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ABSTRACT

Search queries are appropriate when users have explicit in-
tent, but they perform poorly when the intent is difficult
to express or if the user is simply looking to be inspired.
Visual browsing systems allow e-commerce platforms to ad-
dress these scenarios while offering the user an engaging
shopping experience. Here we explore extensions in the di-
rection of adaptive personalization and item diversification
within Stream, a new form of visual browsing and discovery
by Amazon. Our system presents the user with a diverse set
of interesting items while adapting to user interactions. Our
solution consists of three components (1) a Bayesian regres-
sion model for scoring the relevance of items while leverag-
ing uncertainty, (2) a submodular diversification framework
that re-ranks the top scoring items based on category, and
(3) personalized category preferences learned from the user’s
behavior. When tested on live traffic, our algorithms show
a strong lift in click-through-rate and session duration.
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1. INTRODUCTION
The brick-and-mortar shopping experience is character-

ized by visual browsing where the user is able to quickly
scan a large number of potential purchases. The user has
a high potential to discover new items while maintaining
the ability to focus attention on items of particular inter-
est. This problem of discoverability is more challenging in
e-commerce where it can be difficult to expose the entirety
of an online retailer’s catalog. The in-store browsing expe-
rience is not well-replicated by search engines that restrict
item discovery to items relevant to an explicit search query.
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Therefore, an online visual browsing experience may greatly
aid users in item discovery.

One effort in this direction is Amazon Stream (figure 1),
a new website for fashion discovery developed by Amazon
(www.amazon.com/stream). Stream enables users to eas-
ily discover popular, new, and relevant fashionable items
without the need for search queries or to sieve through less
relevant items. Toward this end, we have built a personal-
izable system that ranks and diversifies items scored by an
explore-exploit algorithm. These items are presented to the
user as an infinite scroll where each item can be interacted
with by clicking. This paper outlines elements of our diverse
and personalized visual shopping experience approach.

Figure 1: Screenshot of www.amazon.com/stream.

2. SCORING ITEM RELEVANCE
As the first step in generating the stream, we score each

item in the Stream catalog for relevance to our users. We
use click probability P (click | item is viewed) to quantify
relevance. Click refers to any of the following activities:
save item as favorite, visit the item’s detail page, or open
the modal window for the item.

We learn this probability distribution by using a Bayesian

35

http://www.amazon.com/stream
http://www.amazon.com/stream
rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Linear Probit regression [7] that maps item attributes onto
click probabilities. Item attributes are represented by cat-
egorical variables. They include product features such as
brand, color, department, price, size, as well as a unique
identifier for each item. The regression model learns a set
of weights where each weight represents the contribution
of a single attribute value to the click probability. When
evaluating an item, we say that a weight xi is active if its
corresponding attribute is present in the item. Thus, the
expected click probability of an item is given by

P (click | item is viewed) = Φ−1(
∑

xi is active

xi) (1)

where Φ−1(·) is the probit function. We assume model
weights are generated independently from a prior Normal
distribution. As we observe user actions, we update the ac-
tive weights posterior distributions accordingly [7].

Our catalog consists of hundreds of thousands of items
with thousands of items added or purged daily. The ex-
pected click probability may unduly favor popular items over
underexposed or recently added items. This is because un-
derexposed items will likely be associated with undertrained
model weights that potentially underestimate the true click
probability. This poses an exploration-exploitation dilemma:
balancing exploiting highly relevant items with exploring un-
dersampled sections of the catalog. Multi-armed bandit al-
gorithms such as Thompson sampling [13] and Upper Confi-
dence Bound [3] solve this problem. Here we use a Thomp-
son sampling approach to score items as it performs well
under delayed feedback [4].

We apply Thompson sampling by sampling each model
weight from its posterior distribution conditioned on the
training data. We then use the sampled weights to com-
pute equation (1) for each item. Under this procedure, an
item will receive a score close to its expected click probabil-
ity unless its attributes are associated with highly uncertain
model weights. Therefore, the items with the highest scores
will be a mix of popular products with high expected values
(an exploitation strategy) and underexposed products that
were randomly scored high above their expected value (an
exploration strategy).

Finally, we note that the customer controls the number of
products viewed via scrolling. For simplicity we have omit-
ted a model of customer browsing that predicts the number
of views per session. However, such a model would allow us
to estimate the expected clicks per session directly rather
than the expected clicks per item viewed.

3. SUBMODULAR DIVERSIFICATION
We now have a set of items that are scored based on both

their relevancy and exposure. Similar items tend to be as-
signed similar scores, so ranking these items by their scores
creates a list where highly similar items are clustered to-
gether. However, our user experience studies indicate that a
diverse item list helps users discover relevant items faster, as
it exposes more variety in a fixed number of slots [11]. Sim-
ilar to cases in web search [1], blog posts [5], news articles
[2] and music recommendation [11], we apply diversification
to alleviate information redundancy.

