowed to

stay on each cell.

State(c) = s : s ∈
{

FREE,OBSTACLE,ONE_PEDi,TWO_PEDSi,j
}

State TWO_PEDSi,j indicates that cell c is occupied at the same time by agent i and

agent j. The set of admissible actions AdmAct is modified allowing that also cells already

occupied by one other pedestrian are admissible cells, for j ∈ Pedestrians:

AdmActp = {a : a ∈ Act ∧ (State(a(c)) = FREE ∨ State(a(c)) = ONE_PEDj)}
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With this extension, we want tomodel the fact that in some situations, especially in high

densities, pedestrians rotate their body to pass in tight spaces. So, densities higher than

the limit of 6.25 m−2 are allowed, because of the maximum possible density is 12.5 m−2,

thought those parameters must be finely calibrated to prevent unreasonable (and not

justified by empirical evidences) crowding conditions. Overlapping also influences the

calculation of utility function Ua(c), assigning a penalty if the overlapping occurs:

Ov(c) =

{

− 1 if State(c) = ONE_PED

0 otherwise

Because of overlapping event can happen just in particular situation of densities, a

trade-off function on the basis of the density value in the scenario is defined, managing

the calibration of overlapping event kov according to contextual factors (essentially the

local density):

Balanceov(c) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

kov if DensFi,j ≥ δhigh

kov + δhigh − DensFi,j if δlow ≤ DensFi,j < δhigh

0 otherwise

where i = Row(c), j = Col(c), DensFi,j is the value of density field in the cell c, δhigh

and δlow are the two density thresholds that regulate the activation of overlapping. Please

note that a zero value for the κov parameter does not mean that the overlapping comes

without costs, on the contrary it means that the overlapping is not allowed. Therefore, the

overall Balance function gradually makes the overlapping phenomenon more likely with

the growth of the local density.

Cohesion for simple groups

A positive contribution to the evaluation of the utility of a given cell can be assigned

whenever the movement towards that point of the environment is able to reduce the per-

ceived distance from other members of a simple group. The overall reduction of distance

is essentially an aggregation of the reduction of distance from all other members of the

group; more formally the value of the Ca function for a given cell c, an agent amember of

group Ga is defined as follows:

Ca(c) =

⎡

⎣

⎛

⎝η ·
∑

ai∈Ga

(DistFunctiona,ai(c))

⎞

⎠ · 2

⎤

⎦ − 1

where η is a normalisation factor that, along with numerical values, allows to translate the

cohesion value into the range [−1, 1], and DistFunction is a function that represents the

gain of agent a with respect to agent ai belonging to the same group Ga, moving into cell

c. In the case of the evaluation of group cohesion, the perception of agents is expanded:

every agent is able to perceive the members of the same group considering a distance

parametric value gd. DistFunction is so defined as:

DistFunctiona,ai(c) =
distance(Position(a),Position(ai)) − distance(c,Position(ai))

size(Ga) − 1

representing the gain that agent a obtains moving in a particular cell c with respect to

agent ai.
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Inter group cohesion

The role of this component of the utility associated to amovement is to increase the desir-

ability of choices that reduce the distance from the members of the structured group the

agent belongs to (if any). The form of the function is therefore relatively similar to the

one associated to the cohesion of simple groups, with a significant difference: the larger a

group is the more difficult is to perceive its “centre” and also its direction. Moreover, ties

between members of a large, possibly artificial group, are plausibly less influential than

those binding members of a simple group. Therefore we decided to reduce the overall

effect of cohesion for very large groups. We also support the definition of a hierarchi-

cal structure of groups and we exploit this structure when computing the value for this

contribution to the overall utility of a given movement.

Considering an agent a, let us remind that by Ḡa we denote the largest group agent a

belongs to; it could be a highly structured group including a subgroup, simple or struc-

tured, to which a directly belongs to, or it could even be equal to Ga, should a be member

of a simple group not belonging to any structured group. Considering this notation, an

Ia(c) function for a given cell c, is defined as follows:

Ia(c) =

⎡

⎣

⎛

⎝η ·
∑

ai∈Ḡa

(DistFunctionIḠa,ai(c))

⎞

⎠ · 2

⎤

⎦ − 1

where function DistFunctionIḠa,ai works on the tree-structure of the macro-group, iden-

tifying the proximity of two sub-groupsGa andGai (i.e. the groups agents a and ai directly

belong to) in the tree of the group structure by means of the detection of the nearest

common root of the two groups in Ḡ.