We formulate the selection and ranking of a diverse sub-
set of items as a submodular optimization problem [6]. Let
A := {a1, . . . ,an} denote the attribute vectors for a set

of n items. All attribute vectors are one-hot encoded in
d-dimensions such that ai ∈ {0, 1}d. Let w denote a d-
dimensional vector which encodes user preferences for each
of the d item attributes. In addition, let s(a) denote a func-
tion which maps an item to a real-valued utility score such
as the click probability. A submodular objective function ρ

for selecting k items from A is given by

ρ(Ak,w) =

〈

w, log



1 +
∑

ai∈Ak

ai





〉

+
∑

ai∈Ak

s(ai), (2)

where Ak is a subset of A of size k. We use the convention of
applying the logarithm to a vector’s individual components.
The optimal subset is given by

A∗
k := argmax

Ak⊆A,|Ak|=k

ρ(Ak,w). (3)

In equation (2), the weight wj emphasizes the importance
of the jth attribute to a user. By summing over ai we obtain
the number of times that attribute occurs in the collection
Ak. However, the utility of each attribute does not grow lin-
early with its count. Instead, the logarithmic term ensures
that the incremental utility of the jth attribute diminishes
as the number of items with j attributes increases in Ak. In
other words, if a user loves shoes, showing only shoes does
not lead to a good user experience. The scale of s(a) can be
tuned to adjust the relative importance of the item’s utility.

Equation (3) is a special case of the NP-hard maximum
set cover problem. Nevertheless, we can use an iterative
greedy procedure to obtain a near-optimal solution [12]:

A0 := ∅ and Ai+1 := Ai ∪

{

argmax
a∈A\Ai

ρ(Ai ∪ {a} ,w)

}

, (4)

with a runtime complexity of O(dkn). We further boost
efficiency by using the CELF lazy evaluation algorithm [5, 9].

We also optimize the diversification process by transform-
ing the attribute vector space into a single categorical space.
This is achieved by mapping each possible attribute vector
to a unique category. We restrict the size of this categorical
space by coarsening our representation of attributes, such
as price, and eliminating attributes that do not need to be
diversified, such as average rating in customer reviews. The
final set for diversification includes on the order of 100 mu-
tually exclusive categories.

4. PERSONALIZATION
Category weights w in equation (2) control the trade-off

between item utility and category popularity for selecting
and ranking items. Unlike methods such as [14] and [2], we
do not optimize these weights directly. This allows us to
exploit user behavioral data that was not subject to diversi-
fication. In the following sections, we describe the procedure
for learning global and personalized category weights.

4.1 Learning Adaptive Global Weights
Though items in the stream are displayed in a grid layout

(figure 1), we assume that users scan them linearly from left
to right and top to bottom. Hence, we can leverage existing
work on click modeling with linear positional bias correction.

To learn the weights w in equation (2), we compared lo-
gistic regression, clicks over expected clicks [15], and click-
thru-rate (CTR) with additive smoothing. Each model was
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tested on several weeks of historical click logs. Even though
the CTR approach does not include corrections for position
bias, we found that the three methods gave similar results.
We therefore opted to use CTR with additive smoothing as
it is simple to implement yet provides additional controls to
handle update cycle fluctuations.

Let cj and vj represent the number of clicks and views,
respectively, for items from the jth category. Under the
CTR with additive smoothing model, the weight for the jth

category wj is estimated as:

wj =
cj + α

vj + α+ β
, (5)

where α and β are priors that enforce minimum category
weights. α and β can be tuned based on traffic volume
to avoid dramatic fluctuations in update intervals. In fact,
one can interpret wj as distributed according to a Binomial
distribution whose parameter pj is drawn from a Beta dis-
tribution with parameters α and β estimated from data.

4.2 Learning User Specific Weights
The adaptively tuned category weights described in the

previous section were derived from the aggregate clicks of all
users. They capture the general popularity of the categories
but not the interests of particular users. To personalize the
presenation of items and categories, we need to first build
a user model. Unlike some personalized applications where
user feedback is immediate and irreversible, our model must
handle delayed feedback and react quickly and efficiently to
evolving preferences where a positive indicator of interest
may no longer be predictive at a later date.

4.2.1 User Modeling

User modeling methods such as matrix factorization [8]
and hierarchical Bayesian models [10] are not directly appli-
cable in our case because these methods work best with a
massive collection of data from all users, and are thus less
sensitive to changing patterns in a small fraction of training
records. Instead, we model the uth user’s level of interest
in the d categories as a random vector wu drawn from a
Dirichlet distribution parameterized by α0. The distribu-
tion of a user’s clicks on each category is denoted as cu and
is modeled as a random variable drawn from a Multinomial
distribution parameterized by the interest vector and the
user’s total number of clicks mu:

wu ∼ Dirichlet(α0), (6)

cu ∼ Multinomial(wu,mu). (7)

The posterior distribution of the user interest vector wu

is given proportionally by

P (wu | cu,α0) ∝ P (cu |wu)P (wu |α0). (8)

As Dirichlet is conjugate prior for the Multinomial distribu-
tion, this posterior is also Dirichlet with mean ŵu:

ŵu = (cu +α0)‖ cu +α0 ‖
−1

1 . (9)

We estimate the personalized weight vector wu from the
user’s past clicks cu = (cu1, . . . , cud) where cuj ∈ N is the
number of clicks for category j. Dirichlet prior parameter
vectorα0 can be chosen to match pre-specified business rules
or to highlight certain category preferences.