More formally:

DistFunctionIḠa,ai(c) =
1

distance(c,Position(ai))
·

1

(Size(mcg(Gg ,Gai)) − 1)

wheremcg is the smallest sub-group of Ḡa including both Ga and Gai .

Adaptation mechanism for group cohesion preservation

While the above elements are sufficient to generate a simple pedestrian model that con-

siders the presence of groups, even structured ones, the introduced mechanisms are not

sufficient to preserve group cohesion, as discussed in a previous work adopting a very

similar approach (Bandini et al. 2011). This is mainly due to the fact that in certain situa-

tions pedestrians adapt their behaviour in a more significant way than what is supported

by simple and relatively small modifications of the perceived utility of a certain move-

ment. In certain situations pedestrians perform an adaptation that appears in a much

more decisive way a decision: they can suddenly seem to temporarily loose interest in what

was previously considered a destination to reach and they instead focus on moving closer

to (or at least do not move farther from) members of their group, generally whenever they

feel that the distance from them has become excessive. In the following, we will discuss a

metric of group dispersion that we adopted to quantify this perceived distance and then

we will show how it can be used to adapt the weights of the different components of the

movement utility computation to preserve group cohesion.
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Group dispersionmetrics

Intuitively, the dispersion of a group can be seen as the degree of spatial distribution

of their members. In the area of pedestrian modelling and simulation, the estimation

of different metrics for group dispersion has been discussed in (Bandini et al. 2011) in

which different approaches are compared to evaluate the dispersion of groups through

their movement in the environment. In particular, two different approaches are compared

here: (i) dispersion as occupied area and (ii) dispersion as distance from the centroid

of the group. This topic was also considered in the context of computer vision algo-

rithms (Schultz et al. 2012), in which however essentially only line abreast patterns were

analysed. Therefore we will focus on the former approach.

Formally, the above introduced formulas of group dispersion for each approach are

defined as follows:

Disp(Group) =
Area(Group)

Size(Group)
(Area method)

Disp(Group) =
∑Size(Group)

i=1 distance(centroid, ai)

Size(Group)
(Centroid method)

with Area(Group) as the area occupied by the group, Size(Group) as the number of its

members, centroid as its centroid. Results underline that the second approach suffers the

effect of particular configurations in which the value of cohesion appears as low while a

face validation of the situation indicates a good group cohesion. These wrong evaluations

are detected in particular in medium and high-density situations in which groups tend

to stretch themselves to walk through bottlenecks or narrow walkable areas. The cen-

troid method identifies groups as highly disperse under these conditions, because some

pedestrians can be far from the centre of the group.

Differently, the first metric, that can appear asmore simple, defines the dispersion of the

group as the portion of space occupied by the group with respect to the size of the group.

Figure 2 illustrates how this metric works: the first step works on all the vertices (i.e.

the members of the group, see Figure 2a), building a convex polygon with the minimum

number of edges that contain all the vertices. The second step works on this output, cal-

culating the area of the convex polygon (see Figure 2b). The dispersion value is calculated

as the relationship between the polygon area and the size of the group.

Figure 2 Graphical representation of a group composed of nine members (a) and the area of the

convex polygon that contains all the groupmembers (b).
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Trade-off analysis

A trade-off between the goal attraction and the intra-inter group cohesion is necessary to

preserve group cohesion: in the situation in which the spatial dispersion value is low, the

cohesion tendency has to be less influential than the goal attraction on the overall pedes-

trian behaviour. On the contrary, if the level of dispersion of group is high, the cohesion

component is more important than the goal attraction. An adaptation of the two related

parameters in the utility computation is necessary, by means of a Balance(k) function that

can be used to formalise these requirements:

Balance(k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

3
· k + (

2

3
· k · DispBalance) if k = kc

1

3
· k + (

2

3
· k · (1 − DispBalance)) if k = kg ∨ k = ki

k otherwise

where ki, kg and kc are the weighted parameters Ua(c) and

DispBalance = tanh

(

Disp(Group)

δ

)

is another function that works on the value of group dispersion as the relationship

between the area and the size of the group, applying on it the hyperbolic tangent (assur-

ing values in the [ 0, 1) interval for the considered range of values for group dispersion).

The value of δ is a constant that essentially represents a threshold above which the adap-

tation mechanism starts to become more influential; after a face validation phase, we

set this value to 2.5, allowing the output of DispBalance function in the range [ 0, 1]

according to all elements in Ua(c). The hyperbolic tangent approaches value 1 when

Disp(Group) ≥ 6 (values ≥ 6 indicate a high level of dispersion for small-medium size

groups (1-4 members)).

A graphical representation of the trade-off mechanism is shown in Figure 3: red and

green boxes represent the progress of parameter kc and parameter kg (ki is treated

analogously), respectively. Note that the increasing of the dispersion value produces an

increment of kc value and a reduction of kg parameter.

Figure 3 Graphical representation of Balance(k), for k = 1 and δ = 2.5.
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Furthermore, according to (Xu and Duh 2010), the value of separation among

group members has to be modified, on the basis of the assumption that pedestri-

ans within a group allow to stay more close each other with respect to strangers:

more in detail, the value of separation in a group is equal to the half among

strangers.

The S function must therefore be substituted by a Sa function, considering these social

aspects. In particular, this function is defined as follows:

Sa(c) = −
DensFi,j − SepGroupa(c)

MaxDensity

where SepGroupa(c) provides the value to discount to the separation repulsion on the

basis of the group to which the agent a belongs to (the case in which agent does not belong

to a group is also expressed):

SepGroupa(c) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

ai∈G−{a}

1

distance(ai, c)2
· 0.5 if a ∈ G

0 otherwise

It must be emphasised the fact that this adaptive balancing mechanism and the current

values for its parameters were heuristically established and they actually require a vali-

dation (and plausibly a subsequent calibration) by comparing results achieved with this

configuration and relevant empirical data about group dispersion gathered from actual

observations and experiments in controlled situations.

Results and discussion

This section describes the results of a simulation campaign carried out to evaluate the per-

formance of the above described model that had mainly two goals: (i) validate the model,

in situations for which the adaptation mechanism was not activated (i.e. no simple groups

were present in the simulated population), (ii) evaluate the effects of the introduction

of simple groups, performing a qualitative face validation of the introduced adaptation

mechanism considering available video footages of the behaviour of groups in real and

experimental situations.

The chosen situations are relatively simple ones and they were chosen due to the avail-

ability of relevant and significant data from the literature. In particular, the first one is a

linear scenario, a corridor in which we test the capability of the model to correctly repro-

duce a situation in which two groups of pedestrians enter from one of the ends and move

towards the other. This situation is characterised by a counterflow causing local situations

of high density and conflicts on the shared space. We essentially evaluate and validate this

scenario by means of a fundamental diagram (Schadschneider et al. 2009): shows how

the average velocity of pedestrians in a section (e.g. one of the ends of a corridor) varies

according to the density of the observed environment. Since the flow of pedestrians is

directly proportional to their velocity, this diagram is sometimes presented in an equiva-

lent form that shows the variation of flow according to the density. In general, we expect to

have a decrease in the velocity when density grows; the flow, instead, initially grows, since

it is also directly proportional to the density, until a certain threshold value is reached

(also called critical density), then it decreases. Despite being of great relevance, different

experiments gathered different values of empirical data. Consensus on the shape of the

function is wide, but the range of the possible values has even significant differences from
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different versions, as you can see in Figure 4 showing a set of different diagrams, both lines

related to design manuals (namely Predtechenskii and Milinskĭı 1978; Weidmann 1993)

and also data points related to experimental measurements (respectively carried out in

the context of the Hajj in Saudi Arabia by (Helbing et al. 2007) and in the city of Osaka, in

Japan, by (Mori and Tsukaguchi 1987)).

The second scenario in which the model has been tested is instead associated to a situ-

ation in which pedestrians have to perform a turn and two different flows have to merge:

geometrically, it is represented by a T-Junction also depicted in Figure 5, in which two

branches of a corridor meet and form a unique stream. Also in this kind of situation it

is not hard to reach high local densities, especially where the incoming flows meet to

turn and merge in the outgoing corridor. The main goal of the analysis of the model

behaviour in this scenario was the evaluation of its capability to generate patterns of

spatial utilisation (i.e. aggregated density maps resulting from the single individual trajec-

tories adopted by the pedestrians) that are in good agreement with those resulting from

the actual observations available in the literature (Zhang et al. 2011).