In addition to being simple to implement, this Multinomial-
Dirichlet user model allows straightforward incorporation of

different types of user signals by adding them as counts to
cu. Similarly, evolving preferences are handled by deducting
older signals from cu. Finally, the personalized diversifica-
tion can be achieved by plugging the estimated user interest
vector ŵu into equation (2).

4.2.2 User Click Signal Diffusion

User interests are correlated between different categories.
For example, a male interested in high end fashion is likely
interested in both suits and expensive watches. This concept
is especially useful when users have concentrated clicks on
only a few categories, which would otherwise tend to inhibit
diversified recommendations.

To ensure a user is exposed to related categories, we diffuse
our Dirichlet updates between categories. In addition to a
user’s click incrementing the item’s specific category count,
the update is diffused across related categories. Let M be a
d-by-d matrix where the entry Mij is the ratio of the number
of users who clicked items from both categories i and j to
the number of users who clicked items from category j. To
alleviate noise, we use only the top categories each user has
actively interacted with. The smoothed interest vector w̃u

of the user interest vector ŵu of equation (9) becomes:

w̃u = Mŵu ‖Mŵu ‖−1

1 . (10)

There are several common approaches for quantifying the
pairwise association between two categories, such as point-
wise mutual information or Pearson’s correlation coefficients.
We use the asymmetric conditional probability that “users
who like category i also like category j”because we have ob-
served such user behavior patterns in our data. Moreover,
the leading eigenvector of the co-interest probability matrix
M can be seen as a global interest vector, towards which
equation (10) smooths the user interest vector ŵu.

5. EXPERIMENTS
We conducted several online experiments to test the effec-

tiveness of the methods presented above. We evaluated the
treatment impact on engagement by calculating session du-
ration, number of items viewed, and total click-through-rate.
Each experiment lasted at least one week and involved at
least 100,000 users per group. Some statistics are reported
for population subsets of at least 10,000 users per group.
Statistical significance was determined via Welch’s t-test.
Table 1 shows experimental results. Columns should not be
compared directly to each other, as each experiment’s con-
trol is different. Columns confer incremental improvements
on top of the previous treatment.

5.1 Submodular Diversification
We first compared our submodular diversifier of Section 3

to a simpler approach where categorical weights and item
scores are considered separately. The model of section 2 as-
signs a score to each item. Within each category, we rank
the items in descending order. We calculate a multinomial
distribution over item categories using global click propensi-
ties. For each slot in the stream, we first sample a category
from the multinomial, and then fill it with that category’s
highest scoring item.

Experimental results (Table 1, column 2) show that, within
the same session duration, the amount of items viewed by
the users subjected to submodular diversification decreased
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Submodular diversifier Adaptive weights Personalized weights
Duration 0.05% 5.39% 1.10%
Views -1.32% 1.08% -4.95%
CTR 9.82% 8.29% 12.58%

Table 1: Experimental results evaluated using per-session engagement metrics: duration, aggregated view
count, and aggregated click-through-rate. Column 2 shows incremental changes between a submodular vs

multinomial diversifier. Column 3 shows incremental changes of adaptive global category weights vs static

manual weights. Column 4 shows incremental changes for personalized category weights vs global weights.
Highlighted results are statistically significant at the 0.05 level.

by 1.32% while CTR increased by 9.82%. The submodu-
lar diversifier produces a more diverse stream as categories
are penalized more aggressively for being shown repeatedly.
These results are consistent with our expectation of users
being more interested in diversified streams.

5.2 Adaptive Category Weights
In a second experiment, we tested the impact of learning

adaptive category weights from global click propensities as
described in Section 4.1. We compared a submodular diver-
sifier that uses the adaptive weights, versus one that uses a
set of weights chosen manually by Amazon fashion experts.
Experimental results (Table 1, column 3) show that adap-
tive weights greatly out-performed manual weights. CTR
increased by 8.29% and session duration increased by 5.39%.
This indicates that users are highly sensitive to the categor-
ical mix of their experience.

5.3 Personalization
In our final experiment, we exposed users to category

weights that were adapted to their own click behavior, as
described in Section 4.2. These weights were calculated for
users whose history included at least 10 clicks, so this ex-
periment only applied to the most active users. In the con-
trol group, users were exposed to streams built using non-
personalized weights. Experimental results (Table 1, column
4) show that personalized weights yielded a 12.58% increase
in CTR with almost no impact on duration. Interestingly,
the amount of items that were viewed in the stream de-
creased by 4.95%. This indicates that users with personal-
ized diversity weights had a more efficient experience where
they interacted with more items while scrolling through less.

6. CONCLUSION
We present Amazon Stream, a visual browsing system

that emphasizes adaptive and personalized diversity in user
experience. Such methods can be applied to any online sys-
tem where the user seeks to discover content in the absence
of an explicit search query. Our experimental results show
the tangible incremental impact on key engagement metrics
of submodular diversification, adaptive global weights, and
personalization.
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