We investigated both scenarios with a significant number of simulations, varying the

level of density by adjusting the number of pedestrians present in the environment, so

as to analyse different crowding situations. For every scenario, in terms of environmen-

tal configuration and level of density, a minimum of 3 and a maximum of 8 simulations

were executed, according to the variability of the achieved results (more simulations were

run when the variability was high, generally around levels of density close to the critical

thresholds). Every simulation considered at least 1800 simulation turns, corresponding

to 10 minutes of simulated time. The rationale was to observe a good number of com-

plete paths of pedestrians throughout the environment, that was configured to resemble

Figure 4 Empirical fundamental diagrams for pedestrian movement in planar facilities as reported by

design manuals ((Weidmann 1993) – WM – and - (Predtechenskii and Milinskiı̆ 1978) – PM) and also

data points related to experimental measurements (respectively carried out in the context of the Hajj

in Saudi Arabia by (Helbing et al. 2007) – Helbing – and in the city of Osaka, in Japan, by (Mori and

Tsukaguchi 1987) – MT).
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a torus (e.g. pedestrians completing a movement through it re-entered the scenario from

their starting point), therefore simulations of situations characterised by a higher density

were also set to last longer.

As suggested above, for both the scenarios, we adopted two different experiment

settings: in the first one, the individual pedestrians belonging to a given flow (i.e.

all the pedestrians entering the corridor or the T-junction from one end) are rep-

resented as members of a large structured group, but no simple groups are present.

This first part of the experimentation was also necessary to perform a proper cal-

ibration of the model, for the parameters not involved in simple group modelling.

In the second experimental setting, we included a variable number of simple groups

(based on the total number of pedestrians in the environment and according to avail-

able data on the frequency of groups of different size in a crowd (Federici et al. 2012;

Moussaïd et al. 2010))e first of all to calibrate and qualitatively validate the adequacy

of the adaptation mechanism and then to explore its implications on the overall crowd

dynamics.

The model has been implemented as an improvement of MAKKSim (Bonomi

et al. 2011), an already existing simulation platform consisting of an extension to the

Blender 3D modelling and rendering system. MAKKSim extends Blender by means of a

set of Python scripts realising the model and simulation engine, in addition to support

tools like algorithms for the semi–automatic generation of the fields starting from a CAD

file and some specific spatial annotations defined through Blender’s user interface. A com-

plete description of this system and its performance is out of the scope of this paper and

it is object of current and future works: we just conclude this introduction to the achieved

results by clarifying that the performance of the MAKKSim simulation engine is strongly

bound to the number of simulated pedestrians. Situations characterised by a low level

of density required less than 5 minutes to be completed, whereas high density situations

required more than two hours.

Figure 5 T-junction scenario.



Vizzari et al. Complex Adaptive SystemsModeling 2013, 1:7 Page 21 of 29

http://www.casmodeling.com/content/1/1/7

Linear scenarios

This scenario proposes the analysis of the model performance when a bidirectional flow

of pedestrians crossing a corridor is simulated. More in detail, the analysis of the flow is

performed on three different linear scenarios with a variation of size in terms of width

and height. The configurations taken into account are related to a linear corridor with

size 2.4 m × 20 m (A), 3.6 m × 13.3 m (B) and 4.8 m × 10 m (C). Note that the variation

in terms of width and height were applied according to the choice of maintaining the

total area equal to 48 m2 in every scenario. In particular, between the first and the second

configuration the values of width and height were respectively multiplied and divided

by 1.5, while between the first and the third configuration the values where respectively

multiplied and divided by 2.

Figures 6, 7 and 8 show three fundamental diagrams, one for each environmental con-

figuration, in which blue and red points respectively represent pedestrian flow without

and with groups. Each point is associated with a simulation run of at least 10 minutes;

in each run a pedestrian performs the crossing of the corridor a number of times, but

when the density grows, in order to preserve the number of crossings, we need to increase

the simulated time. Therefore, runs performed with higher density conditions had to be

longer than those representing low density situations. Finally, we performed more runs in

the density situations close to the critical threshold, since in those situations the results

were characterised by the highest level of variability.

All the diagrams properly represent changes in the flow with respect to the level of

density. The range for the critical value of density belongs to the interval [ 1.8 − 2.3]m−2

in the situation without group, in tune with experimental results and empirical data from

the literature.

About the impact of groups, a variation of flow in case of groups with respect to the case

without group has to be analysed. Considering charts in Figures 6, 7 and 8, it is possible

to note that the level of critical density reached by the flow without groups is higher with

respect to the flow with groups: in the latter, the value of critical density belongs to the

Figure 6 Fundamental diagrams with and without groups in corridor A.
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Figure 7 Fundamental diagrams with and without groups in corridor B.

interval [ 1.5 − 1.8]m−2. This means that the flow without groups increases until values

in the interval [ 2.0− 2.2]ms−1 while the flow with groups until value in [ 1.5− 2.0]ms−1.

Considering these analyses, the presence of groups can be interpreted as a negative

factor on the flow dynamics. This trend is maintained for a level of density < 2.5m−2.

Differently, for higher densities (from 2.5m−2 to 4.0m−2), the presence of groups has

a little impact on pedestrian flow: in Figures 6 and 7 it is possible to note that higher

level of flow are assigned to situations with groups with respect to situations without

groups. The behaviour in terms of speed and the detection of lanes explains the variation

in the fundamental diagrams on the overall density interval. Also preliminary analyses

on experimental data discussed in (Manenti et al. 2011) support these results, that might

Figure 8 Fundamental diagrams with and without groups in corridor C.
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seem counterintuitive, showing that the presence of groups and, in particular, of couples,

can positively influence the pedestrian flow.

The impact of groups can be analysed more in detail considering the singular influence

of every type of group (according to its size) to the pedestrian flow with the goal to under-

stand if a relationship exists between the size of the group and its (negative) contribution

to the overall pedestrian dynamics.

To achieve this goal, data related to the different types of simulated groups were aggre-

gated, and a comparison among the related fundamental diagrams was performed. As

summary, Figure 9 represents on the same chart all group contributions: unlike the pre-

vious diagrams, the depicted points (and the connecting line) represent the average flow

achieved for that kind of group in the total simulated time.

The choice of evaluating the influence of groups in different linear scenarios was also

inspired by (Zhang et al. 2011), in which a comparison in terms of pedestrians flow from

experimental data among three corridors of width 1.8 m, 2.4 m and 3.0 m is presented.

In this case, authors show that, in conformance with (Hankin and Wright 1958), above

a certain minimum of about 1.22 m, the maximum flow is directly proportional to the

width of the corridors.

We have chosen to expand the width of the corridors considering the comparison

among sizes of 2.4 m, 3.6 m and 4.8 m. Figure 10 represents the three different fundamen-

tal diagrams in case of groups: these results are in tune with the above mentioned theory

about the dependency between maximum reachable flow and the width of a corridor. In

particular, in the case of corridor C, relevant variations can be detected around the crit-

ical density value. After that value, the influence of width on the pedestrian flow seems

to be not relevant, probably due to the activation of overlapping extension to deal with

high density situation (Section “Overlapping extension”) and to the phenomenon of lane

formation.

Figure 9 Comparison among fundamental diagrams on aggregate data with respect to groups of

different size in corridor A.
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Figure 10 Comparison among corridor widths: fundamental diagrams in case of groups in corridors

A, B and C.

Both in the linear and corner scenarios an analysis on the effectiveness of the

mechanism to manage group cohesion is required: as previously introduced in

Section “Trade-off analysis” a balance mechanism regulating the tendency to reach the

goal and the tendency to stay cohesive with group members works on a metrics by

evaluating group dispersion as ratio between the area occupied by the group and its size.

Finally, we analysed the relationship between the increase of the density and the level of

group dispersion. The adopted indicator for the dispersion of groups is the one introduced

in Section “Group dispersion metrics”, that is, the area actually occupied by the group,

computed as shown in Section “Group dispersion metrics”. We found out that the density

does not significantly influence the group cohesion: dispersion in couples is always in the

interval [ 0.2 − 0.4]m2, dispersion in triples in the interval [ 0.9 − 1.3]m2 and dispersion

in groups of six in the interval [ 5.0− 5.6]m2. This means that the mechanism to manage

group cohesion works well, decreasing the tendency to reach the goal to preserve group

cohesion. Figure 11 shows the comparison between dispersion values in groups of six in

the three different linear scenarios. While in corridor B and C the dispersion of this kind

of group is comparable, in corridor A the width definitely impacts on the variability on

the dispersion of groups that belong to the interval [ 5.1 − 7.1]m2. It must be noted that,

in order to effectively validate the group cohesion mechanism we would need empirical

data on the level of dispersion of groups in this kind of scenario and in different situations.

T-junction scenario

The central result of this scenario is not represented by fundamental diagram data, but

rather by an indication on how the pedestrians employed the available space through-

out the simulation. In particular, we adopted a metric is called cumulative mean density

(CMD) (Castle et al. 2011), a measure associated to a given position of the environ-

ment indicating the average density perceived by pedestrians that passed through that

point. It is quite straightforward to compute this value in a discrete approach like the one
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Figure 11 Comparison among the level of dispersions for group of six members in corridor A, B and C.

described in this work. As suggested above, we wanted to evaluate the capability of the

model to reproduce patterns of spatial utilisation that are in good agreement with those

resulting from the actual observations available in the literature (Zhang et al. 2011). In

this work an analysis on spatial dynamics of the motion of pedestrians in an experimental

observation carried out on a T-junction scenario is performed by means of topographical

information for density profile according to CMD values. The density in the T-junction is

not homogeneous and a higher density region appears near the junction. The lowest den-

sity region is located at a small triangle area, where the left and right branches begin to

merge. The density in the branches (near to starting areas) are not uniform and are higher

over the inner side. From this point of view, pedestrians prefer to move along the shorter

and smoother path.

Our model is able to reproduce the phenomenon: a comparison between the two differ-

ent density profiles from one run of a simulation with an overall density equal to 2.5m−2

is shown in Figure 12 (a). It can be noted that our model represents well the use of the

space by pedestrians and their trajectories. The maximum CMD reaches is the same in

the two density profile, and equal to 4.5m−2.

In Figure 12 (b), instead, we propose the results of the simulations carried out in the

same scenario but introducing simple groups, in the same proportion of the previous

Figure 12 Density profile for simulations in the T-junction scenario without simple groups(a) and in

presence of simple groups (b).



Vizzari et al. Complex Adaptive SystemsModeling 2013, 1:7 Page 26 of 29

http://www.casmodeling.com/content/1/1/7

Figure 13 Comparison among the fundamental diagrams of experiments not including simple

groups and including a set of simple groups of variable size.

scenario: while qualitatively the diagram looks similar to the previous one, the highest

level of density is actually sensibly lower and in general the CMD is lower in most parts

of the environment. This result is interesting because the lower level of CMD suggests

that in turning and merging situations characterised by an overall high level of density

the impact of simple groups could be significant and beneficial for the overall flow. We

further analysed this phenomenon by performing a set of simulations varying the density

of pedestrians in the environment and the resulting fundamental diagram is shown in

Figure 13: in low to moderate densities the presence of simple groups slightly reduces the

Figure 14 Comparison among the level of dispersions for groups of different size in the T-junction

scenario in different density conditions.
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overall flow of pedestrians, but in high density conditions the presence of simple groups

actually makes the flow of pedestrian smoother than in the situation only including large

structured groups. However, once again, it must be stressed that, in order to effectively

validate the group cohesion mechanism, we would need empirical data also on the spatial

patterns of movement in this kind of scenario and in different situations.

Finally, in Figure 14 we also report a graph showing the variations in the level of group

dispersion in different situations characterised by a different level of density. As for the

linear scenario, the level of dispersion does not seem to present a straightforward rela-

tionship with the level of density: it seems to increase at density levels close to the critical

density, but then it seems to decrease to physiological levels (considering the size of the

group).

Conclusions

The paper presented a model for the adaptive behaviour of pedestrians that are mem-

bers of simple groups, that is, groups of friends and/or relatives. These pedestrians need

to adapt their behaviour, namely reducing their goal orientation in order to preserve the

cohesion of the group. The paper has formally introduced themodel and discussed results

that were compared to the available empirical data and relevant literature in absence of

effects from the newly introduced mechanism and it has explored the effects of its intro-

duction, after a face validation of its adequacy. The simulation results suggest that the

effect of the presence of groups in the simulated population is not so simple to evalu-

ate, since in the analysed situations the pedestrian flow is reduced due to the presence

of groups only in low to moderate levels of density, while in high density situations the

presence of groups might be even beneficial, smoothening the overall pedestrian flow.

Future works are aimed, on one hand, at achieving empirical data supporting an empir-

ical validation and subsequent calibration of the group cohesion mechanism and then

at further extending the model, for instance for representing the movement of elderly

and special groups (like elderly and accompanying person), but also leader/follower

schemes.

Endnotes
asee http://www.evacmod.net/?q=node/5 for a significant although not necessarily com-

prehensive list of simulation platforms. The list includes over 60 models, commercial and

academic, general purpose or specifically targeted on certain situations and scenarios,

maintained or discontinued.
bLEGION is the most famous and used commercial software for pedestrian dynamics

simulation, see http://www.legion.com/legion-software.
cSTEPS is an agent-based micro-simulation tool developed by Mott MacDonald for the

simulation of pedestrian movement under both normal and emergency conditions, see

http://www.steps.mottmac.com/.
dNote that LEGION works on continuous representation of environment, so the area is

calculated as the circular area around the pedestrian.
eGroups of size 2 include about 28% of the total number of pedestrians, groups of size 3

about 24% and groups of size 6 about 12%.
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